首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Synthetic peptides derived from GB virus C (GBV‐C) have previously been studied in our group for the development of new systems capable of diagnosing diseases caused by this humanotropic virus. We also recently described specific peptide domains of the E2 envelop protein of GBV‐C that have the capacity to interfere with the HIV‐1 fusion peptide, produce a notable decrease in cellular membrane fusion, and perturb HIV‐1 infectivity in a dose‐dependent manner. The present work discloses the design and synthesis of both linear and cyclic branched peptides based on a previously reported N‐terminal sequence of the GBV‐C E2 protein. Immunoassays and cell–cell fusion assays were performed to evaluate their diagnostic value to detect anti‐GBV‐C antibodies in HIV‐1 patients, as well as their putative anti‐HIV‐1 activity as entry inhibitors. Our results showed that chemical modifications of the selected E2(7–26) linear peptide to afford cyclic architecture do not result in an enhanced inhibition of gp41 HIV‐1‐mediated cell–cell fusion nor improved sensitivity in the detection of GBV‐C antibodies in HIV‐1 co‐infected patients. Thus, the ELISA data reinforce the potential utility of linear versions of the E2(7–26) region for the development of new peptide‐based immunosensor devices for the detection of anti‐GBV‐C antibodies in HIV‐1 co‐infected patients. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Current cancer treatment is frequently compromised by severe adverse effects on healthy cells and tissues as well as by the increasing burden of (multi‐)drug resistances. Some representatives of small, amphipathic peptides known as host defense peptides possess the potential to overcome these limitations and to evolve as future anti‐cancer therapeutics. Peptide NK‐2, derived from porcine NK‐lysin, was originally discovered due to its broad‐spectrum antimicrobial activities. Today, also potent anti‐cancer activity is proven and accompanied by low toxicity towards normal human cells. The molecular basis underlying this target selectivity remains rather elusive. Nevertheless, it is presumptive that preferential peptide interactions with surface factors non‐abundant on healthy human cells play a key role. Here, we investigated the cytotoxicity of peptide NK‐2 and structurally improved anti‐cancer variants thereof against two patient‐derived colorectal cancer cell lines, exposing high and low levels of phosphatidylserine on their cell surfaces, respectively. Concluding from a range of in vitro tests involving cellular as well as lipid vesicle‐based methods, it is proposed that the magnitude of the accessible membrane surface charge is not a primarily decisive factor for selective peptide interactions. Instead, it is suggested that the level of membrane surface‐exposed phosphatidylserine is of crucial importance for the activity of peptide NK‐2 and enhanced variants thereof in terms of their cancer cell selectivity, the overall efficacy, as well as the underlying mode of action and kinetics. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
The structural similarities between N1 substituted 1,4‐dihydropyridines and the known gp41 inhibitors, NB ‐2 and NB ‐64 , were considered in the current research for the design of some novel anti‐HIV‐1 agents. A series of novel 4‐[4‐arylpyridin‐1(4H)‐yl]benzoic acid derivatives were synthesized and after a comprehensive structural elucidation were screened for in vitro anti‐HIV‐1 activity. Most of the tested compounds displayed moderate to good inhibitory activity against HIV‐1 growth and were evaluated for in vitro cytotoxic activity using XTT assay at the concentration of 100 μm . Among the tested compounds, 1c , 1d and 1e showed potent anti‐HIV‐1 activity against P24 expression at 100 μm with inhibition percentage of 84.00%, 76.42% and 80.50%, respectively. All the studied compounds possessed no significant cytotoxicity on MT‐2 cell line. The binding modes of these compounds to gp41 binding site were determined through molecular docking study. Docking studies proved 1a as the most potent compound and binding maps exhibited that the activities might be attributed to the electrostatic and hydrophobic interactions and additional H‐bonds with the gp41 binding site. The Lipinski's ‘rule of five’ and drug‐likeness criteria were also calculated for the studied compounds. All derivatives obeyed the Lipinski's ‘rule of five’ and had drug‐like features. The findings of this study suggest that novel 4‐[4‐arylpyridin‐1(4H)‐yl]benzoic acid might be a promising scaffold for the discovery and development of novel anti‐HIV‐1 agents.  相似文献   

4.
