首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The suborder Myrmeleontiformia is a derived lineage of lacewings (Insecta: Neuroptera) including the families Psychopsidae, Nemopteridae, Nymphidae, Ascalaphidae and Myrmeleontidae. In particular, Myrmeleontidae (antlions) are the most diverse neuropteran family, representing a conspicuous component of the insect fauna of xeric environments. We present the first detailed quantitative phylogenetic analysis of Myrmeleontiformia, based on 107 larval morphological and behavioural characters for 36 genera whose larvae are known (including at least one representative of all the subfamilies of the suborder). Four related families were used as outgroups to polarize character states. Phylogenetic analyses were conducted using both parsimony and Bayesian methods. The reconstructions resulting from our analyses corroborate the monophyly of Myrmeleontiformia. Within this clade, Psychopsidae are recovered as the sister family to all the remaining taxa. Nemopteridae (including both subfamilies Nemopterinae and Crocinae) are recovered as monophyletic and sister to the clade comprising Nymphidae + (Myrmeleontidae + Ascalaphidae). Nymphidae consist of two well‐supported clades corresponding to the subfamilies Nymphinae and Myiodactylinae. Our results suggest that Ascalaphidae may not be monophyletic, as they collapse into an unresolved polytomy under the Bayesian analysis. In addition, the recovered phylogenetic relationships diverge from the traditional classification scheme for ascalaphids. Myrmeleontidae are reconstructed as monophyletic, with the subfamilies Stilbopteryginae, Palparinae and Myrmeleontinae. We retrieved a strongly supported clade comprising taxa with a fossorial habit of the preimaginal instars, which represents a major antlion radiation, also including the monophyletic pit‐trap building species.  相似文献   

2.
The first large‐scale, total‐evidence phylogeny of the owlflies (Neuroptera, Ascalaphidae) is presented. A combined morphological and molecular dataset was analysed under several analytical regimes for 76 exemplars of Myrmeleontiformia (Psychopsidae, Nymphidae, Nemopteridae, Myrmeleontidae, Ascalaphidae), including 57 of Ascalaphidae. At the subordinal level, the families were recovered in all analyses in the form Psychopsidae + (Nymphidae + (Nemopteridae + (Myrmeleontidae + Ascalaphidae). In the DNA‐only maximum‐likelihood analysis, Ascalaphidae were recovered as paraphyletic with respect to the Myrmeleontidae and the tribe Ululodini. In both the parsimony and Bayesian total‐evidence analyses, however, the latter with strong support, traditional Ascalaphidae were recovered as monophyletic, and in the latter, Stilbopteryginae were placed as the immediate sister group. The long‐standing subfamilies Haplogleniinae and Ascalaphinae were not recovered as monophyletic in any analysis, nor were several of the included tribes of non‐ululodine Ascalaphinae. The Ululodini were monophyletic and well supported in all analyses, as were the New World Haplogleniinae and, separately, the African/Malagasy Haplogleniinae. The remaining Ascalaphidae, collectively, were also consistently cohesive, but included a genus that until now has been placed in the Haplogleniinae, Protidricerus. Protidricerus was discovered to express a well‐developed pleurostoma, a feature previously only encountered in divided‐eye owlflies. The feature traditionally used to differentiate the Haplogleniinae and Ascalaphinae, the entire or divided eye, can no longer be regarded as a spot‐diagnostic synapomorphy to separate these groups within the family. A new subfamilial classification based on these results is proposed and includes the following five subfamilies: Albardiinae, Ululodinae, Haplogleniinae, Melambrotinae and Ascalaphinae. In addition, the monophyletic containing group (Myrmeleontidae + (Palparidae + (Stilbopterygidae + Ascalaphidae))) is elevated to the rank of superfamily, as Myrmeleontoidea, in order to accommodate much‐needed taxonomic and nomenclatural restructuring anticipated to occur within the Ascalaphidae in the future. A list of genera included in each subfamily of Ascalaphidae is provided.  相似文献   

