首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The interactions of high density lipoprotein (HDL) and acetylated high density lipoprotein (acetyl-HDL) with isolated rat sinusoidal liver cells have been investigated. Cellular binding of 125I-acetyl-HDL at 0 degrees C demonstrated the presence of a specific, saturable membrane-associated receptor. This receptor was affected neither by formaldehyde-treated albumin nor by low density lipoprotein modified either by acetylation or malondialdehyde, ligands known to undergo receptor-mediated endocytosis by the cells, indicating that the receptor for acetyl-HDL constitutes a distinct class among the scavenger receptors for chemically modified proteins. Parallel binding experiments using 125I-HDL also revealed the presence on these cells of a receptor for unmodified HDL. The ligand specificities of these two receptors were similar to each other except that the acetyl-HDL receptor was sensitive to polyanions such as dextran sulfate and fucoidin. Interaction of HDL with the cells at 37 degrees C was totally different from that of acetyl-HDL. Cellular binding of HDL was not accompanied by subsequent intracellular degradation of its apoprotein moiety, whereas its cholesterol moiety was significantly transferred to the cells. In contrast, acetyl-HDL was endocytosed and underwent lysosomal degradation as a holoparticle. This shift in receptor-recognition from the HDL receptor to the acetyl-HDL receptor was accomplished by acetylation of approximately 8% of the total lysine residues of HDL apoprotein. This unique difference in endocytic behavior between HDL and acetyl-HDL suggests a potential link of the HDL receptor to HDL-mediated cholesterol transfer in sinusoidal liver cells.  相似文献   

2.
Modification of low density lipoprotein by nonenzymic glycosylation resulted in decreased receptor-mediated lipoprotein catabolism. Guggulsterone treatment caused significant increase in binding of [125I] low density lipoprotein as well as [125I] glycosylated low density lipoprotein. Scatchard plot analysis of the binding activity revealed that under the influence of guggulsterone, the liver membrane contains increased amounts of a functional lipoprotein receptor that binds more low density lipoprotein particles.  相似文献   

3.
Treatment of 125I-labelled high-density lipoprotein ([125I]HDL3) with monospecific polyclonal antibodies against apolipoproteins A-I and A-II resulted in a dose-dependent inhibition of the [125I]HDL3 binding to isolated human small intestine epithelial cells by 25% and 50%, respectively. Both antibodies also inhibited intracellular degradation of [125I]HDL3 by 80%. Treatment of enterocytes with polyclonal antibody against apolipoprotein A-I binding protein, a putative HDL receptor, inhibited both binding and degradation of [125I]HDL3 by these cells by 50%. Antibodies to apolipoprotein A-I, A-II and apo A-I-binding protein also inhibited [125I]HDL3 binding to cholesterol-loaded cells.  相似文献   

4.
1. Cockerels fed a cholesterol-supplemented diet experienced a marked elevation of lipoprotein particles of density less than or equal to 1.006 g/ml (VLDL) and a diminution of lipoprotein particles of density 1.02-1.05 g/ml (LDL). 2. Unlike VLDL of some cholesterol-fed animals, cholesterol-fed cockerel VLDL did not display beta-mobility on agarose gel electrophoresis. 3. [125I]LDL and [125I]HDL binding to cockerel liver membranes was not affected by cholesterol feeding. 4. Different lipoprotein types appear to bind to a common site on cockerel liver membranes. 5. The results suggest that liver cells of cockerels may not possess LDL binding sites that are analogous to those of mammalian species.  相似文献   

5.
The human hepatoma cell line Hep G2 can be maintained in continuous culture and secretes numerous plasma proteins and lipoproteins into the medium. To better characterize cholesterol homeostasis in these cells we have examined the binding, internalization and degradation of [125I]LDL by cultured Hep G2 cells. Hep G2 cells express high-affinity low-density lipoprotein (LDL) receptors which facilitate the binding, internalization and degradation of [125I]LDL; these receptors can be induced by growth in LDL-depleted medium and repressed by further incubation in medium supplemented with LDL. The degradation of [125I]LDL by derepressed Hep G2 cells was inhibited by greater than 90% by monensin. Incubation of Hep G2 cells in the presence of increasing concentrations of LDL also inhibited cholesterol biosynthesis. Our results indicate that Hep G2 cells possess high affinity LDL receptors which are subject to metabolic regulation and suggest that this cell line affords a valuable model to further examine cholesterol and lipoprotein metabolism in human liver cells.  相似文献   

