首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An internal fragment of the ddl gene, encoding the cytoplasmic enzyme D-alanyl-D-alanine ligase, was sequenced from 566 isolates of Streptococcus pneumoniae and single isolates of Streptococcus mitis and Streptococcus oralis. The 52 alleles found among the S. pneumoniae isolates fell into two groups. Group A alleles were very uniform in sequence and were present in both penicillin-susceptible and penicillin-resistant pneumococci. Group B alleles were much more diverse and were found only in penicillin-resistant isolates. The Streptococcus oralis and Streptococcus mitis alleles were less diverged from group A alleles than some of the group B pneumococcal alleles, suggesting that the latter alleles contain interspecies recombinational replacements. The ddl gene was located 783 bp downstream of the penicillin-binding protein 2b gene (pbp2b). Sequencing of the pbp2b-recR-ddl-murF region of three penicillin-resistant pneumococci that had diverged ddl alleles showed that the whole region from pbp2b to ddl (or beyond) was highly diverged (about 8%) compared with the sequences from three penicillin-susceptible isolates. The high levels of diversity in the group B ddl alleles from penicillin-resistant isolates were ascribed to a hitchhiking effect whereby interspecies recombinational exchanges at pbp2b, selected by penicillin usage, often extend into, or through, the ddl gene. The data allow the average size of the interspecies recombinational replacements to be estimated at about 6 kb.  相似文献   

2.
Clinical isolates of Streptococcus pneumoniae that have greatly increased levels of resistance to penicillin (greater than 1000-fold) have been reported from South Africa during the last ten years. Penicillin resistance in these strains is entirely due to the development of penicillin-binding proteins (PBPs) with decreased affinity for penicillin. We have cloned and sequenced the coding region for the transpeptidase domain of penicillin-binding protein 2B from three penicillin-sensitive strains of S. pneumoniae and from a penicillin-resistant South African strain. The amino acid sequences of the transpeptidase domains of PBP2B of the three penicillin-sensitive strains were identical and there were only between one and four differences in the nucleotide sequences of their coding regions. The corresponding region of the PBP2B gene from the penicillin-resistant strain differed by 74 nucleotide substitutions which resulted in 17 alterations in the amino acid sequence of PBP2B. The most remarkable alteration that has occurred during the development of the 'penicillin-resistant' form of PBP2B is the substitution of seven consecutive residues in a region that is predicted to form a loop at the bottom of the penicillin-binding site.  相似文献   

3.
The nucleotide sequence of a 3,378-bp DNA fragment of Streptococcus pneumoniae that included the structural gene for penicillin-binding protein (PBP) 1a (ponA), which encodes 719 amino acids, was determined. Homologous DNA fragments from an S. oralis strain were amplified with ponA-specific oligonucleotides. The 2,524-bp S. oralis sequence contained the coding region for the first 636 amino acids of a PBP. The coding sequence differed by 437 nucleotides (27%) and one additional triplet, resulting in 87 amino acid substitutions (14%), from S. pneumoniae PBP 1a. Both PBPs are highly homologous to bifunctional high-M(r) Escherichia coli PBPs 1a and 1b.  相似文献   

4.
The aim of this study was to investigate the nature of the amino acid motifs found in penicillin-binding proteins (PBP) 2b, 2x, and 1a of penicillin-nonsusceptible Streptococcus pneumoniae isolates from Shenyang, China, and to obtain information regarding the prevalence of alterations within the motifs or in positions flanking the motifs. For 18 clinical isolates comprising 4 penicillin-susceptible S. pneumoniae, 5 penicillin-intermediate S. pneumoniae, and 9 penicillin-resistant S. pneumoniae. the DNA sequences of PBP2b, PBP2x, and PBP1a transpeptidase domains were determined and then genotyped by multilocus sequence typing. Sequence analysis revealed that most penicillin-nonsusceptible S. pneumoniae isolates (penicillin MIC > or = 1.5 microg/mL and cefotaxime MIC > or = 2 microg/mL) shared identical PBP2b, PBP2x, and PBP1a amino acid profiles. Most penicillin-resistant S. pneumoniae isolates were ST320 (4-16-19-15-6-20-1), the double-locus variant of the Taiwan19F-14 clone. This study will serve as a basis for future monitoring of genetic changes associated with the emergence and spread of beta-lactam resistance in Shenyang, China.  相似文献   

