首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
研究了豌豆种子吸胀过程中脱水耐性的变化模式。种子在吸胀初期迅速吸收水分,然后缓慢吸收直到平台期。电解质渗漏速率在吸胀初期增加直到11h,然后随着吸胀下降。在吸胀过程中,种子的萌发率逐渐增加,种子和胚轴的脱水耐性逐渐丧失,10%和50%的种子和胚轴被脱水致死的含水量明显增加。赤霉素和脱落酸处理改变豌豆种子的萌发特性,提高胚轴的脱水耐性。研究结果表明,吸胀的豌豆种子脱水耐性的丧失是一种数量性状,正常性种子吸胀后脱水耐性的变化能够作为种子顽拗性研究的模式系统。  相似文献   

2.
顽拗性种子脱落时具有较高的含水量和代谢活性, 对脱水高度敏感; 但顽拗性种子脱水敏感性的机理至今仍然不清楚。该文以顽拗性黄皮(Clausena lansium)种子为材料, 研究了种子和胚轴对水分丧失的响应, 在脱水过程中胚轴和子叶的呼吸速率, 胚轴和子叶线粒体的细胞色素c氧化酶(CCO)活性、外膜完整性、CCO和交替氧化酶(AOX)途径以及线粒体活性氧清除酶活性的变化。结果表明, 随着水分的丧失, 种子和胚轴的存活率逐渐下降, 种子的脱水敏感性大于胚轴; 胚轴和子叶的呼吸速率以及线粒体外膜的完整性降低。胚轴和子叶线粒体的CCO途径以及胚轴AOX途径的呼吸速率在脱水初期增加, 随着继续脱水下降, 胚轴线粒体AOX途径的呼吸速率则随着脱水显著下降。胚轴线粒体的超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性和子叶线粒体的APX活性随着脱水迅速下降; 胚轴线粒体的脱氢抗坏血酸还原酶(DHAR)活性和子叶线粒体的SOD、DHAR和GR活性在脱水初期增加, 然后下降。这些数据表明黄皮种子的脱水敏感性与线粒体的呼吸速率和活性氧清除酶的活性降低密切相关, 也与长期适应热带/亚热带的生境有关。  相似文献   

3.
Trichiliadregeana胚轴的脱水敏感性与抗坏血酸的抗氧化作用   总被引:7,自引:0,他引:7  
以顽拗性TrichiliadregeanaSond.种子为材料,研究其胚轴的脱水敏感性与抗坏血酸的抗氧化作用。T.dregeana胚轴的脱水耐性随着脱水进程逐渐下降,50%的胚轴被脱水致死的含水量(W50)大约为0.16gH2O/gDW。在脱水过程中,胚轴的电解质渗漏速率逐渐增加,超氧物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、过氧化氢酶(CAT)、谷胱苷肽还原酶(GR)和脱氢抗坏血酸还原酶(DHAR)的活性下降,硫代巴比妥酸(TBA)-活性产物的含量增加。2.5~10.0mmol/L抗坏血酸处理能有效地增加胚轴的脱水耐性和SOD、APX、CAT和GR的活性,降低电解质渗漏速率和TBA活性产物的含量。结果表明,T.dregeana胚轴的脱水耐性与抗氧化酶的活性增加和脂质过氧化作用的降低密切相关。  相似文献   

4.
以顽拗性Trichilia dregeana Sond.种子为材料,研究其胚轴的脱水敏感性与抗坏血酸的抗氧化作用.T.dregeana胚轴的脱水耐性随着脱水进程逐渐下降,50%的胚轴被脱水致死的含水量(W50)大约为0.16 g H2O/g DW.在脱水过程中,胚轴的电解质渗漏速率逐渐增加,超氧物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、过氧化氢酶 (CAT)、谷胱苷肽还原酶(GR)和脱氢抗坏血酸还原酶(DHAR)的活性下降,硫代巴比妥酸(TBA)-活性产物的含量增加.2.5~10.0 mmol/L抗坏血酸处理能有效地增加胚轴的脱水耐性和SOD、APX、CAT和GR的活性,降低电解质渗漏速率和TBA活性产物的含量.结果表明,T.dregeana胚轴的脱水耐性与抗氧化酶的活性增加和脂质过氧化作用的降低密切相关.  相似文献   

