首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 195 毫秒
1.
The first phylogenomic analysis of the antlions is presented, based on 325 genes captured using anchored hybrid enrichment. A concatenated matrix including 207 species of Myrmeleontoidea (170 Myrmeleontidae) was analysed under maximum likelihood and Bayesian inference. Both Myrmeleontidae (antlions) and Ascalaphidae (owlflies) were recovered as paraphyletic with respect to each other. The majority of the subfamilies traditionally assigned to both Myrmeleontidae and Ascalaphidae were also recovered as paraphyletic. By contrast, all traditional antlion tribes were recovered as monophyletic (except Brachynemurini), but most subtribes were found to be paraphyletic. When compared with the traditional classification of Myrmeleontidae, our results do not support the current taxonomy. Therefore, based on our phylogenomic results, we propose a new classification for the antlions, which synonymizes Ascalaphidae with Myrmeleontidae and divides the family into four subfamilies (Ascalaphinae, Myrmeleontinae, Dendroleontinae and Nemoleontinae) and 17 tribes. We also highlight the most pressing issues in antlion systematics and indicate taxa that need further taxonomic and phylogenetic attention. Finally, we present a comprehensive table placing all extant genera of antlions and owlflies in our new proposed classification, including details on the number of species, distribution and notes on the likely monophyly of each genus.  相似文献   

2.
The suborder Myrmeleontiformia is a derived lineage of lacewings (Insecta: Neuroptera) including the families Psychopsidae, Nemopteridae, Nymphidae, Ascalaphidae and Myrmeleontidae. In particular, Myrmeleontidae (antlions) are the most diverse neuropteran family, representing a conspicuous component of the insect fauna of xeric environments. We present the first detailed quantitative phylogenetic analysis of Myrmeleontiformia, based on 107 larval morphological and behavioural characters for 36 genera whose larvae are known (including at least one representative of all the subfamilies of the suborder). Four related families were used as outgroups to polarize character states. Phylogenetic analyses were conducted using both parsimony and Bayesian methods. The reconstructions resulting from our analyses corroborate the monophyly of Myrmeleontiformia. Within this clade, Psychopsidae are recovered as the sister family to all the remaining taxa. Nemopteridae (including both subfamilies Nemopterinae and Crocinae) are recovered as monophyletic and sister to the clade comprising Nymphidae + (Myrmeleontidae + Ascalaphidae). Nymphidae consist of two well‐supported clades corresponding to the subfamilies Nymphinae and Myiodactylinae. Our results suggest that Ascalaphidae may not be monophyletic, as they collapse into an unresolved polytomy under the Bayesian analysis. In addition, the recovered phylogenetic relationships diverge from the traditional classification scheme for ascalaphids. Myrmeleontidae are reconstructed as monophyletic, with the subfamilies Stilbopteryginae, Palparinae and Myrmeleontinae. We retrieved a strongly supported clade comprising taxa with a fossorial habit of the preimaginal instars, which represents a major antlion radiation, also including the monophyletic pit‐trap building species.  相似文献   