5.
Penicillin-resistant strains of Streptococcus pneumoniae possess forms of penicillin-binding proteins (PBPs) that have a low affinity for penicillin compared to those from penicillin-sensitive strains. PBP genes from penicillin-resistant isolates are very variable and have a mosaic structure composed of blocks of nucleotides that are similar to those found in PBP genes from penicillin-sensitive isolates and blocks that differ by up to 21%. These chromosomally encoded mosaic genes have presumably arisen following transformation and homologous recombination with PBP genes from a number of closely related species. This study shows that PBP2B genes from many penicillin-resistant isolates of S. pneumoniae contain blocks of nucleotides originating from Streptococcus mitis. In several instances it would appear that this material alone is sufficient to produce a low affinity PBP2B. In other examples PBP2B genes possess blocks of nucleotides from S. mitis and at least one additional unidentified species. Mosaic structure was aiso found in the PBP2B genes of penicillin-sensitive isolates of S. mitis or S. pneumoniae. These mosaics did not confer penicillin resistance but nevertheless reveal something of the extent to which localized recombination occurs in these naturally transformable streptococci.  相似文献   

6.
The occurrence of highly variable penicillin-binding proteins (PBPs) in penicillin-resistant Streptococcus pneumoniae suggested that transfer of homologous genes from related species may be involved in resistance development. Antiserum and monoclonal antibodies raised against PBPs 1a and 2b from the susceptible S. pneumoniae R6 strain were used to identify related PBPs in 41 S. mitis, S. sanguis I and S. sanguis II strains mostly isolated in South Africa with MIC values ranging from less than 0.15 to 16 mg/ml. Furthermore, the possibility of genetic exchange was examined with 30 penicillin-resistant strains of this collection (MIC greater than 0.06 mg/ml) as donors using S. pneumoniae R6 as recipient in transformation experiments. The majority of S. mitis and S. sanguis II strains but none of the S. sanguis I strains could transform penicillin resistance genes into S. pneumoniae R6. All positive donor strains and all susceptible isolates of S. mitis and S. sanguis II strains contained PBPs which cross-reacted with the anti-PBP 1a and/or anti-PBP 2b antibodies. On the other hand, only five of the 14 S. sanguis I strains contained a PBP that reacted with one of the antibodies. This strongly suggested the presence of genes homologous to the pneumococcal PBP 1a and 2b genes in viridans streptococci, and documents that penicillin resistance determinants can be transformed from viridans streptococci into the pneumococcus.  相似文献   

7.
Multiply antibiotic-resistant serotype 23F isolates of Streptococcus pneumoniae are prevalent in Spain and have also been recovered recently in the United Kingdom and the United States. Analysis of populations of these isolates by multilocus enzyme electrophoresis, and restriction endonuclease cleavage electrophoretic profiling of penicillin-binding protein (PBP) genes, has demonstrated that these isolates are a single clone (Muñoz et al., 1991). Here we report studies of non-serotype 23F penicillin-resistant pneumococci isolated in Spain and the United Kingdom. One of the isolates expressed serotype 19 capsule but was otherwise indistinguishable from the serotype 23F clone on the basis of multilocus enzyme electrophoresis, antibiotic resistance profiling, and restriction endonuclease patterns of genes encoding PBP1A, PBP2B and PBP2X, a result which suggests that horizontal transfer of capsular biosynthesis genes had occurred. These same techniques revealed that six other resistant isolates, all expressing serotype 9 polysaccharide capsule, represent a clone. Interestingly, the chromosomal lineage of this clone is not closely related to the 23F clone; however, the serotype 9 and 23F clones harbour apparently identical PBP1 A, -2B and -2X genes. To explain these data, we favour the interpretation that horizontal gene transfer in natural populations has distributed genes encoding altered forms of PBP1A, -2B and -2X to distinct evolutionary lineages of S. pneumoniae.  相似文献   

