首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proposed clinical trial in Africa of VRC01, a potent broadly neutralizing antibody (bNAb) capable of neutralizing 91% of known HIV‐1 isolates, raises concerns about testing a treatment which will be too expensive to be accessible by the most important target population, the poor in under‐developed regions such as sub‐Saharan Africa. Here, we report the expression of VRC01 in plants as an economic alternative to conventional mammalian‐cell‐based production platforms. The heavy and light chain genes of VRC01 were cloned onto a single vector, pTRAk.2, which was transformed into Nicotiana benthamiana or Nicotiana tabacum using transient and stable expression production systems respectively. VRC01 has been successfully expressed transiently in plants with expression level of approximately 80 mg antibody/kg; stable transgenic lines expressing up to 100 mg antibody/kg were also obtained. Plant‐produced VRC01 from both systems showed a largely homogeneous N‐glycosylation profile with a single dominant glycoform. The binding kinetics to gp120 IIIB (approximately 1 nm ), neutralization of HIV‐1 BaL or a panel of 10 VRC01‐sensitive HIV‐1 Env pseudoviruses of VRC01 produced in transient and stable plants were also consistent with VRC01 from HEK cells.  相似文献   

2.
Broadly neutralizing antibodies (bNAbs) to human immunodeficiency virus type 1 (HIV‐1) hold great promise for immunoprophylaxis and the suppression of viremia in HIV‐positive individuals. Several studies have demonstrated that plants as Nicotiana benthamiana are suitable hosts for the generation of protective anti‐HIV‐1 antibodies. However, the production of the anti‐HIV‐1 bNAbs 2F5 and PG9 in N. benthamiana is associated with their processing by apoplastic proteases in the complementarity‐determining‐region (CDR) H3 loops of the heavy chains. Here, it is shown that apoplastic proteases can also cleave the CDR H3 loop of the bNAb 2G12 when the unusual domain exchange between its heavy chains is prevented by the replacement of Ile19 with Arg. It is demonstrated that CDR H3 proteolysis leads to a strong reduction of the antigen‐binding potencies of 2F5, PG9, and 2G12‐I19R. Inhibitor profiling experiments indicate that different subtilisin‐like serine proteases account for bNAb fragmentation in the apoplast. Differential scanning calorimetry experiments corroborate that the antigen‐binding domains of wild‐type 2G12 and 4E10 are more compact than those of proteolysis‐sensitive antibodies, thus shielding their CDR H3 regions from proteolytic attack. This suggests that the extent of proteolytic inactivation of bNAbs in plants is primarily dictated by the steric accessibility of their CDR H3 loops.  相似文献   

3.
Plants can provide a cost‐effective and scalable technology for production of therapeutic monoclonal antibodies, with the potential for precise engineering of glycosylation. Glycan structures in the antibody Fc region influence binding properties to Fc receptors, which opens opportunities for modulation of antibody effector functions. To test the impact of glycosylation in detail, on binding to human Fc receptors, different glycovariants of VRC01, a broadly neutralizing HIV monoclonal antibody, were generated in Nicotiana benthamiana and characterized. These include glycovariants lacking plant characteristic α1,3‐fucose and β1,2‐xylose residues and glycans extended with terminal β1,4‐galactose. Surface plasmon resonance‐based assays were established for kinetic/affinity evaluation of antibody–FcγR interactions, and revealed that antibodies with typical plant glycosylation have a limited capacity to engage FcγRI, FcγRIIa, FcγRIIb and FcγRIIIa; however, the binding characteristics can be restored and even improved with targeted glycoengineering. All plant‐made glycovariants had a slightly reduced affinity to the neonatal Fc receptor (FcRn) compared with HEK cell‐derived antibody. However, this was independent of plant glycosylation, but related to the oxidation status of two methionine residues in the Fc region. This points towards a need for process optimization to control oxidation levels and improve the quality of plant‐produced antibodies.  相似文献   