5.
黄皮种子的子叶与胚轴,在发育前期蛋白质合成速率均高于后期。在发育过程中子叶的可溶性蛋白含量无明显变化,但在后期能新合成少数低分子量的热不稳定蛋白,可能是引起种子萌发的水解酶类。胚轴中可溶性蛋白单位干重含量高于子叶,而其成分不随发育而变化。ABA可促进发育后期黄皮种子胚轴中20kD蛋白的合成,但不能改变种子的脱水敏感性。  相似文献   

6.
在这个研究中测量不同发育时期的油菜种子中可溶性糖含量与肌醇半乳糖苷合成酶(galactinol synthase,GOLS)活性,将二者的变化趋势与种子脱水耐性获得的过程相比较并对结果进行相关性分析。结果显示油菜种子脱水耐性获得过程中,葡萄糖和果糖含量均随着发育期的延长而下降,蔗糖则保持较高水平;肌醇含量下降而肌醇半乳糖苷含量上升;棉子糖系列寡糖(raffinose familyolig osaccharides,RFO)含量随着种子发育而上升,特别是水苏糖,在成熟种子中可以达到相当高的浓度。油菜种子发育中期,细胞内GOLS活性开始上升,至贮藏物积累完成时达到最大。GOLS活性变化与种子肌醇半乳糖苷积累速度、RFO含量及种子的脱水耐性呈一定的正相关关系。我们认为GOLS促使RFO积累,从而对种子脱水耐性的获得产生重要影响。  相似文献   

7.
脱水敏感的黄皮种子在发育中的可溶性蛋白变化   总被引:3,自引:0,他引:3  
黄皮种子的子叶与胚轴,在发育前期蛋白质合成速率均高于后期。在发育过程中子叶的可溶性蛋白含量无明显变化,但在后期能新合成少数低分子量的热不稳定蛋白,可能是引起民种子萌发的水解酶类。胚轴中可溶性蛋白单位干重含量高于子叶,而其成分不随发育而变化。ABA可促进发育后期黄皮种了胚轴中20kD蛋白的合成,但不能改变种子的脱水敏感性。  相似文献   

8.
棉子糖半乳糖苷系列寡糖广泛分布在许多种植物种子中,并存在于干燥后仍能保持活力的组织内,如禾谷类种子的胚及糊粉层,豆类及其他双子叶植物的子叶和胚轴组织等。棉子糖半乳糖苷系列寡糖在禾谷类种子的非自溶性中央胚乳中不合成,但存在于蓖麻种子的自溶性胚乳细胞中。棉子糖半乳糖苷系列寡糖在种子发育后期累积,并持续到种子大量成熟直到脱水阶段。棉子糖半乳糖苷系列寡糖主要包括棉子糖、水苏糖和毛蕊花糖,是种子中最广泛的低分子量α_半乳糖苷。许多植物正常性种子的发育伴随着棉子糖半乳糖苷系列寡糖的累积,这些糖的累积已被认为在种子脱水耐性获得、种子活力、糖的运输及植物的抗冷驯化等过程 中起重要作用。本文从种子的脱水耐性获得、植物的冷驯化、细胞内定位及生物合成等方面综述了棉子糖半乳糖苷系列寡糖的研究进展。  相似文献   

9.
种子中的棉子糖半乳糖苷系列寡糖研究进展   总被引:7,自引:0,他引:7  
棉子糖半乳糖苷系列寡糖广泛分布在许多种植物种子中,并存在于干燥后仍能保持活力的组织内,如禾谷类种子的胚及糊粉层,豆类及其他双子叶植物的子叶和胚轴组织等。棉子糖半乳糖苷系列寡糖在禾谷类种子的非自溶性中央胚乳中不合成,但存在于蓖麻种子的自溶性胚乳细胞中。棉子糖半乳革系列寡糖在种子发育后期累积,并持续到种子大量成熟直到脱水阶段。棉子糖半乳糖苷系列寡糖主要包括棉子糖、水苏糖和毛蕊花糖,是种子中最广泛的低分子量α-半乳糖苷。许多植物正常性种子的发育伴随着棉子糖半乳糖苷系列寡糖的累积,这些糖的累积已被认为在种子脱水耐性获得、种子活力、糖的运输及植物的抗冷驯化等过程中起重要作用。本文从种子的脱水耐性获得、植物的冷驯化、细胞内定位及生物合成等方面综述了棉子糖半乳糖苷系列寡糖的研究进展。  相似文献   

