首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Penicillin resistance in pneumococci is due to the appearance of high molecular-weight penicillin-binding proteins (PBPs) that have reduced affinity for the antibiotic. We have compared the PBX 2x genes (pbpX) of one penicillin-susceptible and five penicillin-resistant clinical isolates of Streptococcus pneumoniae isolated from various parts of the world. All of the resistant isolates contained a low-affinity form of PBP 2x. The 2 kb region of the two penicillin-susceptible isolates differed at only eight nucleotide sites (0.4%) and resulted in one single amino acid difference in PBP 2x. In contrast, the sequences of the PBP 2x genes from the resistant isolates differed overall from those of the susceptible isolates at between 7 and 18% of nucleotide sites and resulted in between 27 and 86 amino acid substitutions in PBP 2x. The altered PBP 2x genes consisted of regions that were similar to those of susceptible strains (less than 3% diverged), alternating with regions that were very different (18-23% diverged). The presence of highly diverged regions within the PBP 2x genes of the resistant isolates contrasts with the uniformity of the sequences of the amylomaltase genes from the same isolates, and with the uniformity of the PBP 2x genes in the two susceptible isolates. It suggests that the altered PBP 2x genes have arisen by localized interspecies recombinational events involving the PBP 2x genes of closely related streptococci, as has been suggested to occur for altered PBP 2b genes (Dowson et al., 1989b). The PBP 2x genes from the resistant isolates could transform the susceptible strain R6 to increased levels of resistance to beta-lactam antibiotics, indicating that the altered forms of PBP 2x in the resistant isolates contribute to their resistance to penicillin.  相似文献   

2.
In Streptococcus pneumoniae, alterations in penicillin-binding protein 2b (PBP 2b) that reduce the affinity for penicillin binding are observed during development of beta-lactam resistance. The development of resistance was now studied in three independently obtained piperacillin-resistant laboratory mutants isolated after several selection steps on increasing concentrations of the antibiotic. The mutants differed from the clinical isolates in major aspects: first-level resistance could not be correlated with alterations in the known PBP genes, and the first PBP altered was PBP 2b. The point mutations occurring in the PBP 2b genes were characterized. Each mutant contained one single point mutation in the PBP 2b gene. In one mutant, this resulted in a mutation of Gly-617 to Ala within one of the homology boxes common to all PBPs, and in the other two cases, the same Gly-to-Asp substitution at the end of the penicillin-binding domain had occurred. The sites affected were homologous to those determined previously in the S. pneumoniae PBP 2x of mutants resistant to cefotaxime, indicating that, in both PBPs, similar sites are important for interaction with the respective beta-lactams.  相似文献   

3.
Development of penicillin resistance in Streptococcus pneumoniae is due to successive mutations in penicillin-binding proteins (PBPs) which reduce their affinity for beta-lactam antibiotics. PBP2x is one of the high-Mr PBPs which appears to be altered both in resistant clinical isolates, and in cefotaxime-resistant laboratory mutants. In this study, we have sequenced a 2564 base-pair chromosomal fragment from the penicillin-sensitive S. pneumoniae strain R6, which contains the PBP2x gene. Within this fragment, a 2250 base-pair open reading frame was found which coded for a protein having an Mr of 82.35kD, a value which is in good agreement with the Mr of 80-85 kD measured by SDS-gel electrophoresis of the PBP2x protein itself. The N-terminal region resembled an unprocessed signal peptide and was followed by a hydrophobic sequence that may be responsible for membrane attachment of PBP2x. The corresponding nucleotide sequence of the PBP2x gene from C504, a cefotaxime-resistant laboratory mutant obtained after five selection steps, contained three nucleotide substitutions, causing three amino acid alterations within the beta-lactam binding domain of the PBP2x protein. Alterations affecting similar regions of Escherichia coli PBP3 and Neisseria gonorrhoeae PBP2 from beta-lactam-resistant strains are known. The penicillin-binding domain of PBP2x shows highest homology with these two PBPs and S. pneumoniae PBP2b. In contrast, the N-terminal extension of PBP2x has the highest homology with E. coli PBP2 and methicillin-resistant Staphylococcus aureus PBP2'. No significant homology was detected with PBP1a or PBP1b of Escherichia coli, or with the low-Mr PBPs.  相似文献   