6.
Chemically modified proteins such as acetylated low-density lipoprotein (acetyl-LDL) and formaldehyde-treated serum albumin (f-Alb) infused intravenously are known to undergo receptor-mediated endocytosis by sinusoidal liver cells, major intravascular scavenger cells in vivo. The aim of the present study was to elucidate whether the endocytic uptake of acetyl-LDL and f-Alb is mediated by the same receptor or not. Experiments on the binding of 125I-acetyl-LDL to isolated rat liver sinusoidal cells revealed the presence of a specific, high-affinity, saturable, membrane-associated receptor with an apparent Kd = 7 micrograms of the ligand at 0 degrees C. Unlabeled acetyl-LDL effectively inhibited 125I-f-Alb binding to the cells. By contrast, the binding of 125I-acetyl-LDL to the cells was affected neither by unlabeled f-Alb nor by the antibody raised against the f-Alb receptor. These results indicate that the scavenger receptors for these two ligands are distinct from each other but similarly sensitive to polyanionic compounds.  相似文献   

7.
Interaction of advanced glycation end products (AGE) with AGE receptors induces several cellular phenomena potentially relating to diabetic complications. We here show that AGE-modified bovine serum albumin (BSA) is endocytosed by adipocytes via CD36. Upon differentiation, 3T3-L1 and human subcutaneous adipose cells showed marked increases in endocytic uptake and subsequent degradation of [(125)I]AGE-BSA, which were inhibited effectively by the anti-CD36 antibody. Ligand specificity of CD36 for modified BSAs was compared with that of LOX-1 and scavenger receptor class A. Effect of fucoidan on [(125)I]AGE-BSA binding showed a sharp contrast to that on [(125)I]-oxidized low density lipoprotein. These results implicate that CD36-mediated interaction of AGE-modified proteins with adipocytes might play a pathological role in obesity or insulin-resistance.  相似文献   

8.
[125I]-labelled apolipoprotein E-free high density lipoprotein (apo E-free HDL) binds to cultured human endothelial cells with high affinity. Competitive binding experiments showed that complexes of egg phosphatidyl choline with respectively apo A-1, A-2 and E, and phosphatidyl choline vesicles alone, competed efficiently with [125I]-apo E-free HDL for binding, suggesting that the binding of HDL to the high affinity receptor is not mediated by recognition of one specific apolipoprotein. Analyses of the respective incubation media of the competitive binding experiments by density gradient ultracentrifugation showed that the [125I]-label of [125I]-HDL redistributes to the competitors used. This implies that the usual competitive binding experiments may not be used in order to investigate which HDL component is involved in the high affinity binding of HDL to the plasma membrane.  相似文献   

9.
The metabolism of low density lipoproteins (LDL), and LDL modified by reductive methylation (M-LDL) of lysine residues, was studied in proximal tubular (PT) cells both from normal human kidney and from urine of patients with homozygous (LDL receptor-negative) familial hypercholesterolemia (FH). LDL and M-LDL was labeled either in the protein moiety with 125I or in the lactosylceramide moiety with 3H. The binding and degradation of 125I-LDL in normal cells was saturable and displaced by unlabeled LDL but not by M-LDL. The uptake of [3H]lactosylceramide (LacCer) low density lipoprotein in normal renal cells was saturable, and time and temperature-dependent. Exogenously derived [3H]LacCer on LDL was rapidly taken up and catabolized to monoglycosylceramide, or it was utilized for the endogenous synthesis of globotriaosylceramide (trihexosylceramide) and globotetraosylceramide (tetraglycosylceramide). [3H]LacCer M-LDL was taken up less avidly and metabolized less extensively than [3H]LacCer-LDL in normal cells. In homozygous FH renal cells the binding of 125I-LDL was not saturable and not displaced by unlabeled LDL. 125I-LDL degradation did not occur in FH cells. The homozygous FH PT cells took up a 2-fold greater amount of exogenously derived [3H]LacCer on LDL than normal cells. Yet, most of the [3H]LacCer taken up by FH PT cells accumulated as LacCer, and only small amounts were metabolized to monoglycosylceramide, globotriaosylceramide (trihexosylceramide), or globotetraosylceramide (tetraglycosylceramide). When normal and FH PT cells were preincubated with LDL (0-100 micrograms/ml medium), there was a 5-fold increase in cellular LacCer levels in FH cells at saturating levels of LDL, whereas there was about a 50% decrease in LacCer levels in normal cells. While the high affinity binding of LDL was not essential for the delivery of LacCer to cells, the data support the conclusion that LDL binding to the LDL receptor facilitates further LacCer processing and metabolism in normal renal cells. We speculate that [3H] LacCer is taken up by FH homozygous cells via a LDL receptor-independent mechanism and accumulates in the cells without significant metabolism. LacCer taken up by this mechanism contributes to the storage of LacCer in FH PT cells.  相似文献   