10.
问题解答     
问:怎样理解"子叶以下的胚轴"?答:初中《植物学》第26页,以大豆和豌豆为例说明双子叶植物的种子在萌发时,有的种子的子叶出土,有的种子的子叶则不出土,常以"子叶以下的胚轴"不伸长为由.胚轴位于胚根和胚芽之间,同时与子叶相连,从子叶着生点至第一片真叶的一段称上胚轴,从子叶着生点至根的一段称下胚轴.书上说的"子叶以下的胚轴"就是指的下胚轴.但是,我们认为:"子叶以下的胚轴"的提法不妥,它容易使人混淆概念,以为胚轴完全处于子叶  相似文献   

11.
黄皮种子发育过程中脱水敏感性与细胞膜透性的关系   总被引:3,自引:0,他引:3  
黄皮(Clausena lansium (Lour.) Skeels)胚轴与完整种子的发育模式以及发育中电解质渗漏率变化有些不同. 种子生理成熟前、后的胚轴对脱水的反应也不同,前者经轻微脱水可提高萌发率和活力指数,后者不耐任何程度的脱水.活力指数的急剧下降伴随着电解质渗漏率的迅速上升.实验表明,黄皮种子在发育过程中没有形成耐脱水性. 细胞膜透性变化可反映脱水对种子的伤害程度  相似文献   

12.
Desiccation sensitivity and its relation to membrane permeability of the embryonic axes of the developing wampee (Clausena lansium (Lour.) Skeels) seeds were studied by measuring the changes in electrolyte leakage, germination and vigor index after the embryonic axes were rapidly air-dried to various water contents. During development, the fresh and dry weight per seed reached nearly maximum value at 72 d after anthesis, but the dry weight per embryonic axis continuously increased until 85 d after anthesis. The embryonic axes acquired the full capacity for germination at 58 d after anthesis and their vigor index continuously rose up from 51 to 92 d after anthesis. The electrolyte leakage of the developing the embryonic axes linearly declined to the minimum value at 72 d after anthesis and then went up again. The electrolyte leakage of the embryonic axes was higher than that of the whole seeds at the same time. The immature embryonic axes did not germinate completely, while mild desiccation could improve their viability. Any degree of desiccation decreased the vigor index of the embryonic axes which have reached physiological maturation and the decline of vigor index was corresponded to the increase of electrolyte leakage. According to this experiment, the authors concluded that wampee seeds did not gain desiccation-tolerance which was a characteristic of orthodox seeds during development. High water content was essential for maintaining membrane integrity and stabiligy of matured wampee seeds. The injury of seed viability during dehydration could be estimated by using the electro-conductivity method.  相似文献   

13.
The acquisition of desiccation tolerance (DT) in developing beech (Fagus sylvatica L.) seeds and the role of a dehydrin protein in this process were investigated. DT was determined by measurement of electrolyte leakage and germination capacity after drying to 10–12% moisture content (MC). In addition to mass maturity, the presence of heat-stable proteins, dehydrin accumulation and the peak of ABA content were measured in relation to the acquisition of DT. Mass maturity was achieved at 16 weeks after flowering (WAF). The germination capacity increased from 8% at 12 WAF to 80–90% after 16 WAF. Cell membrane integrity, measured as a decrease in electrolyte leakage after desiccation, was acquired at 16 WAF. Additionally, the ratio of heat-stable to soluble proteins was the highest at 16 WAF. One dehydrin-like protein with a molecular mass 44 kDa, named DHN44, was detected in embryonic axes at 16 WAF and in cotyledons at 17 WAF, and its gradual accumulation was observed in mature seeds. With regard to the acquisition of DT, the strongest correlations were detected between electrolyte leakage, DHN44 accumulation, and the percentage of heat-stable proteins. These results suggest that developing beech seeds become tolerant to desiccation at 16 WAF. The effect of desiccation and ABA treatment on DHN44 synthesis was tested before (14 WAF) and after the DT acquisition (18 WAF). Depending on the maturation stage desiccation and ABA treatment can induce or enlarge DHN44 expression.  相似文献   