4.
PBP2x is a primary determinant of beta-lactams resistance in Streptococcus pneumoniae. Altered PBP2x with multiple mutations have a reduced "affinity" for the antibiotics. An important polymorphism is found in PBP2x sequences from clinical resistant strains. To understand the mechanism of resistance, it is necessary to identify and characterize the relevant substitutions. Many similar PBP2x sequences from resistant isolates have the previously studied T338A mutation, adjacent to the active site Ser337. We report here the structural and functional analysis of the M339F substitution that is found in a subset of these sequences, originating from highly resistant strains. The M339F mutation causes a 4-10-fold reduction of the reaction rate with beta-lactams, depending on the molecular context. In addition, release of the inactivated antibiotic from the active site is up to 3-fold faster as a result from the M339F mutation. These effects measured in vitro are correlated with the level of beta-lactam resistance in vivo conferred by several PBP2x variants. Thus, a single amino acid difference between similar PBP2x from clinical isolates can strongly modulate the degree of beta-lactam resistance. The crystal structure of the double mutant T338A/M339F solved to a resolution of 2.4 A shows a distortion of the active site and a reorientation of the hydroxyl group of the active site Ser337, which can explain the kinetic effects of the mutations.  相似文献   

5.
The two-component signal-transducing system CiaRH of Streptococcus pneumoniae plays an important role during the development of beta-lactam resistance in laboratory mutants. We show here that a functional CiaRH system is required for survival under many different lysis-inducing conditions. Mutants with an activated CiaRH system were highly resistant to lysis induced by a wide variety of early and late cell wall inhibitors, such as cycloserine, bacitracin, and vancomycin, and were also less susceptible to these drugs. In contrast, loss-of-function CiaRH mutants were hypersusceptible to these drugs and were apparently unable to maintain a stationary growth phase in normal growth medium and under choline deprivation as well. Moreover, disruption of CiaR in penicillin-resistant mutants with an altered pbp2x gene encoding low-affinity PBP2x resulted in severe growth defects and rapid lysis. This phenotype was observed with pbp2x genes containing point mutations selected in the laboratory and with highly altered mosaic pbp2x genes from penicillin-resistant clinical isolates as well. This documents for the first time that PBP2x mutations required for development of beta-lactam resistance are functionally not neutral and are tolerated only in the presence of the CiaRH system. This might explain why cia mutations have not been observed in penicillin-resistant clinical isolates. The results document that the CiaRH system is required for maintenance of the stationary growth phase and for prevention of autolysis triggered under many different conditions, suggesting a major role for this system in ensuring cell wall integrity.  相似文献   

6.
A 2.5-kb DNA fragment including the structural gene coding for the penicillin-binding protein 2x (PBP 2x) of Streptococcus pneumoniae has been cloned into the vector pJDC9 and expressed in Escherichia coli. Mapping of RNA polymerase binding sites by electron microscopy indicated that the pbpX promoter is well recognized by the E. coli enzyme. However, high-level expression occurred mainly under the control of the lac promoter upstream of the pJDC9 multiple cloning site. After induction with isopropyl beta-d-thiogalactopyranoside, PBP 2x was expressed as one of the major cellular proteins. PBP 2x produced in E. coli corresponded to the pneumococcal PBP 2x in terms of electrophoretic mobility, fractionation with the cytoplasmic membrane, and penicillin-binding capacity. Deletion of 30 hydrophobic N-terminal amino acid residues at positions 19-48 resulted in high-level expression of a cytoplasmic, soluble PBP 2x derivative (PBP 2x*) which still retained full beta-lactam-binding activity. A two-step procedure involving dye affinity chromatography was established for obtaining large amounts of highly purified enzymatically active PBP 2x*.  相似文献   

7.
The aim of this study was to investigate the nature of the amino acid motifs found in penicillin-binding proteins (PBP) 2b, 2x, and 1a of penicillin-nonsusceptible Streptococcus pneumoniae isolates from Shenyang, China, and to obtain information regarding the prevalence of alterations within the motifs or in positions flanking the motifs. For 18 clinical isolates comprising 4 penicillin-susceptible S. pneumoniae, 5 penicillin-intermediate S. pneumoniae, and 9 penicillin-resistant S. pneumoniae. the DNA sequences of PBP2b, PBP2x, and PBP1a transpeptidase domains were determined and then genotyped by multilocus sequence typing. Sequence analysis revealed that most penicillin-nonsusceptible S. pneumoniae isolates (penicillin MIC > or = 1.5 microg/mL and cefotaxime MIC > or = 2 microg/mL) shared identical PBP2b, PBP2x, and PBP1a amino acid profiles. Most penicillin-resistant S. pneumoniae isolates were ST320 (4-16-19-15-6-20-1), the double-locus variant of the Taiwan19F-14 clone. This study will serve as a basis for future monitoring of genetic changes associated with the emergence and spread of beta-lactam resistance in Shenyang, China.  相似文献   