10.
The appearance of lipid-laden macrophages is a characteristic feature in the development of the atherosclerotic plaque. The functional status of macrophages located within the intima of atherosclerotic lesions is as yet unknown; nevertheless, macrophages are known to be exceedingly responsive to their environment and can differentiate to different functional states. The objective of this study was to determine the influence of two definable macrophage functional states, namely the IFN-primed state and the cytocidal state, on the capacity of macrophages to bind and degrade lipoproteins. We report that priming of macrophages with IFN-beta or IFN-gamma failed to influence the ability of macrophages to degrade native low density lipoprotein or acetylated low density lipoprotein (AcLDL). However, challenge with stimuli that induce expression of the cytocidal state (poly[I:C] and LPS) resulted in a marked inhibition of the capacity of the cells to degrade both lipoproteins. The poly[I:C]-induced inhibition of 125I-AcLDL degradation was accompanied by a proportional decrease in the binding of the ligand to its receptor which Scatchard analysis revealed was due to a decrease in receptor number rather than a change in receptor affinity for 125I-AcLDL. However, in addition to the down-regulation of receptor activity, the degradation of endocytosed 125I-AcLDL was also suppressed in macrophages that had been exposed to poly[I:C]. This latter observation suggests that the degradation of endocytosed lipid is also regulated at a second, previously unidentified level, independent of the availability of cell surface ligand receptors. We speculate that this down-regulation in the intracellular hydrolysis of endocytosed lipid may account for the observed accumulation of 125I-AcLDL in these cells.  相似文献   

11.
Rat peritoneal macrophages possess a surface receptor for high-density lipoprotein (HDL). To obtain the functional aspect of the HDL receptor, the present study was undertaken to modify HDL with three different cross-linkers; dimethylsuberimidate, disuccinimidylsuberate and dithiobissuccinimidylpropionate (DSP) and determine their effect on the ligand activity for the HDL receptor. Upon modification at a low reagent concentration, DSP was found to be most effective in cross-linking of HDL apolipoproteins. The ligand activity of DSP-HDL for the HDL receptor was reduced by greater than 60%. Experiments with these macrophages at 37 degrees C showed; (i) the amounts of the cell-associated [125I]DSP-HDL as 3.5-fold higher than [125I]HDL; (ii) the cell-association of [125I]DSP-HDL was effectively (greater than 70%) inhibited by unlabeled DSP-HDL, whereas HDL showed a partial inhibition (30%); (iii) [125I]DSP-HDL underwent chloroquine-sensitive intracellular degradation; and (iv) DSP-HDL induced a 3-fold increase in the incorporation of [14C]oleic acid into cholesteryl oleate when compared with unmodified HDL. Experiments at 0 degrees C showed that the cellular binding of [125I]DSP-HDL was competed by acetylated low-density lipoprotein and dextran sulfate. These findings indicate that DSP-HDL is recognized as a ligand by a scavenger receptor of rat peritoneal macrophages, a notion consistent with HDL modified with tetranitromethane (Kleinherenbrink-Stins, M.F. et al. (1989) J. Lipid Res. 39, 511-520).  相似文献   