3.
A new genus and species of antlion‐like fossil lacewing, Guyiling jianboni gen. et sp.n. (Insecta: Neuroptera) are described based on a single specimen from the Yixian Formation (Liaoning Province, China; Early Cretaceous). The new taxon exhibits derived traits such as distally dilated antennae and well‐developed anterior Banksian line (known in Myrmeleontidae), but also genuine plesiomorphies (at the level of Myrmeleontiformia), such as the divergence of a distinct CuA1 stem from MP2 + CuA1 (forewing), and a basal origin of MA (diverging from RP + MA; both wing pairs). This combination is unique among the ‘Palaeoleontidae’, a group better considered as a paraphyletic assemblage of various stem‐Myrmeleontiformia. The wing morphology of the new species is considered in the light of a survey of wing venation topological homologies (and implied transformations) among several Neuroptera families. The survey includes a revision of the holotype of Leptolingia jurassica Ren (Grammolingiidae; Jiulongshan Formation, Daohugou locality, Inner Mongolia Autonomous Region, China; middle Jurassic). The forewing morphology of Guyiling jianboni gen. et sp.n. demonstrates that the fusion of MP2 with CuA, and the differentiation of CuA into two distinct main stems (namely CuA1 and CuA2) are traits shared with Myrmeleontidae and Ascalaphidae (and possibly Nemopteridae). However, the survey also demonstrates that a fusion of MP2 with CuA occurred repeatedly among Neuropterida, although by means of various modalities (namely translocation vs regular fusion). The ‘pectinate fusion’ of CuA(1) with MP2 [i.e. CuA1 has no distinct stem and emits successive branches from MP2 + CuA(1) partim] is a further step in this fusion, and occurred repeatedly as well (at least in the hind wings of Osmylidae and Nymphidae, and both fore‐ and hindwings of a sub‐group of Myrmeleontiformia including Myrmeleontidae and Ascalaphidae, and possibly Nemopteridae). It is anticipated that the current contribution will constitute useful background information for further studies, focusing on particular transformation cases, ideally including a documentation of intraspecific variation.  相似文献   

4.
1. Larvae of antlions (Neuroptera: Myrmeleontidae) and wormlions (Diptera: Vermileonidae) display a convergently evolved sit‐and‐wait hunting strategy of building pitfall traps in sandy areas. This study investigated a sympatric population of antlions and wormlions in the lowland rainforest of Borneo for substrate moisture, particle size and temperature preferences. It was hypothesised that these animals would show different preferences regarding these microhabitat traits. 2. The results showed that antlions had a higher aversion to moisture compared with wormlions, but that wormlions had a higher preference for small‐particle sand. Furthermore, thermal preferences in antlions and wormlions were significantly different, with antlions choosing higher temperatures. 3. The detected differences between antlions and wormlions might contribute to their niche partitioning in the mixed Bornean population and thus facilitate coexistence of these animals. It is possible that the hotter and dryer microhabitat edges are preferred by antlions.  相似文献   

5.
A short review of main cytogenetic features of insects belonging to the sister neuropteran families Myrmeleontidae (antlions) and Ascalaphidae (owlflies) is presented, with a particular focus on their chromosome numbers and sex chromosome systems. Diploid male chromosome numbers are listed for 37 species, 21 genera from 9 subfamilies of the antlions as well as for seven species and five genera of the owlfly subfamily Ascalaphinae. The list includes data on five species whose karyotypes were studied in the present work. It is shown here that antlions and owlflies share a simple sex chromosome system XY/XX; a similar range of chromosome numbers, 2n = 14-26 and 2n = 18-22 respectively; and a peculiar distant pairing of sex chromosomes in male meiosis. Usually the karyotype is particularly stable within a genus but there are some exceptions in both families (in the genera Palpares and Libelloides respectively). The Myrmeleontidae and Ascalaphidae differ in their modal chromosome numbers. Most antlions exhibit 2n = 14 and 16, and Palparinae are the only subfamily characterized by higher numbers, 2n = 22, 24, and 26. The higher numbers, 2n = 20 and 22, are also found in owlflies. Since the Palparinae represent a basal phylogenetic lineage of the Myrmeleontidae, it is hypothesized that higher chromosome numbers are ancestral for antlions and were inherited from the common ancestor of Myrmeleontidae + Ascalaphidae. They were preserved in the Palparinae (Myrmeleontidae), but changed via chromosomal fusions toward lower numbers in other subfamilies.  相似文献   