14.
In a search for the mechanism of desiccation tolerance, a comparison was made between orthodox (desiccation-tolerant) soybean ( Glycine max [L.] Merrill) and recalcitrant (desiccation-intolerant) red oak ( Quercus rubra L.) seeds. During the maturation of soybean seeds, desiccation tolerance of seed axes is correlated with increases in sucrose, raffinose and stachyose. In cotyledons of mature oak seeds, sucrose levels are equal to those in mature soybeans, but oligosaccharides are absent. By using the thermally stimulated current method, we observed the glassy state in dry soybean seeds during maturation. Oak cotyledons showed the same phase diagram for the glass transition as did mature soybeans. By using X-ray diffraction, we found the maturation of soybeans to be associated with an increased ability of membranes to retain the liquid crystalline phase upon drying, whereas the mature oak cotyledonary tissue existed in the gel phase under similar dry conditions. These findings lead to the conclusion that the glassy state is not sufficient for desiccation tolerance, whereas the ability of membranes to retain the liquid crystalline phase does correlate with desiccation tolerance. An important role for soluble sugars in desiccation tolerance is confirmed, as well as their relevance to membrane phase changes. However, the presence of soluble sugars does not adequately explain the nature of desiccation tolerance in these seeds.  相似文献   

15.
The ability of seeds to withstand desiccation develops during embryogenesis and differs considerably among species. Paddy rice (Oryza sativa L.) grains readily survive dehydration to as low as 2% water content, whereas North American wild rice (Zizania palustris var interior [Fasset] Dore) grains are not tolerant of water contents below 6% and are sensitive to drying and imbibition conditions. During embryogenesis, dehydrin proteins, abscisic acid (ABA), and saccharides are synthesized, and all have been implicated in the development of desiccation tolerance. We examined the accumulation patterns of dehydrin protein, ABA, and soluble saccharides (sucrose and oligosaccharides) of rice embryos and wild rice axes in relation to the development of desiccation tolerance during embryogenesis. Dehydrin protein was detected immunologically with an antibody raised against a conserved dehydrin amino acid sequence. Both rice and wild rice embryos accumulated a 21-kD dehydrin protein during development, and an immunologically related 38-kD protein accumulated similarly in rice. Dehydrin protein synthesis was detected before desiccation tolerance had developed in both rice embryos and wild rice axes. However, the major accumulation of dehydrin occurred after most seeds of both species had become desiccation tolerant. ABA accumulated in wild rice axes to about twice the amount present in rice embryos. There were no obvious relationships between ABA and the temporal expression patterns of dehydrin protein in either rice or wild rice. Wild rice axes accumulated about twice as much sucrose as rice embryos. Oligosaccharides were present at only about one-tenth of the maximum sucrose concentrations in both rice and wild rice. We conclude that the desiccation sensitivity displayed by wild rice grains is not due to an inability to synthesize dehydrin proteins, ABA, or soluble carbohydrates.  相似文献   

16.
Sugars and desiccation tolerance in seeds   总被引:37,自引:9,他引:28       下载免费PDF全文
Soluble sugars have been shown to protect liposomes and lobster microsomes from desiccation damage, and a protective role has been proposed for them in several anhydrous systems. We have studied the relationship between soluble sugar content and the loss of desiccation tolerance in the axes of germinating soybean (Glycine max L. Merr. cv Williams), pea (Pisum sativum L. cv Alaska), and corn (Zea mays L. cv Merit) axes. The loss of desiccation tolerance during imbibition was monitored by following the ability of seeds to germinate after desiccation following various periods of preimbibition and by following the rates of electrolyte leakage from dried, then rehydrated axes. Finally, we analyzed the soluble sugar contents of the axes throughout the transition from desiccation tolerance to intolerance. These analyses show that sucrose and larger oligosaccharides were consistently present during the tolerant stage, and that desiccation tolerance disappeared as the oligosaccharides were lost. The results support the idea that sucrose may serve as the principal agent of desiccation tolerance in these seeds, with the larger oligosaccharides serving to keep the sucrose from crystallizing.  相似文献   