12.
Rat liver parenchymal cell binding, uptake, and proteolytic degradation of rat 125I-labeled high density lipoprotein (HDL) subfraction, HDL3 (1.10 less than d less than 1.210 g/ml), in which apo-A-I is the major polypeptide, were investigated. Structural and metabolic integrity of the isolated cells was verified by trypan blue exclusion, low lactic dehydrogenase leakage, expected morphology, and gluconeogenesis from lactate and pyruvate. 125I-labeled HDL3 was incubated with 10 X 10(6) cells at 37 degrees and 4 degrees in albumin and Krebs-Henseleit bicarbonate buffer, pH 7.4. Binding and uptake were determined by radioactivity in washed cells. Proteolytic degradation was determined by trichloroacetic acid-soluble radioactivity in the incubation medium. At 37 degrees, maximum HDL3 binding (Bmax) and uptake occurred at 30 min with a Bmax of 31 ng/mg dry weight of cells. The apparent dissociation constant of the HDL3 receptor system (Kd) was 60 X 10(-8) M, based on Mr = 28,000 of apo-A-I, the predominant rat HDL3 protein. Proteolytic degradation showed a 15-min lag and then constant proteolysis. After 2 hours 5.8% of incubated 125I-labeled HDL3 was degraded. Sixty per cent of cell radioactivity at 37 degrees was trypsin-releasable. At 37 degrees, 125I-labeled HDL3 was incubated with cells in the presence of varying concentrations of native (cold) HDL3, very low density lipoproteins, and low density lipoproteins. Incubation with native HDL3 resulted in greatest inhibition of 125I-labeled HDL3 binding, uptake, and proteolytic degradation. When 125I-labeled HDL3 was preincubated with increasing amounts of HDL3 antiserum, binding and uptake by cells were decreased to complete inhibition. Cell binding, uptake, and proteolytic degradation of 125I-labeled HDL3 were markedly diminished at 4 degrees. Less than 1 mM chloroquine enhanced 125I-labeled HDL3 proteolysis but at 5 mM or greater, chloroquine inhibited proteolysis with 125I-labeled HDL3 accumulation in cells. L-[U-14C]Lysine-labeled HDL3 was bound, taken up, and degraded by cells as effectively as 125I-labeled HDL3. These data suggest that liver cell binding, uptake, and proteolytic degradation of rat HDL3 are actively performed and linked in the sequence:binding, then uptake, and finally proteolytic degradation. Furthermore, there may be a specific HDL3 (lipoprotein A) receptor of recognition site(s) on the plasma membrane. Finally, our data further support our previous reports of the important role of liver lysosomes in proteolytic degradation of HDL3.  相似文献   

13.
We studied binding and degradation of labeled platelet thrombospondin (TSP) by normal and variant bovine aorta endothelial (BAE) cells. [125I]-labeled TSP bound to cells at 37 degrees C in a specific, saturable, and time-dependent fashion. Incubation of cell monolayers with fluoresceinated TSP resulted in punctate cellular staining, but no staining of the extracellular matrix. Heparin, fucoidan, chondroitin sulfate, platelet factor 4, beta-thromboglobulin, unlabeled TSP, and serum derived from whole blood all competed for binding of [125I]TSP. [125I]TSP was degraded to TCA-soluble radioactivity, which appeared in the medium after a 60-90-min lag. Degradation was inhibited to the same extent as binding by increasing concentrations of heparin, fucoidan, platelet factor 4, or whole blood serum. Normal BAE cells bound and degraded less [125I]TSP than variant BAE cells. The dissociation constants (Kds) for binding and the constants for degradation (Kms) for degradation by the two cell strains, however, were similar (30-50 nM). The inhibitory effects of heparin and platelet factor 4 were lost when the two inhibitors were present in a 1:1 (wt/wt) ratio. Treatment of suspended cells with trypsin or heparitinase caused less binding of TSP. These results indicate that there is a specific receptor for TSP on endothelial cells which mediates binding and degradation. This receptor may be a heparan sulfate proteoglycan.  相似文献   

14.
In atherosclerotic lesions, macrophages are transformed into foam cells accumulating modified low density lipoproteins (LDL) via the scavenger receptor pathway. We have investigated the effects of carboxymethylated beta-1,3-glucan (CMG) on acetylated LDL (AcLDL) metabolism in murine peritoneal macrophages in vitro and upon the clearance of AcLDL by rat liver in vivo. In cultured murine peritoneal macrophages, CMG reduced substantially the AcLDL-induced synthesis of cholesteryl esters, decreased the binding and degradation of [125I]-AcLDL in a dose-dependent manner with complete inhibition at 20–30 nM , but had no effect on the binding and degradation of native [125I]–LDL. In contrast, other polysaccharides studied, namely zymosan, lipopolysaccharide, non-modified glucan and mannan Rhodexman, had a slight effect at concentrations significantly exceeding the concentrations of CMG. [125I]-AcLDL injected intravenously into rats was cleared from the blood with a half-life of 3.7 min. About 56 per cent of the label of injected [125I]-AcLDL was recovered in the liver 15 min after administration. Co-injection of the labelled AcLDL with CMG (25 mg kg?1 b.w.) decreased the rate of AcLDL clearance so that the half-life increased to 6.0 min. Injections of CMG (25 mg kg?1 b.w.) 48 and 24 h before the determination increased the rate of [125I]-AcLDL clearance (with a half-life of about 2.3 min) and increased the uptake of AcLDL by the liver. We suggest that CMG competed with AcLDL for scavenger receptors in vitro and in vivo and repeated CMG injections before the measurements of AcLDL resulted in the induction of scavenger receptor function.  相似文献   