4.
Tuberculosis (TB) and human immunodeficiency virus type 1 (HIV‐1) infection are closely intertwined, with one‐quarter of TB/HIV coinfected deaths among people died of TB. Effector CD8+ T cells play a crucial role in the control of Mycobacterium tuberculosis (MTB) and HIV‐1 infection in coinfected patients. Adoptive transfer of a multitude of effector CD8+ T cells is an appealing strategy to impose improved anti‐MTB/HIV‐1 activity onto coinfected individuals. Due to extensive existence of heterologous immunity, that is, T cells cross‐reactive with peptides encoded by related or even very dissimilar pathogens, it is reasonable to find a single T cell receptor (TCR) recognizing both MTB and HIV‐1 antigenic peptides. In this study, a single TCR specific for both MTB Ag85B199‐207 peptide and HIV‐1 Env120‐128 peptide was screened out from peripheral blood mononuclear cells of a HLA‐A*0201+ healthy individual using complementarity determining region 3 spectratype analysis and transferred to primary CD8+ T cells using a recombinant retroviral vector. The bispecificity of the TCR gene‐modified CD8+ T cells was demonstrated by elevated secretion of interferon‐γ, tumour necrosis factor‐α, granzyme B and specific cytolytic activity after antigen presentation of either Ag85B199‐207 or Env120‐128 by autologous dendritic cells. To the best of our knowledge, this study is the first report proposing to produce responses against two dissimilar antigenic peptides of MTB and HIV‐1 simultaneously by transfecting CD8+ T cells with a single TCR. Taken together, T cells transduced with the additional bispecific TCR might be a useful strategy in immunotherapy for MTB/HIV‐1 coinfected individuals.  相似文献   

5.
The CD4 binding site (CD4bs) on the envelope glycoprotein is a major site of vulnerability that is conserved among different HIV-1 isolates. Many broadly neutralizing antibodies (bNAbs) to the CD4bs belong to the VRC01 class, sharing highly restricted origins, recognition mechanisms and viral escape pathways. We sought to isolate new anti-CD4bs bNAbs with different origins and mechanisms of action. Using a gp120 2CC core as bait, we isolated antibodies encoded by IGVH3-21 and IGVL3-1 genes with long CDRH3s that depend on the presence of the N-linked glycan at position-276 for activity. This binding mode is similar to the previously identified antibody HJ16, however the new antibodies identified herein are more potent and broad. The most potent variant, 179NC75, had a geometric mean IC80 value of 0.42 μg/ml against 120 Tier-2 HIV-1 pseudoviruses in the TZM.bl assay. Although this group of CD4bs glycan-dependent antibodies can be broadly and potently neutralizing in vitro, their in vivo activity has not been tested to date. Here, we report that 179NC75 is highly active when administered to HIV-1-infected humanized mice, where it selects for escape variants that lack a glycan site at position-276. The same glycan was absent from the virus isolated from the 179NC75 donor, implying that the antibody also exerts selection pressure in humans.  相似文献   

6.
The structural similarities between N1 substituted 1,4‐dihydropyridines and the known gp41 inhibitors, NB ‐2 and NB ‐64 , were considered in the current research for the design of some novel anti‐HIV‐1 agents. A series of novel 4‐[4‐arylpyridin‐1(4H)‐yl]benzoic acid derivatives were synthesized and after a comprehensive structural elucidation were screened for in vitro anti‐HIV‐1 activity. Most of the tested compounds displayed moderate to good inhibitory activity against HIV‐1 growth and were evaluated for in vitro cytotoxic activity using XTT assay at the concentration of 100 μm . Among the tested compounds, 1c , 1d and 1e showed potent anti‐HIV‐1 activity against P24 expression at 100 μm with inhibition percentage of 84.00%, 76.42% and 80.50%, respectively. All the studied compounds possessed no significant cytotoxicity on MT‐2 cell line. The binding modes of these compounds to gp41 binding site were determined through molecular docking study. Docking studies proved 1a as the most potent compound and binding maps exhibited that the activities might be attributed to the electrostatic and hydrophobic interactions and additional H‐bonds with the gp41 binding site. The Lipinski's ‘rule of five’ and drug‐likeness criteria were also calculated for the studied compounds. All derivatives obeyed the Lipinski's ‘rule of five’ and had drug‐like features. The findings of this study suggest that novel 4‐[4‐arylpyridin‐1(4H)‐yl]benzoic acid might be a promising scaffold for the discovery and development of novel anti‐HIV‐1 agents.  相似文献   