Temporin‐1Tl (TL) is a 13‐residue frog antimicrobial peptide (AMP) exhibiting potent antimicrobial and anti‐inflammatory activity. To develop novel AMP with improved anti‐inflammatory activity and antimicrobial selectivity, we designed and synthesized a series of TL analogs by substituting Trp, Arg and Lys at selected positions. Except for Escherichia coli and Staphylococcus epidermidis, all TL analogs exhibited retained or increased antimicrobial activity against seven bacterial strains including three methicillin‐resistant Staphylococcus aureus strains compared with TL. TL‐1 and TL‐4 showed a little increase in antimicrobial selectivity, while TL‐2 and TL‐3 displayed slightly decreased antimicrobial selectivity because of their about twofold increased hemolytic activity. All TL analogs demonstrated greatly increased anti‐inflammatory activity, evident by their higher inhibition of the production tumor necrosis factor‐α (TNF‐α) and nitric oxide and the mRNA expression of inducible nitric oxide synthase and TNF‐α in lipopolysaccharide (LPS)‐stimulated RAW264.7 macrophage cells, compared with TL. Taken together, the peptide anti‐inflammatory activity is as follows: TL‐2 ≈ TL‐3 ≈ TL‐4 > TL‐1 > TL. In addition, LPS binding ability of the peptides corresponded with their anti‐inflammatory activity. These results apparently suggest that the anti‐inflammatory activity of TL analogs is associated with the direct binding ability between these peptides and LPS. Collectively, our designed TL analogs possess improved anti‐inflammatory activity and retain antimicrobial activity without a significant increase in hemolysis. Therefore, it is evident that our TL analogs constitute promising candidates for the development of peptide therapeutics for gram‐negative bacterial infection. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
The immune response in individuals co‐infected with Mycobacterium tuberculosis (MTB) and the human immunodeficiency virus (MTB/HIV) gradually deteriorates, particularly in the cellular compartment. Adoptive transfer of functional effector T cells can confer protective immunity to immunodeficient MTB/HIV co‐infected recipients. However, few such effector T cells exist in vivo, and their isolation and amplification to sufficient numbers is difficult. Therefore, enhancing immune responses against both pathogens is critical for treating MTB/HIV co‐infected patients. One approach is adoptive transfer of T cell receptor (TCR) gene‐modified T cells for the treatment of MTB/HIV co‐infections because lymphocyte numbers and their functional avidity is significantly increased by TCR gene transfer. To generate bispecific CD8+ T cells, MTB Ag85B199–207 peptide‐specific TCRs (MTB/TCR) and HIV‐1 Env120–128 peptide‐specific TCRs (HIV/TCR) were isolated and introduced into CD8+ T cells simultaneously using a retroviral vector. To avoid mispairing among exogenous and endogenous TCRs, and to improve the function and stability of the introduced TCRs, several strategies were employed, including introducing mutations in the MTB/TCR constant (C) regions, substituting part of the HIV/TCR C regions with CD3ζ, and linking gene segments with three different 2A peptides. Results presented in this report suggest that the engineered T cells possessed peptide‐specific specificity resulting in cytokine production and cytotoxic activity. This is the first report describing the generation of engineered T cells specific for two different pathogens and provides new insights into TCR gene therapy for the treatment of immunocompromised MTB/HIV co‐infected patients.  相似文献   

6.