15.
The presence of a membrane receptor for C-reactive protein (CRP-R) on the human monocytic cell line U-937 was the basis for determining the metabolic fate of the receptor-bound ligand and the functional response of the cells to CRP. Internalized [125I]CRP was measured by removing cell surface-bound [125I]CRP with pronase. Warming cells to 37 degrees C resulted in the internalization of approx. 50% of the receptor-bound [125I]CRP or receptor-bound [125I]CRP-PC-KLH complexes. U-937 cells degraded about 25% of the internalized [125I]CRP into TCA-soluble radiolabeled products. The lysosomotrophic agents (chloroquine, NH4Cl) greatly decreased the extent of CRP degradation without altering binding or internalization. In addition, a pH less than 4.0 resulted in dissociation of receptor-bound [125I]CRP. Treatment of U-937 cell with monensin, a carboxylic ionophore which prevents receptor recycling, resulted in accumulation of internalized [125I]CRP. Therefore, it appears that the CRP-R complex is internalized into an endosomal compartment where the CRP is uncoupled from its receptor and subsequently degraded. CRP initiated the differentiation of the U-937 cells so that they acquired the ability to produce H2O2 and also display in vitro tumoricidal activity. The results support the concept that internalization and degradation of CRP leads to the activation of monocytes during inflammation.  相似文献   

16.
beta-Very low density lipoprotein (beta-VLDL) may be a major atherogenic lipoprotein, and knowledge of the sites of its catabolism should facilitate elucidation of mechanisms important in the regulation of its plasma concentrations. In this study, catabolic sites of beta-VLDL have been delineated in normolipidemic rabbits with a novel, radioiodinated, residualizing label, 125I-dilactitol tyramine (125I-DLT). Comparative studies of beta-VLDL and low density lipoprotein catabolism were performed with 125I-DLT conjugated to each lipoprotein and with lipoproteins iodine-labeled conventionally. Conjugation did not alter size distributions or charge characteristics of lipoprotein particles. The overall processing (binding and degradation) of lipoproteins by cultured rabbit skin fibroblasts was not influenced by 125I-DLT derivatization, suggesting that attachment of the label did not influence cell receptor-lipoprotein interactions. Furthermore, although degradation products of 125I-lipoproteins leaked out of the cells and into the medium, the degradation products of 125I-DLT lipoproteins were retained by the cells. The principal catabolic site of beta-VLDL in normolipidemic rabbits was found to be the liver with 54 +/- 4% of injected 125I retained in this organ 24 h after injection of 125I-DLT-beta-VLDL. When catabolism was normalized to tissue weight, the liver and adrenals were found to be approximately equally active in the metabolism of beta-VLDL. In agreement with results of other studies with residualizing labels, the principal organ of catabolism of 125I-DLT-LDL in vivo was the liver. The adrenals were the most highly catabolizing organ when results were normalized for tissue weight. The quantitative differences observed in the tissue distributions of injected 125I-DLT-beta-VLDL and 125I-DLT-low density lipoprotein suggested that a significant proportion of beta-VLDL is removed by tissues before conversion to low density lipoprotein.  相似文献   