7.
The immune response in individuals co‐infected with Mycobacterium tuberculosis (MTB) and the human immunodeficiency virus (MTB/HIV) gradually deteriorates, particularly in the cellular compartment. Adoptive transfer of functional effector T cells can confer protective immunity to immunodeficient MTB/HIV co‐infected recipients. However, few such effector T cells exist in vivo, and their isolation and amplification to sufficient numbers is difficult. Therefore, enhancing immune responses against both pathogens is critical for treating MTB/HIV co‐infected patients. One approach is adoptive transfer of T cell receptor (TCR) gene‐modified T cells for the treatment of MTB/HIV co‐infections because lymphocyte numbers and their functional avidity is significantly increased by TCR gene transfer. To generate bispecific CD8+ T cells, MTB Ag85B199–207 peptide‐specific TCRs (MTB/TCR) and HIV‐1 Env120–128 peptide‐specific TCRs (HIV/TCR) were isolated and introduced into CD8+ T cells simultaneously using a retroviral vector. To avoid mispairing among exogenous and endogenous TCRs, and to improve the function and stability of the introduced TCRs, several strategies were employed, including introducing mutations in the MTB/TCR constant (C) regions, substituting part of the HIV/TCR C regions with CD3ζ, and linking gene segments with three different 2A peptides. Results presented in this report suggest that the engineered T cells possessed peptide‐specific specificity resulting in cytokine production and cytotoxic activity. This is the first report describing the generation of engineered T cells specific for two different pathogens and provides new insights into TCR gene therapy for the treatment of immunocompromised MTB/HIV co‐infected patients.  相似文献   