6.
Various bacterial species were isolated from the crop (digestive organ) of the antlion species Myrmeleon bore and tested for their insecticidal activity against caterpillars by injection. Sixty-eight isolates from the antlion crop were grouped into twenty-four species based on homologies of 16S rRNA gene sequences and biochemical properties. Isolated Bacillus cereus, Bacillus sphaericus, Morganella morganii, Serratia marcescens and a Klebsiella species killed 80% or more cutworms when injected at a dose of 5x10(5)cells per insect. In addition, cutworms killed by these isolates resembled observations made of caterpillars attacked by antlions. A culture-independent analysis showed that the isolated bacterial species are likely to be frequently present in the antlion crop. These results suggest that insecticidal microorganisms associate with antlions, and may promote the death of prey.  相似文献   

7.
Siphonaptera (fleas) is a highly specialized order of holometabolous insects comprising ~2500 species placed in 16 families. Despite a long history of extensive work on flea classification and biology, phylogenetic relationships among fleas are virtually unknown. We present the first formal analysis of flea relationships based on a molecular matrix of four loci (18S ribosomal DNA, 28S ribosomal DNA, Cytochrome Oxidase II, and Elongation Factor 1‐alpha) for 128 flea taxa from around the world representing 16 families, 25 subfamilies, 26 tribes, and 83 flea genera with eight outgroups. Trees were reconstructed using direct optimization and maximum likelihood techniques. Our analysis supports Tungidae as the most basal flea lineage, sister group to the remainder of the extant fleas. Pygiopsyllomorpha is monophyletic, as are the constituent families Lycopsyllidae, Pygiopsyllidae, and Stivaliidae, with a sister group relationship between the latter two families. Macropsyllidae is resolved as sister group to Coptopsyllidae with moderate nodal support. Stephanociricidae is monophyletic, as are the two constituent subfamilies Stephanocircinae and Craneopsyllinae. Vermipsyllidae is placed as sister group to Jordanopsylla. Rhopalopsyllidae is monophyletic as are the two constituent subfamilies Rhopalopsyllinae and Parapsyllinae. Hystrichopsyllidae is paraphyletic with Hystrichopsyllini placed as sister to some species of Anomiopsyllini and Ctenopariini placed as sister to Carterettini. Ctenophthalmidae is grossly paraphyletic with the family broken into seven lineages dispersed on the tree. Most notably, Anomiopsyllini is paraphyletic. Pulicidae and Chimaeropsyllidae are both monophyletic and these families are sister groups. Ceratophyllomorpha is monophyletic and includes Ischnopsyllidae, Ceratophyllidae, and Leptopsyllidae. Leptopsyllidae is paraphyletic as are its constituent subfamilies Amphipsyllinae and Leptopsyllinae and the tribes Amphipsyllini and Leptopsyllini. Ischnopsyllidae is monophyletic. Ceratophyllidae is monophyletic, with a monophyletic Dactypsyllinae nested within Ceratophyllinae, rendering the latter group paraphyletic. Mapping of general host associations on our topology reveals an early association with mammals with four independent shifts to birds. © The Willi Hennig Society 2008.  相似文献   