3.
Chalcidoidea (Hymenoptera) is extremely diverse with an estimated 500 000 species. We present the first phylogenetic analysis of the superfamily based on both morphological and molecular data. A web‐based, systematics workbench mx was used to score 945 character states illustrated by 648 figures for 233 morphological characters for a total of 66 645 observations for 300 taxa. The matrix covers 22 chalcidoid families recognized herein and includes 268 genera within 78 of 83 subfamilies. Morphological data were analysed alone and in combination with molecular data from ribosomal 18S (2105 bp) and 28S D2–D5 expansion regions (1812 bp). Analyses were analysed alone and in combined datasets using implied‐weights parsimony and likelihood. Proposed changes in higher classification resulting from the analyses include: (i) recognition of Eriaporidae, revised status; (ii) recognition of Cynipencyrtidae, revised status; (iii) recognition of Azotidae, revised status; (iv) inclusion of Sycophaginae in Agaonidae, revised status; (v) reclassification of Aphelinidae to include Aphelininae, Calesinae, Coccophaginae, Eretmocerinae and Eriaphytinae; (vi) inclusion of Cratominae and Panstenoninae within Pteromalinae (Pteromalidae), new synonymy; (vii) inclusion of Epichrysomallinae in Pteromalidae, revised status. At a higher level, Chalcidoidea was monophyletic, with Mymaridae the sister group of Rotoitidae plus the remaining Chalcidoidea. A eulophid lineage was recovered that included Aphelinidae, Azotidae, Eulophidae, Signiphoridae, Tetracampidae and Trichogrammatidae. Eucharitidae and Perilampidae were monophyletic if Eutrichosomatinae (Pteromalidae) was included, and Eupelmidae was monophyletic if Oodera (Pteromalidae: Cleonyminae) was included. Likelihood recovered a clade of Eupelmidae + (Tanaostigmatidae + (Cynipencyrtus + Encyrtidae). Support for other lineages and their impact on the classification of Chalcidoidea is discussed. Several life‐history traits are mapped onto the new phylogeny.  相似文献   

4.
The superfamilies of Elateriformia have been in a state of flux since their establishment. The recent classifications recognize Dascilloidea, Buprestoidea, Byrrhoidea and Elateroidea. The most problematic part of the elateriform phylogeny is the monophyly of Byrrhoidea and the relationships of its families. To investigate these issues, we merged more than 500 newly produced sequences of 18S rRNA, 28S rRNA, rrnL mtDNA and cox1 mtDNA for 140 elateriform taxa with data from GenBank. We assembled an all‐taxa (488 terminals) and a pruned data set, which included taxa with full fragment representation (251 terminals); both were aligned in various programs and analysed using maximum‐likelihood criterion and Bayesian inference. Most analyses recovered monophyletic superfamilies and broadly similar relationships; however, we obtained limited statistical support for the backbone of trees. Dascilloidea were sister to the remaining Elateriformia, and Elateroidea were sister to the clade of byrrhoid lineages including Buprestoidea. This clade mostly consisted of four major lineages, that is (i) Byrrhidae, (ii) Dryopidae + Lutrochidae, (iii) Buprestoidea (Schizopodidae sister to Buprestidae) and (iv) a clade formed by the remaining byrrhoid families. Buprestoidea and byrrhoid lineages, with the exception of Byrrhidae and Dryopidae + Lutrochidae, were usually merged into a single clade. Most byrrhoid families were recovered as monophyletic. Callirhipidae and Eulichadidae formed independent terminal lineages within the Byrrhoidea–Buprestoidea clade. Paraphyletic Limnichidae were found in a clade with Heteroceridae and often also with Chelonariidae. Psephenidae, represented by Eubriinae and Eubrianacinae, never formed a monophylum. Ptilodactylidae were monophyletic only when Paralichas (Cladotominae) was excluded. Elmidae regularly formed a clade with a bulk of Ptilodactylidae; however, elmid subfamilies (Elminae and Larainae) were not recovered. Despite the densest sampling of Byrrhoidea diversity up to date, the results are not statistically supported and resolved only a limited number of relationships. Furthermore, questions arose which should be considered in the future studies on byrrhoid phylogeny.  相似文献   