8.
Previously, we showed that the antimicrobial cationic and amphipathic octadecapeptide AmyI‐1‐18 from rice α‐amylase (AmyI‐1) inhibited the endotoxic activity of lipopolysaccharide (LPS) from Escherichia coli. In addition, we demonstrated that several AmyI‐1‐18 analogs containing arginine or leucine substitutions, which were designed on the basis of the helical wheel projection of AmyI‐1‐18, exhibited higher antimicrobial activity against human pathogenic microorganisms than AmyI‐1‐18. In the present study, anti‐inflammatory (anti‐endotoxic) activities of five AmyI‐1‐18 analogs containing arginine or leucine substitutions were investigated. Two single arginine‐substituted and two single leucine‐substituted AmyI‐1‐18 analogs inhibited the production of LPS‐induced nitric oxide in mouse macrophages (RAW264) more effectively than AmyI‐1‐18. These data indicate that enhanced cationic and hydrophobic properties of AmyI‐1‐18 are associated with improved anti‐endotoxic activity. In subsequent chromogenic Limulus amebocyte lysate assays, 50% inhibitory concentrations (IC50) of the three AmyI‐1‐18 analogs (G12R, D15R, and E9L) were 0.11–0.13 μm , indicating higher anti‐endotoxic activity than that of AmyI‐1‐18 (IC50, 0.22 μm ), and specific LPS binding activity. In agreement, surface plasmon resonance analyses confirmed direct LPS binding of three AmyI‐1‐18 analogs. In addition, AmyI‐1‐18 analogs exhibited little or no cytotoxic activity against RAW264 cells, indicating that enhancements of anti‐inflammatory and LPS‐neutralizing activities following replacement of arginine or leucine did not result in significant increases in cytotoxicity. This study shows that the arginine‐substituted and leucine‐substituted AmyI‐1‐18 analogs with improved anti‐endotoxic and antimicrobial activities have clinical potential as dual‐function host defense agents. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
靶向人类免疫缺陷病毒(human immunodeficiency virus,HIV)流行毒株的广谱中和抗体(broadly neutralizing antibody, bNAb)单一疗法最终会导致机体出现病毒逃逸突变,然而基于广谱中和抗体开发的双特异性或多特异性抗体则表现出较好的中和效力和广谱性。根据已公布的单链可变区基因抗体序列,经密码子优化后合成一种由单基因编码的双特异性抗体iMab-PGT151,经双酶切和测序对重组质粒进行了验证。酶联免疫吸附试验检测双特异性抗体的结合特异性,检测U87细胞裂解液中的荧光素酶活性以定量分析双特异性抗体对HIV-1假病毒的中和作用;间接免疫荧光染色法检测双特异性抗体iMab-PGT151对人喉癌上皮细胞的反应性;酶联免疫吸附试验检测该抗体对心磷脂的结合能力,验证其自体反应性。结果显示,构建的双特异抗体iMab-PGT151能够成功表达,可分别结合亲本抗体的各个配体,具有双特异性,能100%中和20株假病毒,IC50值为0.084 μg/mL。与亲本抗体相比,该抗体具有更强的中和效力和广谱度,无自体反应性,具有临床适用性。所构建的双特异性抗体iMab-PGT151将可能成为预防和治疗HIV-1感染的有效候选药物之一。  相似文献   

10.

Background

Half-life extension strategies have gained increasing interest to improve the pharmacokinetic and pharmacodynamic properties of protein therapeutics. Recently, we established an immunoglobulin-binding domain (IgBD) from streptococcal protein G (SpGC3) as module for half-life extension. SpGC3 is capable of binding to the Fc region as well as the CH1 domain of Fab arms under neutral and acidic conditions.

Methodology/Principal Findings

Using site-directed mutagenesis, we generated a Fab-selective mutant (SpGC3Fab) to avoid possible interference with the FcRn-mediated recycling process and improved its affinity for mouse and human IgG by site-directed mutagenesis and phage display selections. In mice, this affinity-improved mutant (SpGC3FabRR) conferred prolonged plasma half-lives compared with SpGC3Fab when fused to small recombinant antibody fragments, such as single-chain Fv (scFv) and bispecific single-chain diabody (scDb). Hence, the SpGC3FabRR domain seems to be a suitable fusion partner for the half-life extension of small recombinant therapeutics.

Conclusions/Significance

The half-life extension properties of SpGC3 can be retained by restricting binding to the Fab fragment of serum immunoglobulins and can be improved by increasing binding activity. The modified SpGC3 module should be suitable to extend the half-life of therapeutic proteins and, thus to improve therapeutic activity.  相似文献   

11.
Malignant melanomas are amongst the most aggressive cancers. BRAF Inhibitors have exhibited therapeutic effects against BRAF‐mutant melanoma. In continuation of our earlier studies on anti‐melanoma agents based on 1H‐pyrazole skeleton, two sets of novel compounds that include 1H‐pyrazole‐4‐amines FA 1 – FA13 and corresponding urea derivatives FN 1 – FN13 have been synthesized and evaluated for their BRAFV600E inhibitory and antiproliferation activities. Compound FN 10 displayed the most potent biological activity against BRAFV600E (IC50 = 0.066 μm ) and the A375 human melanoma cell line (GI50 = 0.81 μm ), which was comparable to the positive control vemurafenib, and more potent than our previously reported 1H‐pyrazole‐3‐amines and their urea derivatives. The results of SAR studies and molecular docking can guide further optimization and may help to improve potency of these pyrazole‐based anti‐melanoma agents.  相似文献   