17.
In the investigation of the intracellular sites of insulin degradation, it might be important whether receptor-bound insulin could be a substrate for insulin-degrading enzyme (IDE). Insulin receptor and IDE were purified from rat liver using a wheat germ agglutinin column and monoclonal anti-IDE antibody affinity column, respectively. [125I]insulin-receptor complex was incubated with various amounts of IDE at 0 degree C in the presence of disuccinimidyl suberate and analyzed by reduced 7.5% SDS-PAGE and autoradiography. With increasing amounts of IDE, the radioactivity of 135 kd band (insulin receptor alpha-subunit) decreased, whereas that of 110 kd band (IDE) appeared then gradually increased, suggesting that IDE could bind to receptor-bound insulin. During incubation of insulin-receptor complex with IDE at 37 degrees C, about half of the [125I]insulin was dissociated from the complex. However, the time course of [125I]insulin degradation in this incubation was essentially identical to that of free [125I]insulin degradation. Cross-linked, non-dissociable receptor-bound [125I]insulin was also degraded by IDE. Rebinding studies to IM-9 cells showed that the receptor binding activity of dissociated [125I]insulin from insulin-receptor complex incubated with IDE was significantly (p less than 0.001) decreased as compared with that without the enzyme. These results, therefore, show that IDE could recognize and degrade receptor-bound insulin, and suggest that IDE may be involved in insulin metabolism during receptor-mediated endocytosis through the degradation of receptor-bound insulin in early neutral vesicles before their internal pH is acidified.  相似文献   

18.
1. This paper concerns the study of the effect of L-carnitine on cholesterol metabolism in rat hepatocyte cells BRL-3A. In this research the binding of [125I]human low density lipoprotein (LDL) to BRL-3A cells and 3-hydroxy 3-methylglutaryl CoA reductase activity (HMG-CoA reductase activity) after L-carnitine incubation were studied. 2. It was found that L-carnitine is able to increase either the [125I]LDL binding or inhibit the HMG-CoA reductase activity in BRL-3A cells. 3. These results indicate that L-carnitine affects the cholesterol metabolism through an inhibition of HMG-CoA reductase activity that could be responsible for the increased [125I]LDL binding in rat hepatocytes.  相似文献   

19.
The binding of [125I]gastrin releasing peptide ([125I]GRP) to Swiss 3T3 cells at 37 degrees C increases rapidly, reaching a maximum after 30 min and decreasing afterwards. The decrease in cell-associated radioactivity at this temperature is accompanied by extensive degradation of the labelled peptide. At 4 degrees C equilibrium binding is achieved after 6 h and [125I]GRP degradation is markedly inhibited. Extraction of surface-bound ligand at low pH demonstrates that the iodinated peptide is internalized within minutes after addition to 3T3 cells at 37 degrees C. The rate of internalization is strikingly temperature-dependent and is virtually abolished at 4 degrees C. In addition, lysomotropic agents including chloroquine increase the cell-associated radioactivity in cells incubated with [125I]GRP. The binding of [125I]GRP to Swiss 3T3 cells was not affected by pretreatment for up to 24 h with either GRP or bombesin at mitogenic concentrations. Furthermore, pretreatment with GRP did not reduce the affinity labelling of a Mr 75,000-85,000 surface protein recently identified as a putative receptor for bombesin-like peptides. These results demonstrate that while peptides of the bombesin family are rapidly internalized and degraded by Swiss 3T3 cells, the cell surface receptors for these molecules are not down-regulated.  相似文献   

20.
Hepatoma cell lines serve as a suitable model to study hepatic clearance of lipoprotein-associated cholesteryl esters (CEs). The present study aimed at investigating holoparticle-association of and selective CE-uptake from human high density lipoprotein subclass 3 (HDL3) by non-malignant adult (Chang-liver) and non-malignant fetal (WRL-68) epithelial cell lines as well as a hepatocellular carcinoma (HUH-7) cell line. Binding properties of 125I-HDL3 at 4 and 37 degrees C were similar for all three cell lines while degradation rates were highest for Chang-liver cells. Calculating the selective uptake of HDL3-associated CEs as the difference between [3H]CE- and 125I-HDL3 cell-association revealed that the selective lipid uptake and holoparticle-association was similar in Chang-liver while in WRL-68 and HUH-7 cells pronounced capacity for lipid tracer uptake in excess of holoparticle uptake was measured. Using RT-PCR, Northern and Western blot analysis, as well as immunocytochemical technique pronounced expression of scavenger receptor class B, type I (SR-BI) but not SR-BII (a splice variant of SR-BI less efficient for selective CE-uptake than SR-BI) could be identified in HUH-7 and WRL-68 cells. A polyclonal antiserum raised against SR-BI significantly decreased cell-association of [3H]CE-HDL3 in HUH-7 and WRL-68. The present findings suggest that the capacity for selective cholesteryl ester-uptake from high density lipoprotein by malignant and normal epithelial cells from the liver depends on expression of the scavenger receptor class B, type I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号