5.
We infer phylogenetic relationships within Teioidea, a superfamily of Nearctic and Neotropical lizards, using nucleotide sequences. Phylogenetic analyses relied on parsimony under tree‐alignment and similarity‐alignment, with length variation (i.e. gaps) treated as evidence and as absence of evidence, and maximum‐likelihood under similarity‐alignment with gaps as absence of evidence. All analyses produced almost completely resolved trees despite 86% of missing data. Tree‐alignment produced the shortest trees, the strict consensus of which is more similar to the maximum‐likelihood tree than to any of the other parsimony trees, in terms of both number of clades shared, parsimony cost and likelihood scores. Comparisons of tree costs suggest that the pattern of indels inferred by similarity‐alignment drove parsimony analyses on similarity‐aligned sequences away from more optimal solutions. All analyses agree in a majority of clades, although they differ from each other in unique ways, suggesting that neither the criterion of optimality, alignment nor treatment of indels alone can explain all differences. Parsimony rejects the monophyly of Gymnophthalmidae due to the position of Alopoglossinae relative to Teiidae, whereas support of Gymnophthalmidae by maximum‐likelihood was low. We address various nomenclatural issues, including Gymnophthalmidae Fitzinger, 1826 being an older name than Teiidae Gray, 1827. We recognize three families in the arrangement Alopoglossidae + (Teiidae + Gymnophthalmidae). Within Gymnophthalmidae we recognize Cercosaurinae, Gymnophthalminae, Rhachisaurinae and Riolaminae in the relationship Cercosaurinae + (Rhachisaurinae + (Riolaminae + Gymnophthalminae)). Cercosaurinae is composed of three tribes—Bachiini, Cercosaurini and Ecpleopodini—and Gymnophthalminae is composed of three—Gymnophthalmini, Heterodactylini and Iphisini. Within Teiidae we retain the currently recognized three subfamilies in the arrangement: Callopistinae + (Tupinambinae + Teiinae). We also propose several genus‐level changes to restore the monophyly of taxa.  相似文献   

6.
7.
The order Thysanoptera (Paraneoptera), commonly known as thrips, displays a wide range of behaviours, and includes several pest species. The classification and suggested relationships among these insects remain morphologically based, and have never been evaluated formally with a comprehensive molecular phylogenetic analysis. We tested the monophyly of the suborders, included families and the recognized subfamilies, and investigated their relationships. Phylogenies were reconstructed based upon 5299 bp from five genetic loci: 18S ribosomal DNA, 28S ribosomal DNA, Histone 3, Tubulin‐alpha I and cytochrome oxidase c subunit I. Ninety‐nine thrips species from seven of the nine families, all six subfamilies and 70 genera were sequenced. Maximum parsimony, maximum likelihood and Bayesian analyses all strongly support a monophyletic Tubulifera and Terebrantia. The families Phlaeothripidae, Aeolothripidae, Melanthripidae and Thripidae are recovered as monophyletic. The relationship of Aeolothripidae and Merothripidae to the rest of Terebrantia is equivocal. Molecular data support previous suggestions that Aeolothripidae or Merothripidae could be a sister to the rest of Terebrantia. Four of the six subfamilies are recovered as monophyletic. The two largest subfamilies, Phlaeothripinae and Thripinae, are paraphyletic and require further study to understand their internal relationships.  相似文献   

8.
A parsimony‐based phylogenetic analysis of eighty‐three morphological characters of adults and immatures of seventy representatives of the tribes and subfamilies of Membracidae and two outgroup taxa was conducted to evaluate the status and relationships of these taxa. Centrotinae apparently gave rise to Nessorhinini and Oxyrhachini (both formerly treated as subfamilies, now syn.n. and syn.reinst., respectively, of Centrotinae). In contrast to previous analyses, a clade comprising Nicomiinae, Centronodinae, Centrodontinae, and the unplaced genera Holdgatiella Evans, Euwalkeria Goding and Antillotolania Ramos was recovered, but relationships within this clade were not well resolved. Nodonica bispinigera, gen.n. and sp.n., is described and placed in Centrodontini based on its sister‐group relationship to a clade comprising previously described genera of this tribe. Membracinae and Heteronotinae were consistently monophyletic. Neither Darninae nor Smiliinae, as previously defined, was monophyletic on the maximally parsimonious cladograms, but constraining both as monophyletic groups required only one additional step. The monophyly of Stegaspidinae, including Deiroderes Ramos (unplaced in Membracidae), was supported on some but not all equally parsimonious cladograms. More detailed analyses of individual subfamilies, as well as morphological data on the undescribed immatures of several membracid tribes and genera, will be needed to elucidate relationships among tribes and genera. A key to the subfamilies and tribes is provided.  相似文献   