8.
Abstract An internal fragment from each of the penicillinebinding protein (PBP) 1A, 2B and 2X genes of Streptococcus pneumoniae , which included the region encoding the active-site serine residue, was replaced by a fragment encoding spectinomycin resistance. The resulting constructs were tested for their ability to transform S. pneumoniae strain R6 to spectinomycin resistance. Spectinomycin-resistant transformants could not be obtained using either the inactivated PBP 2X or 2B genes, suggesting that deletion of either of these genes was a lethal event, but they were readily obtained using the inactivated PBP 1A gene. Analysis using the polymerase chain reaction confirmed that the latter transformants had replaced their chromosomal copy of the PBP 1A gene with the inactivated copy of the gene. Deletion of the PBP 1A gene was therefore tolerated under laboratory conditions and appeared to have little effect on growth or susceptibility to benzylpenicillin.  相似文献   

9.
Penicillin-resistant clinical isolates of Streptococcus pneumoniae contain mosaic penicillin-binding protein (PBP) genes that encode PBPs with decreased affinity for β-lactam antibiotics. The mosaic blocks are believed to be the result of gene transfer of homologous PBP genes from related penicillin-resistant species. We have now identified a gene homologous to the pneumococcal PBP2x gene (pbpX) in a penicillin-sensitive Streptococcus oralis isolate M3 from South Africa that diverged by almost 20% from pbpX of penicillin-sensitive pneumococci, and a central sequence block of a mosaic pbpX gene of Streptococcus mitis strain NCTC 10712. In contrast, it differed by only 2-4% of the 1 to 1.5 kb mosaic block in pbpX genes of three genetically unrelated penicillin-resistant S. pneumoniae isolates, two of them representing clones of serotype 6B and 23F, which are prevalent in Spain and are also already found in other countries. With low concentrations of cefotaxime, transformants of the sensitive S. pneumoniae R6 strain could be selected containing pbpX genes from either S. mitis NCTC 10712 or S. oralis M3, demonstrating that genetic exchange can already occur between β-lactam-sensitive species. These data are in agreement with the assumption that PBPs as penicillin-resistance determinants have evolved by the accumulation of point mutations in genes of sensitive commensal species.  相似文献   

10.
林峰  郑敏巧  曾爱平  丁玎  文思远  王升启 《遗传》2005,27(6):965-971
为阐明温州地区青霉素耐药肺炎链球菌(PRSP)的青霉素结合蛋白(PBPs)的基因和氨基酸序列的变异特点,对温州医学院自2000年11月~2004年1月收集的26份肺炎链球菌进行分离、鉴定及青霉素药敏实验,并对每株链球菌的PBP1A、PBP2B、PBP2X基因进行PCR扩增和直接测序,通过序列比对与生物信息学分析。结果表明,研究中的PBP1A的主要突变位点是保守基序KTG之后的4个连续氨基酸替换Thr574Ala、Ser575Thr、Gln576Gly、Phe577Tyr和保守序列STMK内的氨基酸替换Thr371Ser;PBP2B的主要突变位点是保守序列SSN之后的氨基酸替换Thr451Ala;PBP2X的主要突变位点是保守基序STMK 内的氨基酸替换Thr338Ala。以上突变类型以及菌株的青霉素耐药水平与文献报道相符。研究检测的PRSP的PBPs基因中暂未发现本地区特有的(新的)基因突变,也未检测出文献报道的某些与青霉素抗性相关的氨基酸替换。  相似文献   