12.
Osteoarthritis (OA) is a most common form of arthritis worldwide leading to significant disability. MicroRNAs (miRNAs) are non‐coding RNAs involved in various aspects of cartilage development, homoeostasis and pathology. Several miRNAs have been identified which have shown to regulate expression of target genes relevant to OA pathogenesis such as matrix metalloproteinase (MMP)‐13, cyclooxygenase (COX)‐2, etc. Epigallocatechin‐3‐O‐gallate (EGCG), the most abundant and active polyphenol in green tea, has been reported to have anti‐arthritic effects, however, the role of EGCG in the regulation of miRNAs has not been investigated in OA. Here, we showed that EGCG inhibits COX‐2 mRNA/protein expression or prostaglandin E2 (PGE2) production via up‐regulating microRNA hsa‐miR‐199a‐3p expression in interleukin (IL)‐1β‐stimulated human OA chondrocytes. This negative co‐regulation of hsa‐miR‐199a‐3p and COX‐2 by EGCG was confirmed by transfection of OA chondrocytes with anti‐miR‐199a‐3p. Transfection of OA chondrocytes with anti‐miR‐199a‐3p significantly enhanced COX‐2 expression and PGE2 production (P < 0.001), while EGCG treatment significantly inhibited anti‐miR‐199a‐3p transfection‐induced COX‐2 expression or PGE2 production in a dose‐dependent manner. These results were further re‐validated by co‐treatment of these transfection OA chondrocytes with IL‐1β and EGCG. EGCG treatment consistently up‐regulated the IL‐1β‐decreased hsa‐miR‐199a‐3p expression (P < 0.05) and significantly inhibited the IL‐1β‐induced COX‐2 expression/PGE2 production (P < 0.05) in OA chondrocytes transfected with anti‐hsa‐miR‐199a‐3p. Taken together, these results clearly indicate that EGCG inhibits COX‐2 expression/PGE2 production via up‐regulation of hsa‐miR‐199a‐3p expression. These novel pharmacological actions of EGCG on IL‐1β‐stimulated human OA chondrocytes provide new suggestions that EGCG or EGCG‐derived compounds inhibit cartilage breakdown or pain by up‐regulating the expression of microRNAs in human chondrocytes.  相似文献   

13.
Integration of HIV‐1 cDNA into the host genome is a crucial step for viral propagation. Two nucleotides, cytosine and adenine (CA), conserved at the 3′ end of the viral cDNA genome, are cleaved by the viral integrase (IN) enzyme. As IN plays a crucial role in the early stages of the HIV‐1 life cycle, substrate blockage of IN is an attractive strategy for therapeutic interference. In this study, we used the 2‐LTR‐circle junctions of HIV‐1 DNA as a model to design zinc finger protein (ZFP) targeting at the end terminal portion of HIV‐1 LTR. A six‐contiguous ZFP, namely 2LTRZFP was designed using zinc finger tools. The designed motif was expressed and purified from E. coli to determine its binding properties. Surface plasmon resonance (SPR) was used to determine the binding affinity of 2LTRZFP to its target DNA. The level of dissociation constant (Kd) was 12.0 nM. The competitive SPR confirmed that 2LTRZFP specifically interacted with its target DNA. The qualitative binding activity was subsequently determined by EMSA and demonstrated the aforementioned correlation. In addition, molecular modeling and binding energy analyses were carried out to provide structural insight into the binding of 2LTRZFP to the specific and nonspecific DNA target. It is suggested that hydrogen‐bonding interactions play a key role in the DNA recognition mechanisms of the designed ZFP. Our study suggested an alternative HIV therapeutic strategy using ZFP interference of the HIV integration process.  相似文献   