9.
The molecular phylogeny of flat‐footed flies is inferred from analysis of DNA sequence data from the five mitochondrial genes 12S, 16S, COI, COII and CytB, and the nuclear gene 28S and discussed with the recent systematics based on morphological features. The Bayesian inference, maximum likelihood and maximum parsimony analyses included 42 species of 18 genera, representing all four extant subfamilies (Microsaniinae, Melanderomyiinae, Callomyiinae and Platypezinae) and all known genera except one (Metaclythia). Representatives of the brachycerous taxa Lonchopteridae, Phoridae, Sciadocerinae (Phoridae) and Opetiidae are used as outgroups, and Lonchoptera was used to root the trees. Our results show Platypezidae consisting of two well‐supported clades, the first with the subfamilies Melanderomyiinae + Callomyiinae and the second formed by subfamily Platypezinae. Genus Microsania was resolved as a separate lineage distant from Platypezidae which clustered with Opetiidae as its sister group, both together forming a sister group to Platypezidae. At the generic level, the genus Agathomyia proved not to be monophyletic in any of the analyses. The species Chydaeopeza tibialis is sister to Agathomyia sexmaculata, and consequently, the genus Chydaeopeza Shatalkin, 1992 is a new junior synonym of Agathomyia Verrall, 1901. Bifurcated setae on legs of adult Platypezidae are documented as a new synapomorphy of the family, exclusive of Microsania. Outstretched wings and only a small overlap of their surfaces at resting position are considered a new synapomorphy for the subfamily Platypezinae. Other phylogenetically important characters defining main clades are documented, and their relevance/validity in phylogenetic studies is discussed. The current systematic concept of Platypezidae is discussed, and new phylogenetic hypotheses are proposed.  相似文献   

10.
A new, more complete, five‐marker (SSU, LSU, psbA, COI, 23S) molecular phylogeny of the family Corallinaceae, order Corallinales, shows a paraphyletic grouping of seven well‐supported monophyletic clades. The taxonomic implications included the amendment of two subfamilies, Neogoniolithoideae and Metagoniolithoideae, and the rejection of Porolithoideae as an independent subfamily. Metagoniolithoideae contained Harveylithon gen. nov., with H. rupestre comb. nov. as the generitype, and H. canariense stat. nov., H. munitum comb. nov., and H. samoënse comb. nov. Spongites and Pneophyllum belonged to separate clades. The subfamily Neogoniolithoideae included the generitype of Spongites, S. fruticulosus, for which an epitype was designated. Pneophyllum requires reassesment. The generitype of Hydrolithon, H. reinboldii, was a younger heterotypic synonym of H. boergesenii. The evolutionary novelty of the subfamilies Hydrolithoideae, Metagoniolithoideae, and Lithophylloideae was the development of tetra/bisporangial conceptacle roofs by filaments surrounding and interspersed among the sporangial initials.  相似文献   