The synthetic peptide fragment (LC5: LRCRNEKKRHRAVRLIFTI) inhibits human immunodeficiency virus type 1 (HIV‐1) infection of MT‐4 cells. In this study, the solution structure of LC5 in SDS micelles was elucidated by using the standard 1H two‐dimensional NMR spectroscopic method along with circular dichroism and fluorescence quenching. The peptide adopts a helical structure in the C‐terminal region (residues 13–16), whereas the N‐terminal part remains unstructured. The importance of Phe17 in maintaining the structure of LC5 was demonstrated by replacing Phe17 with Ala, which resulted in the dramatic conformational change of LC5. The solution structure of LC5 elucidated in the present work provides a basis for further study of the mechanism of the inhibition of HIV‐1 infection. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Antimicrobial peptides are small cationic peptides that possess a large spectrum of bioactivities, including antimicrobial, anti‐inflammatory and antioxidant activities. Several antimicrobial peptides are known to inhibit lipopolysaccharide (LPS)‐induced inflammation in vitro and to protect animals from sepsis. In this study, the cellular anti‐inflammatory and anti‐endotoxin activities of Os and Os‐C, peptides derived from the carboxy‐terminal of a tick defensin, were investigated. Both Os and Os‐C were found to bind LPS in vitro, albeit to a lesser extent than polymyxin B and melittin, known endotoxin‐binding peptides. Binding to LPS was found to reduce the bactericidal activity of Os and Os‐C against Escherichia coli confirming the affinity of both peptides for LPS. At a concentration of 25 µM, the nitric oxide (NO) scavenging activity of Os was higher than glutathione, a known NO scavenger. In contrast, Os‐C showed no scavenging activity. Os and Os‐C inhibited LPS/IFN‐γ induced NO and TNF‐α production in RAW 264.7 cells in a concentration‐dependent manner, with no cellular toxicity even at a concentration of 100 µM. Although inhibition of NO and TNF‐α secretion was more pronounced for melittin and polymyxin B, significant cytotoxicity was observed at concentrations of 1.56 µM and 25 µM for melittin and polymyxin B, respectively. In addition, Os, Os‐C and glutathione protected RAW 264.7 cells from oxidative damage at concentrations as low as 25 µM. This study identified that besides previously reported antibacterial activity of Os and Os‐C, both peptides have in addition anti‐inflammatory and anti‐endotoxin properties. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
To characterize mitochondrial/apoptotic parameters in chronically human immunodeficiency virus (HIV‐1)‐infected promonocytic and lymphoid cells which could be further used as therapeutic targets to test pro‐mitochondrial or anti‐apoptotic strategies as in vitro cell platforms to deal with HIV‐infection. Mitochondrial/apoptotic parameters of U1 promonocytic and ACH2 lymphoid cell lines were compared to those of their uninfected U937 and CEM counterparts. Mitochondrial DNA (mtDNA) was quantified by rt‐PCR while mitochondrial complex IV (CIV) function was measured by spectrophotometry. Mitochondrial‐nuclear encoded subunits II–IV of cytochrome‐c‐oxidase (COXII‐COXIV), respectively, as well as mitochondrial apoptotic events [voltage‐dependent‐anion‐channel‐1(VDAC‐1)‐content and caspase‐9 levels] were quantified by western blot, with mitochondrial mass being assessed by spectrophotometry (citrate synthase) and flow cytometry (mitotracker green assay). Mitochondrial membrane potential (JC1‐assay) and advanced apoptotic/necrotic events (AnexinV/propidium iodide) were measured by flow cytometry. Significant mtDNA depletion spanning 57.67% (P < 0.01) was found in the U1 promonocytic cells further reflected by a significant 77.43% decrease of mitochondrial CIV activity (P < 0.01). These changes were not significant for the ACH2 lymphoid cell line. COXII and COXIV subunits as well as VDAC‐1 and caspase‐9 content were sharply decreased in both chronic HIV‐1‐infected promonocytic and lymphoid cell lines (<0.005 in most cases). In addition, U1 and ACH2 cells showed a trend (moderate in case of ACH2), albeit not significant, to lower levels of depolarized mitochondrial membranes. The present in vitro lymphoid and especially promonocytic HIV model show marked mitochondrial lesion but apoptotic resistance phenotype that has been only partially demonstrated in patients. This model may provide a platform for the characterization of HIV‐chronicity, to test novel therapeutic options or to study HIV reservoirs.  相似文献   

9.