8.
In the holometabolous insect order Neuroptera (lacewings), the cosmopolitan Myrmeleontidae (antlions) are the most species-rich family, while the closely related Nymphidae (split-footed lacewings) are a small endemic family from the Australian-Malesian region. Both families belong to the suborder Myrmeleontiformia, within which controversial hypotheses on the interfamilial phylogenetic relationships exist. Herein, we describe the complete mitochondrial (mt) genomes of an antlion (Myrmeleon immanis Walker, 1853) and a split-footed lacewing (Nymphes myrmeleonoides Leach, 1814), representing the first mt genomes for both families. These mt genomes are relatively small (respectively composed of 15,799 and 15,713 bp) compared to other lacewing mt genomes, and comprise 37 genes (13 protein coding genes, 22 tRNA genes and two rRNA genes). The arrangement of these two mt genomes is the same as in most derived Neuroptera mt genomes previously sequenced, specifically with a translocation of trnC. The start codons of all PCGs are started by ATN, with an exception of cox1, which is ACG in the M. immanis mt genome and TCG in N. myrmeleonoides. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA, with the exception of trnS1(AGN). The secondary structures of rrnL and rrnS are similar with those proposed insects and the domain I contains nine helices rather than eight helices, which is common within Neuroptera. A phylogenetic analysis based on the mt genomic data for all Neuropterida sequenced thus far, supports the monophyly of Myrmeleontiformia and the sister relationship between Ascalaphidae and Myrmeleontidae.  相似文献   

9.
We present a time‐calibrated phylogeny of the charismatic green lacewings (Neuroptera: Chrysopidae). Previous phylogenetic studies on the family using DNA sequences have suffered from sparse taxon sampling and/or limited amounts of data. Here we combine all available previously published DNA sequence data and add to it new DNA sequences generated for this study. We analysed these data in a supermatrix using Bayesian and maximum likelihood methods and provide a phylogenetic hypothesis for the family that recovers strong support for the monophyly of all subfamilies and resolves relationships among a large proportion of chrysopine genera. Chrysopinae tribes Leucochrysini and Belonopterygini were recovered as monophyletic sister clades, while the species‐rich tribe Chrysopini was rendered paraphyletic by Ankylopterygini. Relationships among the subfamilies were resolved, although with relatively low statistical support, and the topology varied based on the method of analysis. Greatest support was found for Apochrysinae as sister to Nothochrysinae and Chrysopinae, which is in contrast to traditional concepts that place Nothochrysinae as sister to the rest of the family. Divergence estimates suggest that the stem groups to the various subfamilies diverged during the Triassic‐Jurassic, and that stem groups of the chrysopine tribes diverged during the Cretaceous.  相似文献   

10.
Antlions are insects which feed on ants, insect which dig a pit and lies in wait for ants and other insects. Twelve species of Myrmeleontidae family as antlions and many specimens were identified in different locations in Fars province in Iran. To unveil the genetic similarity between these species, their DNA was extracted by modified CTAB method and with the use of seventeen 10-nucleotides primers of random amplified polymorphic DNA (RAPD); the genetic analysis of them was investigated. After PCR, agarose 1.5?% was used for electrophoresis. The obtained electrophoresis bands had base pairs range between 150 and 1,000?bp. The maximum of polymorphic bands belonged to OPH5, N13, and the minimum of polymorphic bands belonged to OPA7 primers. Different genetic similarity indices were found between eight species of antlions. Possibility of use of RAPD marker together with morphological studies for classification and identification of antlions is discussed.  相似文献   

11.
A comprehensive tribal‐level classification for the world’s subfamilies of Hesperiidae, the skipper butterflies, is proposed for the first time. Phylogenetic relationships between tribes and subfamilies are inferred using DNA sequence data from three gene regions (cytochrome oxidase subunit I‐subunit II, elongation factor‐1α and wingless). Monophyly of the family is strongly supported, as are some of the traditionally recognized subfamilies, with the following relationships: (Coeliadinae + (“Pyrginae” + (Heteropterinae + (Trapezitinae + Hesperiinae)))). The subfamily Pyrginae of contemporary authors was recovered as a paraphyletic grade of taxa. The formerly recognized subfamily Pyrrhopyginae, although monophyletic, is downgraded to a tribe of the “Pyrginae”. The former subfamily Megathyminae is an infra‐tribal group of the Hesperiinae. The Australian endemic Euschemon rafflesia is a hesperiid, possibly related to “Pyrginae” (Eudamini). Most of the traditionally recognized groups and subgroups of genera currently employed to partition the subfamilies of the Hesperiidae are not monophyletic. We recognize eight pyrgine and six hesperiine tribes, including the new tribe Moncini. © The Willi Hennig Society 2008.  相似文献   