14.
15.
Kallistatin, a plasma protein, protects against vascular and organ injury. This study is aimed to investigate the role and mechanism of kallistatin in endothelial senescence. Kallistatin inhibited H2O2‐induced senescence in human endothelial cells, as indicated by reduced senescence‐associated‐β‐galactosidase activity, p16INK4a and plasminogen activator inhibitor‐1 expression, and elevated telomerase activity. Kallistatin blocked H2O2‐induced superoxide formation, NADPH oxidase levels and VCAM‐1, ICAM‐1, IL‐6 and miR‐34a synthesis. Kallistatin reversed H2O2‐mediated inhibition of endothelial nitric oxide synthase (eNOS), SIRT1, catalase and superoxide dismutase (SOD)‐2 expression, and kallistatin alone stimulated the synthesis of these antioxidant enzymes. Moreover, kallistatin's anti‐senescence and anti‐oxidant effects were attributed to SIRT1‐mediated eNOS pathway. Kallistatin, via interaction with tyrosine kinase, up‐regulated Let‐7g, whereas Let‐7g inhibitor abolished kallistatin's effects on miR‐34a and SIRT1/eNOS synthesis, leading to inhibition of senescence, oxidative stress and inflammation. Furthermore, lung endothelial cells isolated from endothelium‐specific kallistatin knockout mice displayed marked reduction in mouse kallistatin levels. Kallistatin deficiency in mouse endothelial cells exacerbated senescence, oxidative stress and inflammation compared to wild‐type mouse endothelial cells, and H2O2 treatment further magnified these effects. Kallistatin deficiency caused marked reduction in Let‐7g, SIRT1, eNOS, catalase and SOD‐1 mRNA levels, and elevated miR‐34a synthesis in mouse endothelial cells. These findings indicate that endogenous kallistatin through novel mechanisms protects against endothelial senescence by modulating Let‐7g‐mediated miR‐34a‐SIRT1‐eNOS pathway.  相似文献   

16.
17.
Broadly neutralizing antibodies (bNAbs) isolated from chronically HIV-1 infected individuals reveal important information regarding how antibodies target conserved determinants of the envelope glycoprotein (Env) spike such as the primary receptor CD4 binding site (CD4bs). Many CD4bs-directed bNAbs use the same heavy (H) chain variable (V) gene segment, VH1-2*02, suggesting that activation of B cells expressing this allele is linked to the generation of this type of Ab. Here, we identify the rhesus macaque VH1.23 gene segment to be the closest macaque orthologue to the human VH1-2 gene segment, with 92% homology to VH1-2*02. Of the three amino acids in the VH1-2*02 gene segment that define a motif for VRC01-like antibodies (W50, N58, flanking the HCDR2 region, and R71), the two identified macaque VH1.23 alleles described here encode two. We demonstrate that immunization with soluble Env trimers induced CD4bs-specific VH1.23-using Abs with restricted neutralization breadth. Through alanine scanning and structural studies of one such monoclonal Ab (MAb), GE356, we demonstrate that all three HCDRs are involved in neutralization. This contrasts to the highly potent CD4bs-directed VRC01 class of bNAb, which bind Env predominantly through the HCDR2. Also unlike VRC01, GE356 was minimally modified by somatic hypermutation, its light (L) chain CDRs were of average lengths and it displayed a binding footprint proximal to the trimer axis. These results illustrate that the Env trimer immunogen used here activates B cells encoding a VH1-2 gene segment orthologue, but that the resulting Abs interact distinctly differently with the HIV-1 Env spike compared to VRC01.  相似文献   