Efficient gene transfer is a critical goal in retroviral transduction. Several peptides capable of forming amyloid fibrils, such as the 39‐residue semen‐derived infection‐enhancing peptide (SEVI), have demonstrated the ability to boost retroviral gene delivery. Here, a 13‐residue peptide P13 (Ac‐671NWFDITNWLWYIK683) derived from the membrane‐proximal external region of the human immunodeficiency virus type 1 (HIV‐1) gp41 transmembrane protein, together with its 16‐residue peptide derivative (P16) were found to enhance HIV‐1 infection significantly. Both peptides, P13 and P16, could form amyloid fibril structures to potently enhance HIV‐1 infectivity. Further investigations showed that both aromatic Trp residues and cationic Lys residues contributed to the enhancement of HIV‐1 infection by these two active peptides. P16 could more effectively augment HIV‐1 YU‐2 infection than SEVI, implying its potential applications as a tool in the lab to improve gene transfer rates. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
A series of Fmoc‐Phe(4‐aza‐C60)‐OH of fullerene amino acid derived peptides have been prepared by solid phase peptide synthesis, in which the terminal amino acid, Phe(4‐aza‐C60)‐OH, is derived from the dipolar addition to C60 of the Fmoc‐Nα‐protected azido amino acids derived from phenylalanine: Fmoc‐Phe(4‐aza‐C60)‐Lys3‐OH ( 1 ), Fmoc‐Phe(4‐aza‐C60)‐Pro‐Hyp‐Lys‐OH ( 2 ), and Fmoc‐Phe(4‐aza‐C60)‐Hyp‐Hyp‐Lys‐OH ( 3 ). The inhibition constant of our fullerene aspartic protease PRIs utilized FRET‐based assay to evaluate the enzyme kinetics of HIV‐1 PR at various concentrations of inhibitors. Simulation of the docking of the peptide Fmoc‐Phe‐Pro‐Hyp‐Lys‐OH overestimated the inhibition, while the amino acid PRIs were well estimated. The experimental results show that C60‐based amino acids are a good base structure in the design of protease inhibitors and that their inhibition can be improved upon by the addition of designer peptide sequences. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
We have analyzed the suitability of six antigenic peptides from several HIV‐1 structural proteins (namely gp41, gp120, p17, and p24), as anti‐HIV‐1 antibody receptors in an allosteric enzymatic biosensor. These peptides were inserted in a solvent‐exposed surface of Escherichia coli (E. coli) beta‐galactosidase by means of conventional recombinant DNA technology. The resulting enzymes were tested to allosterically respond to sera from HIV‐1‐infected individuals. Only stretches from gp41 and gp120 envelope proteins were able to transduce the molecular contact signal in the presence of immunoreactive sera. Intriguingly, the enzyme displaying the CD4 binding site segment KQFINMWQEVGKAMYAPP was activated by soluble CD4, suggesting that it produces conformational modifications on the allosteric enzyme as those occurring during antibody‐promoted induced fit. This fact is discussed in the context of the design of smart protein drugs and markers targeted to CD4+ cells. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The range of genome‐editing tools has recently been expanded. In particular, an RNA‐guided genome‐editing tool, the clustered regularly interspaced short palindromic repeat (CRISPR)‐associated 9 (Cas9) system, has many applications for human diseases. In this study, guide RNA (gRNA) to target gag, pol and a long terminal repeat of HIV‐1 was designed and used to generate gRNA‐expressing lentiviral vectors. An HIV‐1‐specific gRNA and Cas9 were stably dually transduced into a highly HIV‐1‐susceptible human T‐cell line and the inhibitory ability of the anti‐HIV‐1 CRISPR/Cas9 lentiviral vector assessed. Although clear inhibition of the early phase of HIV‐1 infection was observed, as evaluated by a VSV‐G‐pseudotyped HIV‐1 reporter system, the anti‐HIV‐1 potency in multiple rounds of wild type (WT) viral replication was insufficient, either because of generation of resistant viruses or overcoming of the activity of the WT virus. Thus, there are potential difficulties that must be addressed when considering anti‐HIV‐1 treatment with the CRISPR/Cas9 system alone.  相似文献   

13.