11.
Aktipis, S. W., Boehm, E. & Giribet, G. (2010). Another step towards understanding the slit‐limpets (Fissurellidae, Fissurelloidea, Vetigastropoda, Gastropoda): a combined five‐gene molecular phylogeny. —Zoologica Scripta, 40, 238–259. Fissurellids, commonly known as slit or keyhole limpets, are limpet‐shaped gastropods that typically possess a hole, slit or notch in their bilaterally symmetrical shells and usually occur on rocky marine substrates. Competing classifications for Fissurellidae have been circumscribed using various morphological characters such as radular, shell and mantle features; two to five different subfamilies have been recognized. Although fissurellid species are frequently included in larger vetigastropod phylogenies, relatively few phylogenetic studies of the group have been performed. This study presents a phylogenetic investigation of the relationships amongst slit‐limpets in the vetigastropod superfamily Fissurelloidea, representing the first molecular phylogeny of this clade. In this study, the monophyly of Fissurelloidea and Fissurellidae varied depending on the analytical method used, but clades compatible with the subfamilies Diodorinae and Fissurellinae were recovered with high bootstrap support in all analyses. Species traditionally classified in Emarginulinae formed two groups identified in this study as Hemitominae (Puncturella, Cranopsis and Hemitoma) and Emarginulinae sensu stricto (Emarginula, Montfortula, Tugali, Scutus and Nannoscutum), but Hemitominae was only monophyletic in the maximum likelihood analysis. The results of this study contradict traditional fissurellid classifications as well as theories about the evolution of key fissurellid shell characters. The placement of Puncturella, Cranopsis and Hemitoma sister to all remaining fissurellids suggests that the presence of an anteriorly placed foramen or notch is plesiomorphic, and that an anterior notch or slit evolved multiple times in Fissurellidae.  相似文献   

12.
Evolutionary and ecological hypotheses of the freshwater mussel subfamily Ambleminae are intensely geographically biased—a consequence of the complete exclusion of Mesoamerican taxa in phylogenetic reconstructions of the clade. We set out to integrate a portion of the Mesoamerican freshwater mussel assemblage into existing hypotheses of amblemine classification and evolution by generating a molecular phylogeny that includes four previously unsampled Mesoamerican genera and nine species endemic to that region. Given the traditionally hypothesized affinity to Nearctic mussels and the understanding that classification should reflect common ancestry, we predicted that (a) Mesoamerican genera would be recovered as members of the recognized tribes of the Ambleminae, and (b) genera would be supported as monophyletic. The mutilocus phylogeny (COI + 28S + 16S) reported herein does not fully support either of those hypotheses. Neither Cyrtonaias nor Psorula were supported as monophyletic and we predict several other Mesoamerica genera are also non‐monophyletic. The reconstructed phylogeny recovered four independent lineages of Mesoamerican freshwater mussels and these clades are distributed across the phylogeny of the Ambleminae, including the tribe Quadrulini (Megalonaias), Lampsilini (two lineages: Cyrtonaias explicata/Sphenonaias microdon, and Pachynaias), and a previously unrecognized, exclusively Mesoamerican and Rio Grande clade consisting of the genera Psoronaias, Psorula and Popenaias. The latter clade possesses several morphological characteristics that distinguish it from its sister taxon, tribe Lampsilini, and we recognize this newly identified Mesoamerican clade as a fifth tribe of the Ambleminae attributable to the Popenaiadini Heard & Guckert, 1970. This revised classification more completely recognizes the suprageneric diversity of the Ambleminae.  相似文献   

13.
The external morphology of the compound eyes of 13 species of the Ascalaphidae family (Insecta, Neuroptera) from Africa, Asia and Europe was studied in relation to the habitat, phylogeny and time of activity during the day. The six species with undivided eyes (Haplogleniinae) are nocturnal; four inhabit more or less open terrain, while two inhabit more or less dense vegetation. Of the seven species with divided eyes (Ascalaphinae), three are diurnal, one is crepuscular and nocturnal, and three are nocturnal. It was found that two of the diurnal species inhabit open terrain and open forest, and one inhabits dense vegetation; the crepuscular and nocturnal species inhabits open terrain; and two of the nocturnal species inhabit open terrain, while one inhabits dense vegetation. The results are discussed in relation to the hypothesis that divided eyes evolved from undivided eyes, originally serving as an adaptation to daytime vision in open terrain.  相似文献   