12.
The seasonality of insect assemblages in Africa is poorly investigated. To provide information on the relationships between climate and insect assemblages in the Sudanian region, strongly affected by climate change, we studied Myrmeleontidae and Ascalaphidae assemblages (Insecta: Neuroptera) for 7 and 5 consecutive years respectively in southern Mali. To make the species inventory as exhaustive as possible, we performed weekly sampling by netting and light trapping. For both assemblages, results showed very similar patterns of variation in species diversity throughout the year. Adults of Myrmeleontidae and Ascalaphidae were active all year, and the species succession was influenced by a strong temporal segregation. Species diversity peaked at the end of the rainy season and surprisingly during the dry season. Principal component analysis of the climatic factors followed by co‐inertia analysis applied to two data sets, one comprising climatic factors and the other reporting presence/absence of species, showed a good association between the annual trend of climatic factors and the species diversity. But no well defined species grouping was clearly linked to a particular period of the year. This tight association between climate and species composition suggests that even small climate changes could modify significantly species assemblage characteristics.  相似文献   

13.
Abstract. Phylogenetic relationships of the subfamilies and tribes of the Vespoidea (= Diploptera) are investigated using cladistic methods. A natural classification is proposed, sequencing seven tribes in six subfamilies within the single family Vespidae. Euparagia is the sister-group of the rest of the Vespidae. The Gayellinae and Masarinae are sister-groups, and are reduced in rank to tribes within the subfamily Masarinae. This is the sister-group of the Eumeninae + Stenogastrinae + Polistinae + Vespinae. The Zethinae is a paraphyletic group; both it and the Raphiglossinae are deleted and included in the Eumeninae. The Stenogastrinae is regarded as the sister-group of the Vespinae + Polistinae.  相似文献   

14.
Cyperaceae (sedges) are the third largest monocot family and are of considerable economic and ecological importance. Sedges represent an ideal model family to study evolutionary biology due to their species richness, global distribution, large discrepancies in lineage diversity, broad range of ecological preferences, and adaptations including multiple origins of C4 photosynthesis and holocentric chromosomes. Goetghebeur′s seminal work on Cyperaceae published in 1998 provided the most recent complete classification at tribal and generic level, based on a morphological study of Cyperaceae inflorescence, spikelet, flower, and embryo characters, plus anatomical and other information. Since then, several family-level molecular phylogenetic studies using Sanger sequence data have been published. Here, more than 20 years after the last comprehensive classification of the family, we present the first family-wide phylogenomic study of Cyperaceae based on targeted sequencing using the Angiosperms353 probe kit sampling 311 accessions. In addition, 62 accessions available from GenBank were mined for overlapping reads and included in the phylogenomic analyses. Informed by this backbone phylogeny, a new classification for the family at the tribal, subtribal, and generic levels is proposed. The majority of previously recognized suprageneric groups are supported, and for the first time, we establish support for tribe Cryptangieae as a clade including the genus Koyamaea. We provide a taxonomic treatment including identification keys and diagnoses for the 2 subfamilies, 24 tribes, and 10 subtribes, and basic information on the 95 genera. The classification includes five new subtribes in tribe Schoeneae: Anthelepidinae, Caustiinae, Gymnoschoeninae, Lepidospermatinae, and Oreobolinae.  相似文献   

15.
《Systematic Entomology》2018,43(1):90-108
The family P yrgomorphidae (O rthoptera: C aelifera) is considered one of the most colourful grasshopper families, which contains about 500 species distributed worldwide. Commonly referred to as gaudy or bush grasshoppers, many pyrgomorphs are known to be aposematic and capable of sequestering plant secondary compounds. Several species are considered important agricultural pests, while some species are culturally important. Nevertheless, the phylogeny of this family has never been proposed using modern cladistic methods. In this study, we present a phylogenetic analysis of P yrgomorphidae, based on 119 morphological characters with 269 character states, covering 28 out of 31 current recognized tribes. We recovered the monophyly of the family and one of the two currently recognized subfamilies, O rthacridinae. P yrgomorphinae was recovered as paraphyletic. Based on the most parsimonious tree, we propose four main clades and discuss the biology and biogeography of members of these clades. This is the first step towards building a natural classification for P yrgomorphidae, which is an excellent model system for studying the evolution of interesting traits such as wing development, warning coloration and chemical defence.  相似文献   