Tuberculosis (TB) and human immunodeficiency virus type 1 (HIV‐1) infection are closely intertwined, with one‐quarter of TB/HIV coinfected deaths among people died of TB. Effector CD8+ T cells play a crucial role in the control of Mycobacterium tuberculosis (MTB) and HIV‐1 infection in coinfected patients. Adoptive transfer of a multitude of effector CD8+ T cells is an appealing strategy to impose improved anti‐MTB/HIV‐1 activity onto coinfected individuals. Due to extensive existence of heterologous immunity, that is, T cells cross‐reactive with peptides encoded by related or even very dissimilar pathogens, it is reasonable to find a single T cell receptor (TCR) recognizing both MTB and HIV‐1 antigenic peptides. In this study, a single TCR specific for both MTB Ag85B199‐207 peptide and HIV‐1 Env120‐128 peptide was screened out from peripheral blood mononuclear cells of a HLA‐A*0201+ healthy individual using complementarity determining region 3 spectratype analysis and transferred to primary CD8+ T cells using a recombinant retroviral vector. The bispecificity of the TCR gene‐modified CD8+ T cells was demonstrated by elevated secretion of interferon‐γ, tumour necrosis factor‐α, granzyme B and specific cytolytic activity after antigen presentation of either Ag85B199‐207 or Env120‐128 by autologous dendritic cells. To the best of our knowledge, this study is the first report proposing to produce responses against two dissimilar antigenic peptides of MTB and HIV‐1 simultaneously by transfecting CD8+ T cells with a single TCR. Taken together, T cells transduced with the additional bispecific TCR might be a useful strategy in immunotherapy for MTB/HIV‐1 coinfected individuals.  相似文献   

14.
The discovery of broadly neutralizing antibodies (bNAbs) has been a major step towards better prophylactic and therapeutic agents against human immunodeficiency virus type 1 (HIV‐1). However, effective therapy will likely require a combination of anti‐HIV agents to avoid viral evasion. One possible solution to this problem is the creation of bispecific molecules that can concurrently target two vulnerable sites providing synergistic inhibitory effects. Here, we describe the production in plants and anti‐HIV activity of a novel bispecific fusion protein consisting of the antigen‐binding fragment (Fab) of the CD4 binding site‐specific bNAb VRC01 and the antiviral lectin Avaren, which targets the glycan shield of the HIV‐1 envelope (VRC01Fab‐Avaren). This combination was justified by a preliminary experiment demonstrating the synergistic HIV‐1 neutralization activity of VRC01 and Fc‐fused Avaren dimer (Avaren‐Fc). Using the GENEWARE® tobacco mosaic virus vector, VRC01Fab‐Avaren was expressed in Nicotiana benthamiana and purified using a three‐step chromatography procedure. Surface plasmon resonance and ELISA demonstrated that both the Avaren and VRC01Fab moieties retain their individual binding specificities. VRC01Fab‐Avaren demonstrated enhanced neutralizing activity against representative HIV‐1 strains from A, B and C clades, compared to equimolar combinations of VRC01Fab and Avaren. Notably, VRC01Fab‐Avaren showed significantly stronger neutralizing effects than the bivalent parent molecules VRC01 IgG and Avaren‐Fc, with IC50 values ranging from 48 to 310 pm . These results support the continued development of bispecific anti‐HIV proteins based on Avaren and bNAbs, to which plant‐based transient overexpression systems will provide an efficient protein engineering and production platform.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV‐1) infection of the central nervous system (CNS) affects cross‐talk between the individual cell types of the neurovascular unit, which then contributes to disruption of the blood–brain barrier (BBB) and the development of neurological dysfunctions. Although the toxicity of HIV‐1 on neurons, astrocytes and brain endothelial cells has been widely studied, there are no reports addressing the influence of HIV‐1 on pericytes. Therefore, the purpose of this study was to evaluate whether or not pericytes can be infected with HIV‐1 and how such an infection affects the barrier function of brain endothelial cells. Our results indicate that human brain pericytes express the major HIV‐1 receptor CD4 and co‐receptors CXCR4 and CCR5. We also determined that HIV‐1 can replicate, although at a low level, in human brain pericytes as detected by HIV‐1 p24 ELISA. Pericytes were susceptible to infection with both the X4‐tropic NL4‐3 and R5‐tropic JR‐CSF HIV‐1 strains. Moreover, HIV‐1 infection of pericytes resulted in compromised integrity of an in vitro model of the BBB. These findings indicate that human brain pericytes can be infected with HIV‐1 and suggest that infected pericytes are involved in the progression of HIV‐1‐induced CNS damage.  相似文献   

16.