14.
《Systematic Entomology》2018,43(1):68-89
Cerambycidae is a species‐rich family of mostly wood‐feeding (xylophagous) beetles containing nearly 35 000 known species. The higher‐level phylogeny of C erambycidae has never been robustly reconstructed using molecular phylogenetic data or a comprehensive sample of higher taxa, and its internal relationships and evolutionary history remain the subjects of ongoing debate. We reconstructed the higher‐level phylogeny of C erambycidae using phylogenomic data from 522 single copy nuclear genes, generated via anchored hybrid enrichment. Our taxon sample (31 C hrysomeloidea, four outgroup taxa: two C urculionoidea and two C ucujoidea) included exemplars of all families and 23 of 30 subfamilies of C hrysomeloidea (18 of 19 non‐chrysomelid C hrysomeloidea), with a focus on the large family C erambycidae. Our results reveal a monophyletic C erambycidae s.s. in all but one analysis, and a polyphyletic C erambycidae s.l. When monophyletic, C erambycidae s.s. was sister to the family D isteniidae. Relationships among the subfamilies of C erambycidae s.s. were also recovered with strong statistical support except for C erambycinae being made paraphyletic by Dorcasomus A udinet‐S erville (D orcasominae) in the nucleotide (but not amino acid) trees. Most other chrysomeloid families represented by more than one terminal taxon – C hrysomelidae, D isteniidae, V esperidae and O rsodacnidae – were monophyletic, but M egalopodidae was rendered paraphyletic by Cheloderus G ray (O xypeltidae). Our study corroborates some relationships within C hrysomeloidea that were previously inferred from morphological data, while also reporting several novel relationships. The present work thus provides a robust framework for future, more deeply taxon‐sampled, phylogenetic and evolutionary studies of the families and subfamilies of C erambycidae s.l. and other C hrysomeloidea.  相似文献   

15.
A new genus and species of antlion‐like fossil lacewing, Guyiling jianboni gen. et sp.n. (Insecta: Neuroptera) are described based on a single specimen from the Yixian Formation (Liaoning Province, China; Early Cretaceous). The new taxon exhibits derived traits such as distally dilated antennae and well‐developed anterior Banksian line (known in Myrmeleontidae), but also genuine plesiomorphies (at the level of Myrmeleontiformia), such as the divergence of a distinct CuA1 stem from MP2 + CuA1 (forewing), and a basal origin of MA (diverging from RP + MA; both wing pairs). This combination is unique among the ‘Palaeoleontidae’, a group better considered as a paraphyletic assemblage of various stem‐Myrmeleontiformia. The wing morphology of the new species is considered in the light of a survey of wing venation topological homologies (and implied transformations) among several Neuroptera families. The survey includes a revision of the holotype of Leptolingia jurassica Ren (Grammolingiidae; Jiulongshan Formation, Daohugou locality, Inner Mongolia Autonomous Region, China; middle Jurassic). The forewing morphology of Guyiling jianboni gen. et sp.n. demonstrates that the fusion of MP2 with CuA, and the differentiation of CuA into two distinct main stems (namely CuA1 and CuA2) are traits shared with Myrmeleontidae and Ascalaphidae (and possibly Nemopteridae). However, the survey also demonstrates that a fusion of MP2 with CuA occurred repeatedly among Neuropterida, although by means of various modalities (namely translocation vs regular fusion). The ‘pectinate fusion’ of CuA(1) with MP2 [i.e. CuA1 has no distinct stem and emits successive branches from MP2 + CuA(1) partim] is a further step in this fusion, and occurred repeatedly as well (at least in the hind wings of Osmylidae and Nymphidae, and both fore‐ and hindwings of a sub‐group of Myrmeleontiformia including Myrmeleontidae and Ascalaphidae, and possibly Nemopteridae). It is anticipated that the current contribution will constitute useful background information for further studies, focusing on particular transformation cases, ideally including a documentation of intraspecific variation.  相似文献   