11.
Penicillin-resistant strains of Streptococcus pneumoniae have been common in South Africa and Spain for several years. Multilocus enzyme electrophoresis identified one clone of capsular type 6B which was prevalent in Spain and another clone of type 23F that was present in both countries. Genes for penicillin-binding proteins (PBPs) in penicillin-resistant strains are often mosaics where parts of the pneumococcal genes are replaced by homologous genes from other species. We have compared the mosaic structures of the PBP 1a genes from the two clones as well as from genetically distinct South African isolates. Four classes of mosaic PBP 1a genes were found that contained blocks of sequences divergent by 6-22% from those of sensitive genes; two classes contained sequences coming from more than one external source. Data are presented showing that the PBP 1a genes from the 23F and the 6B clone are related, and that the two PBP 1a genes from the South African isolates are also related. We suggest that the type 23F clone originated in Spain prior to distribution into other continents.  相似文献   

12.
Penicillin-binding proteins (PBPs) are bacterial cytoplasmic membrane proteins that catalyze the final steps of the peptidoglycan synthesis. Resistance to beta-lactams in Streptococcus pneumoniae is caused by low-affinity PBPs. S. pneumoniae PBP 2a belongs to the class A high-molecular-mass PBPs having both glycosyltransferase (GT) and transpeptide (TP) activities. Structural and functional studies of both domains are required to unravel the mechanisms of resistance, a prerequisite for the development of novel antibiotics. The extracellular region of S. pneumoniae PBP 2a has been expressed (PBP 2a*) in Escherichia coli as a glutathione S-transferase fusion protein. The acylation kinetic parameters of PBP 2a* for beta-lactams were determined by stopped-flow fluorometry. The acylation efficiency toward benzylpenicillin was much lower than that toward cefotaxime, a result suggesting that PBP 2a participates in resistance to cefotaxime and other beta-lactams, but not in resistance to benzylpenicillin. The TP domain was purified following limited proteolysis. PBP 2a* required detergents for solubility and interacted with lipid vesicles, while the TP domain was water soluble. We propose that PBP 2a* interacts with the cytoplasmic membrane in a region distinct from its transmembrane anchor region, which is located between Lys 78 and Ser 156 of the GT domain.  相似文献   

13.
Development of penicillin resistance in Streptococcus pneumoniae is due to successive mutations in penicillin-binding proteins (PBPs) which reduce their affinity for beta-lactam antibiotics. PBP2x is one of the high-Mr PBPs which appears to be altered both in resistant clinical isolates, and in cefotaxime-resistant laboratory mutants. In this study, we have sequenced a 2564 base-pair chromosomal fragment from the penicillin-sensitive S. pneumoniae strain R6, which contains the PBP2x gene. Within this fragment, a 2250 base-pair open reading frame was found which coded for a protein having an Mr of 82.35kD, a value which is in good agreement with the Mr of 80-85 kD measured by SDS-gel electrophoresis of the PBP2x protein itself. The N-terminal region resembled an unprocessed signal peptide and was followed by a hydrophobic sequence that may be responsible for membrane attachment of PBP2x. The corresponding nucleotide sequence of the PBP2x gene from C504, a cefotaxime-resistant laboratory mutant obtained after five selection steps, contained three nucleotide substitutions, causing three amino acid alterations within the beta-lactam binding domain of the PBP2x protein. Alterations affecting similar regions of Escherichia coli PBP3 and Neisseria gonorrhoeae PBP2 from beta-lactam-resistant strains are known. The penicillin-binding domain of PBP2x shows highest homology with these two PBPs and S. pneumoniae PBP2b. In contrast, the N-terminal extension of PBP2x has the highest homology with E. coli PBP2 and methicillin-resistant Staphylococcus aureus PBP2'. No significant homology was detected with PBP1a or PBP1b of Escherichia coli, or with the low-Mr PBPs.  相似文献   