18.
Anti‐CD20 murine or chimeric antibodies (Abs) have been used to treat non‐Hodgkin lymphomas (NHLs) and other diseases characterized by overactive or dysfunctional B cells. Anti‐CD20 Abs demonstrated to be effective in inducing regression of B‐cell lymphomas, although in many cases patients relapse following treatment. A promising approach to improve the outcome of mAb therapy is the use of anti‐CD20 antibodies to deliver cytokines to the tumour microenvironment. In particular, IL‐2‐based immunocytokines have shown enhanced antitumour activity in several preclinical studies. Here, we report on the engineering of an anti‐CD20‐human interleukin‐2 (hIL‐2) immunocytokine (2B8‐Fc‐hIL2) based on the C2B8 mAb (Rituximab) and the resulting ectopic expression in Nicotiana benthamiana. The scFv‐Fc‐engineered immunocytokine is fully assembled in plants with minor degradation products as assessed by SDS‐PAGE and gel filtration. Purification yields using protein‐A affinity chromatography were in the range of 15–20 mg/kg of fresh leaf weight (FW). Glycopeptide analysis confirmed the presence of a highly homogeneous plant‐type glycosylation. 2B8‐Fc‐hIL2 and the cognate 2B8‐Fc antibody, devoid of hIL‐2, were assayed by flow cytometry on Daudi cells revealing a CD20 binding activity comparable to that of Rituximab and were effective in eliciting antibody‐dependent cell‐mediated cytotoxicity of human PBMC versus Daudi cells, demonstrating their functional integrity. In 2B8‐Fc‐hIL2, IL‐2 accessibility and biological activity were verified by flow cytometry and cell proliferation assay. To our knowledge, this is the first example of a recombinant immunocytokine based on the therapeutic Rituximab antibody scaffold, whose expression in plants may be a valuable tool for NHLs treatment.  相似文献   

19.
Chikungunya virus (CHIKV) is a mosquito‐transmitted alphavirus, and its infection can cause long‐term debilitating arthritis in humans. Currently, there are no licensed vaccines or therapeutics for human use to combat CHIKV infections. In this study, we explored the feasibility of using an anti‐CHIKV monoclonal antibody (mAb) produced in wild‐type (WT) and glycoengineered (?XFT) Nicotiana benthamiana plants in treating CHIKV infection in a mouse model. CHIKV mAb was efficiently expressed and assembled in plant leaves and enriched to homogeneity by a simple purification scheme. While mAb produced in ?XFT carried a single N‐glycan species at the Fc domain, namely GnGn structures, WT produced mAb exhibited a mixture of N‐glycans including the typical plant GnGnXF3 glycans, accompanied by incompletely processed and oligomannosidic structures. Both WT and ?XFT plant‐produced mAbs demonstrated potent in vitro neutralization activity against CHIKV. Notably, both mAb glycoforms showed in vivo efficacy in a mouse model, with a slight increased efficacy by the ?XFT‐produced mAbs. This is the first report of the efficacy of plant‐produced mAbs against CHIKV, which demonstrates the ability of using plants as an effective platform for production of functionally active CHIKV mAbs and implies optimization of in vivo activity by controlling Fc glycosylation.  相似文献   

20.
The range of genome‐editing tools has recently been expanded. In particular, an RNA‐guided genome‐editing tool, the clustered regularly interspaced short palindromic repeat (CRISPR)‐associated 9 (Cas9) system, has many applications for human diseases. In this study, guide RNA (gRNA) to target gag, pol and a long terminal repeat of HIV‐1 was designed and used to generate gRNA‐expressing lentiviral vectors. An HIV‐1‐specific gRNA and Cas9 were stably dually transduced into a highly HIV‐1‐susceptible human T‐cell line and the inhibitory ability of the anti‐HIV‐1 CRISPR/Cas9 lentiviral vector assessed. Although clear inhibition of the early phase of HIV‐1 infection was observed, as evaluated by a VSV‐G‐pseudotyped HIV‐1 reporter system, the anti‐HIV‐1 potency in multiple rounds of wild type (WT) viral replication was insufficient, either because of generation of resistant viruses or overcoming of the activity of the WT virus. Thus, there are potential difficulties that must be addressed when considering anti‐HIV‐1 treatment with the CRISPR/Cas9 system alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号