Structural modification of the peptide backbone via N‐methylation is a powerful tool to modulate the pharmacokinetic profile and biological activity of peptides. Here we describe a rapid and highly efficient microwave(MW)‐assisted Fmoc/tBu solid‐phase method to prepare short chain N‐methyl‐rich peptides, using Rink amide p‐methylbenzhydrylamine (MBHA) resin as solid‐phase support. This method produces peptides in high yield and purity, and reduces the time required for Fmoc‐N‐methyl amino acid coupling. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Peptide chemical ligation chemistries, which allow the chemoselective coupling of unprotected peptide fragments, are useful tools for synthesizing native polypeptides or unnatural peptide‐based macromolecules. We show here that the phenylthiocarbonyl group can be easily introduced into peptides on α or ε amino groups using phenylthiochloroformate and standard solid‐phase method. It reacts chemoselectively with cysteinyl peptides to give an alkylthiocarbamate bond. S,N‐shift of the alkylaminocarbonyl group from the Cys side chain to the α‐amino group did not occur. The method was used for linking two peptide chains through their N‐termini, for the synthesis of a cyclic peptide or for the synthesis of di‐ or tetravalent multiple antigenic peptides (MAPs). Thiocarbamate ligation is thus complementary to thioether, thioester or disulfide ligation methods. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
DKP formation is a serious side reaction during the solid‐phase synthesis of peptide acids containing either Pro or Gly at the C‐terminus. This side reaction not only leads to a lower overall yield, but also to the presence in the reaction crude of several deletion peptides lacking the first amino acids. For the preparation of protected peptides using the Fmoc/tBu strategy, the use of a ClTrt‐Cl‐resin with a limited incorporation of the C‐terminal amino acid is the method of choice. The use of resins with higher loading levels leads to more impure peptide crudes. The use of HPLC‐ESMS is a useful method for analysing complex samples, such as those formed when C‐terminal Pro peptides are prepared by non‐optimized solid‐phase strategies. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
XPF‐St7 (GLLSNVAGLLKQFAKGGVNAVLNPK) is an antimicrobial peptide isolated from Silurana tropicalis. We developed an α‐helical segment of XPF‐St7 termed as XPF2. Using the XPF2 as a framework, we increased the positive net charge of XPF2 by amino acid substitutions, and thus obtained two novel antimicrobial peptides XPF4 and XPF6. These were each fused with an ubiquitin tag and successfully expressed in Escherichia coli. This ubiquitin fusion system may present a viable alternative for industrial production of antimicrobial peptides. XPF4 and XPF6 showed much better overall antimicrobial activity against both Gram‐negative and Gram‐positive bacteria than XPF2. The therapeutic index of XPF4 and XPF6 was 5.6‐fold and 6.7‐fold of XPF2, respectively. Bacterial cell membrane permeabilization and genomic DNA interaction assays were utilized to explore the mechanism of action of XPF serial peptides. The results revealed that the target of these antimicrobial peptides was the bacterial cytoplasmic membrane. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
The membrane proximal external region (MPER) of gp41 abuts the viral membrane at the base of HIV‐1 envelope glycoprotein spikes. The MPER is highly conserved and is rich in Trp and other lipophilic residues. The MPER is also required for the infection of host cells by HIV‐1 and is the target of the broadly neutralizing antibodies, 4E10, 2F5, and Z13e1. These neutralizing antibodies are valuable tools for understanding relevant conformations of the MPER and for studying HIV‐1 neutralization, but multiple approaches used to elicit MPER binding antibodies with similar neutralization properties have failed. Here we report our efforts to mimic the MPER using linear as well as constrained peptides. Unnatural amino acids were also introduced into the core epitope of 4E10 to probe requirements of antibody binding. Peptide analogs with C‐terminal Api or Aib residues designed to be helical transmembrane (TM) domain surrogates exhibit enhanced binding to the 4E10 and Z13e1 antibodies. However, we find that placement of constrained amino acids at nonbinding sites within the core epitope significantly reduce binding. These results are relevant to an understanding of native MPER structure on HIV‐1, and form a basis for a chemical synthesis approach to mimic MPER stricture and to construct an MPER‐based vaccine. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号