16.
Insect diversity represents about 60% of the estimated million‐and‐a‐half described eukaryotic species worldwide, yet comprehensive and well‐resolved intra‐ordinal phylogenies are still lacking for the majority of insect groups. This is the case especially for the most species‐rich insect group, the beetles (Coleoptera), a group for which less than 4% of the known species have had their DNA sequenced. In this study, we reconstruct the first higher level phylogeny based on DNA sequence data for the species‐rich darkling beetles, a family comprising at least 20 000 species. Although amongst all families of beetles Tenebrionidae ranks seventh in terms of species diversity, the lack of knowledge on the phylogeny and systematics of the group is such that its monophyly has been questioned (not to mention those of the subfamilies and tribes contained within it). We investigate the evolutionary history of Tenebrionidae using multiple phylogenetic inference methods (Bayesian inference, maximum likelihood and parsimony) to analyse a dataset consisting of eight gene fragments across 404 taxa (including 250 tenebrionid species). Although the resulting phylogenetic framework only encompasses a fraction of the known tenebrionid diversity, it provides important information on their systematics and evolution. Whatever the methods used, our results provide strong support for the monophyly of the family, and highlight the likely paraphyletic or polyphyletic nature of several important tenebrionid subfamilies and tribes, notably the polyphyletic subfamilies Diaperinae and Tenebrioninae that clearly require substantial revision in the future. Some interesting associations in several groups are also revealed by the phylogenetic analyses, such as the pairing of Aphtora Bates with Phrenapatinae. Furthermore this study advances our knowledge of the evolution of the group, providing novel insights into much‐debated theories, such as the apparent relict distribution of the tribe Elenophorini.  相似文献   

17.
Next‐generation sequencing technologies (NGS) allow systematists to amass a wealth of genomic data from non‐model species for phylogenetic resolution at various temporal scales. However, phylogenetic inference for many lineages dominated by non‐model species has not yet benefited from NGS, which can complement Sanger sequencing studies. One such lineage, whose phylogenetic relationships remain uncertain, is the diverse, agriculturally important and charismatic Coreoidea (Hemiptera: Heteroptera). Given the lack of consensus on higher‐level relationships and the importance of a robust phylogeny for evolutionary hypothesis testing, we use a large data set comprised of hundreds of ultraconserved element (UCE) loci to infer the phylogeny of Coreoidea (excluding Stenocephalidae and Hyocephalidae), with emphasis on the families Coreidae and Alydidae. We generated three data sets by including alignments that contained loci sampled for at least 50%, 60%, or 70% of the total taxa, and inferred phylogeny using maximum likelihood and summary coalescent methods. Twenty‐six external morphological features used in relatively comprehensive phylogenetic analyses of coreoids were also re‐evaluated within our molecular phylogenetic framework. We recovered 439–970 loci per species (16%–36% of loci targeted) and combined this with previously generated UCE data for 12 taxa. All data sets, regardless of analytical approach, yielded topologically similar and strongly supported trees, with the exception of outgroup relationships and the position of Hydarinae. We recovered a monophyletic Coreoidea, with Rhopalidae highly supported as the sister group to Alydidae + Coreidae. Neither Alydidae nor Coreidae were monophyletic; the coreid subfamilies Hydarinae and Pseudophloeinae were recovered as more closely related to Alydidae than to other coreid subfamilies. Coreinae were paraphyletic with respect to Meropachyinae. Most morphological traits were homoplastic with several clades defined by few, if any, synapomorphies. Our results demonstrate the utility of phylogenomic approaches in generating robust hypotheses for taxa with long‐standing phylogenetic problems and highlight that novel insights may come from such approaches.  相似文献   