14.
Penicillin-binding protein 2x (PBP 2x) of Streptococcus pneumoniae is one of the high-molecular-weight PBPs involved in the development of intrinsic beta-lactam resistance. Point mutations in the PBP 2x genes (pbpX) have now been characterized in five independent spontaneous laboratory mutants in order to identify protein regions which are important for interaction with beta-lactam antibiotics. All mutant genes contained two to four mutations resulting in amino acid substitutions within the penicillin-binding domain of PBP 2x, and none of the mutants carried an identical set of mutations. For one particular mutant, C606, carrying four mutations in pbpX, the mutations at positions 601 and 597 conferred first- and second-level resistance when introduced into the susceptible parent strain S. pneumoniae R6. However, the other two mutations, at amino acid positions 289 and 422, which were originally selected at the fifth and sixth isolation steps, did not contribute at all to resistance in similar experiments. This suggests that they are phenotypically expressed only in combination with mutations in other genes. Three PBP 2x regions were mutated in from two to all four mutants carrying a low-affinity PBP 2x. However, in a fifth mutant containing a PBP 2x with apparent zero affinity for beta-lactams, the three mutations in pbpX mapped at entirely different positions. This demonstrates that different mutational pathways exist for remodeling this PBP during resistance development.  相似文献   

15.
Penicillin-binding proteins (PBPs) are the main targets for beta-lactam antibiotics, such as penicillins and cephalosporins, in a wide range of bacterial species. In some Gram-positive strains, the surge of resistance to treatment with beta-lactams is primarily the result of the proliferation of mosaic PBP-encoding genes, which encode novel proteins by recombination. PBP2x is a primary resistance determinant in Streptococcus pneumoniae, and its modification is an essential step in the development of high level beta-lactam resistance. To understand such a resistance mechanism at an atomic level, we have solved the x-ray crystal structure of PBP2x from a highly penicillin-resistant clinical isolate of S. pneumoniae, Sp328, which harbors 83 mutations in the soluble region. In the proximity of the Sp328 PBP2x* active site, the Thr(338) --> Ala mutation weakens the local hydrogen bonding network, thus abrogating the stabilization of a crucial buried water molecule. In addition, the Ser(389) --> Leu and Asn(514) --> His mutations produce a destabilizing effect that generates an "open" active site. It has been suggested that peptidoglycan substrates for beta-lactam-resistant PBPs contain a large amount of abnormal, branched peptides, whereas sensitive strains tend to catalyze cross-linking of linear forms. Thus, in vivo, an "open" active site could facilitate the recognition of distinct, branched physiological substrates.  相似文献   

16.
Penicillin resistance in pneumococci is due to the appearance of high molecular-weight penicillin-binding proteins (PBPs) that have reduced affinity for the antibiotic. We have compared the PBX 2x genes (pbpX) of one penicillin-susceptible and five penicillin-resistant clinical isolates of Streptococcus pneumoniae isolated from various parts of the world. All of the resistant isolates contained a low-affinity form of PBP 2x. The 2 kb region of the two penicillin-susceptible isolates differed at only eight nucleotide sites (0.4%) and resulted in one single amino acid difference in PBP 2x. In contrast, the sequences of the PBP 2x genes from the resistant isolates differed overall from those of the susceptible isolates at between 7 and 18% of nucleotide sites and resulted in between 27 and 86 amino acid substitutions in PBP 2x. The altered PBP 2x genes consisted of regions that were similar to those of susceptible strains (less than 3% diverged), alternating with regions that were very different (18-23% diverged). The presence of highly diverged regions within the PBP 2x genes of the resistant isolates contrasts with the uniformity of the sequences of the amylomaltase genes from the same isolates, and with the uniformity of the PBP 2x genes in the two susceptible isolates. It suggests that the altered PBP 2x genes have arisen by localized interspecies recombinational events involving the PBP 2x genes of closely related streptococci, as has been suggested to occur for altered PBP 2b genes (Dowson et al., 1989b). The PBP 2x genes from the resistant isolates could transform the susceptible strain R6 to increased levels of resistance to beta-lactam antibiotics, indicating that the altered forms of PBP 2x in the resistant isolates contribute to their resistance to penicillin.  相似文献   