16.
Cladistic analyses were carried out to infer the phylogenetic relationships among taxa that were originally part of the large genus Eumenes. Terminals belonging to other eumenine lineages were also included, as well as terminals from other vespid subfamilies. Analyses under equal weights and implied weights were carried out, and better results were obtained with the latter. The results corroborated the monophyly of Eumeninae, and recovered Zethini sensu lato as the sister‐lineage to the remaining eumenines. Eumenes sensu lato as originally recognized is paraphyletic relative to Odynerus sensu lato. A natural classification at the tribal level congruent with the phylogenetic results may be proposed, and the names Zethini, Odynerini, and Eumenini are already available. This is the most comprehensive phylogeny of the Eumeninae to date. A new generic synonymy is Alfieria Giordani Soika, 1934 = Delta de Saussure, 1855.  相似文献   

17.
Next‐generation sequencing technologies (NGS) allow systematists to amass a wealth of genomic data from non‐model species for phylogenetic resolution at various temporal scales. However, phylogenetic inference for many lineages dominated by non‐model species has not yet benefited from NGS, which can complement Sanger sequencing studies. One such lineage, whose phylogenetic relationships remain uncertain, is the diverse, agriculturally important and charismatic Coreoidea (Hemiptera: Heteroptera). Given the lack of consensus on higher‐level relationships and the importance of a robust phylogeny for evolutionary hypothesis testing, we use a large data set comprised of hundreds of ultraconserved element (UCE) loci to infer the phylogeny of Coreoidea (excluding Stenocephalidae and Hyocephalidae), with emphasis on the families Coreidae and Alydidae. We generated three data sets by including alignments that contained loci sampled for at least 50%, 60%, or 70% of the total taxa, and inferred phylogeny using maximum likelihood and summary coalescent methods. Twenty‐six external morphological features used in relatively comprehensive phylogenetic analyses of coreoids were also re‐evaluated within our molecular phylogenetic framework. We recovered 439–970 loci per species (16%–36% of loci targeted) and combined this with previously generated UCE data for 12 taxa. All data sets, regardless of analytical approach, yielded topologically similar and strongly supported trees, with the exception of outgroup relationships and the position of Hydarinae. We recovered a monophyletic Coreoidea, with Rhopalidae highly supported as the sister group to Alydidae + Coreidae. Neither Alydidae nor Coreidae were monophyletic; the coreid subfamilies Hydarinae and Pseudophloeinae were recovered as more closely related to Alydidae than to other coreid subfamilies. Coreinae were paraphyletic with respect to Meropachyinae. Most morphological traits were homoplastic with several clades defined by few, if any, synapomorphies. Our results demonstrate the utility of phylogenomic approaches in generating robust hypotheses for taxa with long‐standing phylogenetic problems and highlight that novel insights may come from such approaches.  相似文献   

18.
19.
20.
We sequenced the complete mitochondrial genome (mitogenome) of the black‐tailed hornet, Vespa ducalis (Hymenoptera: Vespidae). The genome was 15,779‐bp long and contained typical sets of genes [13 protein‐coding genes (PCGs), 22 tRNAs, and 2 rRNAs]. The V. ducalis A + T‐rich region was 166‐bp long and was the shortest of all sequenced Vespoidea genomes, including Vespa. The genome was highly biased toward A/T nucleotides—80.1 % in the whole genome, 77.8 % in PCGs, 83.4–85.6 % in RNAs, and 92.8 % in the A + T‐rich region. These values are well within the typical range for genes and regions of Vespoidea mitogenomes. Start and stop codons in several Vespa species—including V. ducalis—were diversified, despite these species belonging to the same genus. In comparison with the ancestral mitogenomes, Vespa mitogenomes—including that of V. ducalis—showed substantial gene rearrangement; however, we detected no gene rearrangement among Vespa species. We conducted phylogenetic reconstruction based on concatenated sequences of 13 PCGs and two rRNAs (12,755 bp ) in available species of Vespoidea—21 species in six subfamilies in two families (Vespidae and Formicidae). The Bayesian inference and maximum likelihood (ML) methods revealed that each family formed strong monophyletic groups [Bayesian posterior probability (BPP) = 1; ML, 100 %]. Moreover, V. ducalis and V. mandarinia formed a strong sister group (BPP = 1; ML, 94 %).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号