18.
We evaluated the higher level classification within the family Psocidae (Insecta: Psocodea: 'Psocoptera') based on combined analyses of nuclear 18S, Histone 3, wingless and mitochondrial 12S, 16S and COI gene sequences. Various analyses (inclusion/exclusion of incomplete taxa and/or rapidly evolving genes, data partitioning, and analytical method selection) all provided similar results, which were generally concordant with relationships inferred using morphological observations. Based on the phylogenetic trees estimated for Psocidae, we propose a revised higher level classification of this family, although uncertainty still exists regarding some aspects of this classification. This classification includes a basal division into two subfamilies, 'Amphigerontiinae' (possibly paraphyletic) and Psocinae. The Amphigerontiinae is divided into the tribes Kaindipsocini (new tribe), Blastini, Amphigerontini, and Stylatopsocini. Psocinae is divided into the tribes 'Ptyctini' (probably paraphyletic), Psocini, Atrichadenotecnini (new tribe), Sigmatoneurini, Metylophorini, and Thyrsophorini (the latter includes the taxon previously recognized as Cerastipsocini). We examined the evolution of symmetric/asymmetric male genitalia over this tree and found this character to be quite homoplasious.  相似文献   

19.
The spittlebug family Cercopidae is currently divided into two subfamilies: the paraphyletic Old World Cercopinae and the monophyletic New World Ischnorhininae. The most recent classification scheme proposed by Fennah in 1968 divided the New World Cercopidae into four tribes: Tomaspidini, Ischnorhinini, Hyboscartini and Neaenini. Herein we present a phylogenetic analysis of Ischnorhininae using 108 morphological characters and including 53 of the 59 recognized genera, to evaluate the tribal‐level classification and understand the processes underlying the current distributional patterns of these genera. We found significant support for the monophyly of many Neotropical genera, but Fennah's tribal classification is revised because tribes Neaenini, Ischnorhinini and Tomaspidini were recovered as polyphyletic. Hyboscartini was synonymized with Tomaspidini. A taxonomic key to tribes and genera of Neotropical spittlebugs is provided based mostly on recovered apomorphies. The biogeographical analysis suggests a Neotropical origin of ischnorhinines, more specifically in northwestern South America. This was possibly coincident spatially and temporally with the origin of grasses, with ancestral range expansions southward to the Amazonian and Paraná regions, and posterior vicariant events, possibly related to the expansion of forests in the Chacoan region, the South America diagonal of open formations. Dispersals to the Chacoan region and to the Nearctic region are hypothesized to have occurred only within genera. In the Chacoan region it is associated with more recent events, such as the diversification of C4 grasses and establishment of the savannas and seasonally dry forests.  相似文献   

20.
Abstract.  Armoured scale insects are economically important parasites of woody plants and grasses. They are promising subjects for the evolutionary study of physiology (no complete gut), genetics (chimerism, paternal genome elimination, frequent parthenogenesis) and coevolution (with host plants, parasitoids, Septobasidium fungi, endosymbiotic bacteria). Little phylogenetic work has been accomplished with armoured scales, and uncertainty surrounds their classification. Here, we report the phylogenetic results of Bayesian and parsimony analyses of 705 base pairs of Elongation Factor 1α and 660 base pairs of 28S from eighty-nine species of armoured scale insects, representing forty-seven genera and five tribes in the subfamilies Diaspidinae and Aspidiotinae, together with two outgroups. 28S was aligned based on a secondary structural model. Our results broadly corroborate the major features of the existing classification, although we do not find perfect monophyly of any of the traditionally recognized subfamilies or tribes. The subfamily Aspidiotinae is paraphyletic with respect to the subfamily Diaspidinae. Diaspidinae consists of two main clades that only roughly correspond to the tribes Lepidosaphidini and Diaspidini. Diaspidini is nearly monophyletic, except that it includes a single aspidiotine species. Other members of the tribe Aspidiotini form a clade, except that the clade includes a single species of Leucaspidini and excludes Maskellia and Pseudaonidia . Our results weakly support the hypothesis that the most recent common ancestor of the Diaspididae had adult females that were permanently enclosed within the derm of the second instar (the pupillarial habit) and had diploid adult males that eliminated their paternal genomes during spermatogenesis (late paternal genome elimination).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号