17.
Compared with most penicillin-susceptible isolates of Streptococcus pneumoniae, penicillin-resistant clinical isolate Hun 663 contains mosaic penicillin-binding protein (PBP) genes encoding PBPs with reduced penicillin affinities, anomalous molecular sizes, and also cell walls of unusual chemical composition. Chromosomal DNA prepared from Hun 663 was used to transform susceptible recipient cells to donor level penicillin resistance, and a resistant transformant was used next as the source of DNA in the construction of a second round of penicillin-resistant transformants. The greatly reduced penicillin affinity of the high-molecular-weight PBPs was retained in all transformants through both genetic crosses. On the other hand, PBP pattern and abnormal cell wall composition, both of which are stable, clone-specific properties of strain Hun 663, were changed: individual transformants showed a variety of new, abnormal PBP patterns. Furthermore, while the composition of cell walls resembled that of the DNA donor in the first-round transformants, it became virtually identical to that of susceptible pneumococci in the second-round transformants. The findings indicate that genetic elements encoding the low affinity of PBPs and the penicillin resistance of the bacteria are separable from determinants that are responsible for the abnormal cell wall composition that often accompanies penicillin resistance in clinical strains of pneumococci.  相似文献   

18.
In Streptococcus pneumoniae, alterations in penicillin-binding protein 2b (PBP 2b) that reduce the affinity for penicillin binding are observed during development of beta-lactam resistance. The development of resistance was now studied in three independently obtained piperacillin-resistant laboratory mutants isolated after several selection steps on increasing concentrations of the antibiotic. The mutants differed from the clinical isolates in major aspects: first-level resistance could not be correlated with alterations in the known PBP genes, and the first PBP altered was PBP 2b. The point mutations occurring in the PBP 2b genes were characterized. Each mutant contained one single point mutation in the PBP 2b gene. In one mutant, this resulted in a mutation of Gly-617 to Ala within one of the homology boxes common to all PBPs, and in the other two cases, the same Gly-to-Asp substitution at the end of the penicillin-binding domain had occurred. The sites affected were homologous to those determined previously in the S. pneumoniae PBP 2x of mutants resistant to cefotaxime, indicating that, in both PBPs, similar sites are important for interaction with the respective beta-lactams.  相似文献   

19.
Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide. The existence of approximately 90 antigenically distinct capsular serotypes has greatly complicated the development of an effective pneumococcal vaccine. Virulence-associated proteins common and conserved among all capsular types now represent the best strategy to combat pneumococcal infections. PiuA and PiaA are the lipoprotein components of two pneumococcal iron ABC transporters and are required for full virulence in mouse models of infection. Here we describe a study of the distribution and genetic diversity of PiuA and PiaA within typical and atypical S. pneumoniae, Streptococcus oralis, and Streptococcus mitis strains. The genes encoding both PiuA and PiaA were present in all typical pneumococci tested, (covering 20 and 27 serotypes, respectively). The piuA gene was highly conserved within the typical pneumococci (0.3% nucleotide divergence), but was also present in "atypical" pneumococci and the closely related species S. mitis and S. oralis, showing up to 10.4% nucleotide divergence and 7.5% amino acid divergence from the typical pneumococcal alleles. Conversely, the piaA gene was found to be specific to typical pneumococci, 100% conserved, and absent from the oral streptococci, including isolates of S. mitis known to possess pneumolysin and autolysin. These are desirable qualities for a vaccine candidate and as a diagnostic tool for S. pneumoniae.  相似文献   

20.
One group of penicillin target enzymes, the class A high-molecular-weight penicillin-binding proteins (PBPs), are bimodular enzymes. In addition to a central penicillin-binding-transpeptidase domain, they contain an N-terminal putative glycosyltransferase domain. Mutations in the genes for each of the three Streptococcus pneumoniae class A PBPs, PBP1a, PBP1b, and PBP2a, were isolated by insertion duplication mutagenesis within the glycosyltransferase domain, documenting that their function is not essential for cellular growth in the laboratory. PBP1b PBP2a and PBP1a PBP1b double mutants could also be isolated, and both showed defects in positioning of the septum. Attempts to obtain a PBP2a PBP1a double mutant failed. All mutants with a disrupted pbp2a gene showed higher sensitivity to moenomycin, an antibiotic known to inhibit PBP-associated glycosyltransferase activity, indicating that PBP2a is the primary target for glycosyltransferase inhibitors in S. pneumoniae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号