17.
The ascorbate-glutathione system was studied during development and maturation of beech (Fagus sylvatica L.) seeds, the classification of which in the orthodox category is controversial. This study revealed an increase in glutathione content after acquisition of desiccation tolerance, which was more intensive in embryonic axes than in cotyledons. During seed maturation, the redox status of glutathione markedly changed toward the more reducing state, especially in cotyledons. Ascorbic acid content decreased during maturation, mostly in cotyledons. Activities of the enzymes of the ascorbate-glutathione cycle—ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2)—were markedly higher in embryonic axes than in cotyledons throughout the study period. In the course of seed maturation, the activities of these enzymes decreased. Importance of the ascorbate-glutathione cycle in desiccation tolerance of beech seeds was discussed in relation to results for typical orthodox and recalcitrant seeds of other broadleaved species.  相似文献   

18.
In constrast to seeds of orthodox species, those of recalcitrantspecies do not acquire desiccation tolerance during their developmentand are shed from the parent plant at high water contents. Dehydrinproduction in seeds of recalcitrant species was examined duringdevelopment and germination, in response to abscisic acid (ABA),and following the imposition of various water-deficit-relatedstresses, including desiccation, water stress, high salt, highosmolarity, and low temperature. Two tropical species exhibiteda differential capacity to produce dehydrin-related proteinsduring seed maturation. Dehydrins were present in axes and cotyledonsof Castanospermum australe seeds during mid-maturation and atmaturity. In Trichilia dregeana, no dehydrin-related polypeptideswere detected in the mature seed. During the development ofC. australe seeds, the nature of the dehydrin related polypeptidesaccumulated in the cotyledons and axis changed and new polypeptideswere detected in the mature seeds that were not present duringmid-maturation. The dehydrins present in cotyledons of matureseeds (31, 37 and 40 kDa) were still detectable after germination(i.e. in untreated seedlings). These dehydrins became less abundantin the cotyledons of C. australe seedlings following ABA andall stress treatments except cold, although most of the dehydrinswere still detectable. An exception was the desiccation-treatedseedlings, in which no dehydrins were detected. In the rootsof C. australe seedlings, no dehydrins were found after germinationnor were they induced in the root by ABA or any of the stresstreatments imposed on seedlings. Seedlings of Trichilia dregeanadid not produce dehydrins in the roots or cotyledons when exposedto ABA or water-deficit-related stresses. Key words: Dehydrin, ABA, desiccation, recalcitrant, seed  相似文献   

19.
Abscisic acid (ABA) concentrations and growth rates of developing soybean (Glycine max [L.] Merr. cv. Wye) seeds and pod walls were determined from anthesis to maturation using high pressure liquid chromatographic techniques. Developing soybean seeds contain up to 12,200 ng/g fresh weight of ABA compared to 330 ng/g fresh weight for pod walls. In the developing seeds ABA levels correlated with growth rates, being the highest during the most active growth period of seed enlargement, and then decreasing to less than 10 ng/g fresh weight at maturity. Higher levels of ABA were found to occur in the cotyledons and seed coats than the root-shoot axes at 21 days postanthesis. The time required for excised root-shoot axes to initiate growth in liquid culture decreased as seed development progressed and ABA levels of the seeds declined.  相似文献   

20.
Several dehydration protocols were evaluated for their ability to cryopreserve intact seeds and excised embryonic axes of Mimusops elengi and Manilkara zapota (Sapotaceae). Both interspecific and intraspecific variations in cryotolerance were found. M. zapota embryonic axes were more tolerant of cryopreservation than those of M. elengi, and showed higher desiccation tolerance, higher post-thawing survival and development, and a much wider range of moisture contents for cryopreservation. Maximum development rates were 94% and 27% for M. zapota and M. elengi, respectively. Intact seeds of both species tolerated desiccation to low moisture levels, but were sensitive to liquid nitrogen exposure, and cryopreserved seeds failed to germinate. Assessment of developing embryos excised from cryopreserved seeds associated nonviability of cotyledons and plumules with germination failure. Other structures survived at variable rates; most hypocotyls and radicles (up to 76% and 98% for M. elengi and M. zapota, respectively) were viable. The different cryotolerance between hypocotyls and cotyledons is a critical cause for failure in cryopreservation, contributing to the difficulty in developing protocols for such intermediate oily seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号