8.
Penicillin-binding proteins (PBPs) are the main targets for beta-lactam antibiotics, such as penicillins and cephalosporins, in a wide range of bacterial species. In some Gram-positive strains, the surge of resistance to treatment with beta-lactams is primarily the result of the proliferation of mosaic PBP-encoding genes, which encode novel proteins by recombination. PBP2x is a primary resistance determinant in Streptococcus pneumoniae, and its modification is an essential step in the development of high level beta-lactam resistance. To understand such a resistance mechanism at an atomic level, we have solved the x-ray crystal structure of PBP2x from a highly penicillin-resistant clinical isolate of S. pneumoniae, Sp328, which harbors 83 mutations in the soluble region. In the proximity of the Sp328 PBP2x* active site, the Thr(338) --> Ala mutation weakens the local hydrogen bonding network, thus abrogating the stabilization of a crucial buried water molecule. In addition, the Ser(389) --> Leu and Asn(514) --> His mutations produce a destabilizing effect that generates an "open" active site. It has been suggested that peptidoglycan substrates for beta-lactam-resistant PBPs contain a large amount of abnormal, branched peptides, whereas sensitive strains tend to catalyze cross-linking of linear forms. Thus, in vivo, an "open" active site could facilitate the recognition of distinct, branched physiological substrates.  相似文献   

9.
The prevalence of antibiotic resistance genes in pathogenic bacteria is a major challenge to treating many infectious diseases. The spread of these genes is driven by the strong selection imposed by the use of antibacterial drugs. However, in the absence of drug selection, antibiotic resistance genes impose a fitness cost, which can be ameliorated by compensatory mutations. In Streptococcus pneumoniae, β-lactam resistance is caused by mutations in three penicillin-binding proteins, PBP1a, PBP2x, and PBP2b, all of which are implicated in cell wall synthesis and the cell division cycle. We found that the fitness cost and cell division defects conferred by pbp2b mutations (as determined by fitness competitive assays in vitro and in vivo and fluorescence microscopy) were fully compensated by the acquisition of pbp2x and pbp1a mutations, apparently by means of an increased stability and a consequent mislocalization of these protein mutants. Thus, these compensatory combinations of pbp mutant alleles resulted in an increase in the level and spectrum of β-lactam resistance. This report describes a direct correlation between antibiotic resistance increase and fitness cost compensation, both caused by the same gene mutations acquired by horizontal transfer. The clinical origin of the pbp mutations suggests that this intergenic compensatory process is involved in the persistence of β-lactam resistance among circulating strains. We propose that this compensatory mechanism is relevant for β-lactam resistance evolution in Streptococcus pneumoniae.  相似文献   

10.
Penicillin-binding proteins (PBPs), the primary targets for beta-lactam antibiotics, are periplasmic membrane-attached proteins responsible for the construction and maintenance of the bacterial cell wall. Bacteria have developed several mechanisms of resistance, one of which is the mutation of the target enzymes to reduce their affinity for beta-lactam antibiotics. Here, we describe the structure of PBP2x from Streptococcus pneumoniae determined to 2.4 A. In addition, we also describe the PBP2x structure in complex with cefuroxime, a therapeutically relevant antibiotic, at 2.8 A. Surprisingly, two antibiotic molecules are observed: one as a covalent complex with the active-site serine residue, and a second one between the C-terminal and the transpeptidase domains. The structure of PBP2x reveals an active site similar to those of the class A beta-lactamases, albeit with an absence of unambiguous deacylation machinery. The structure highlights a few amino acid residues, namely Thr338, Thr550 and Gln552, which are directly related to the resistance phenomenon.  相似文献   

11.
Our laboratory previously constructed mutants of Mycobacterium tuberculosis and Mycobacterium smegmatis with deletions in the genes for their major beta-lactamases, BlaC and BlaS, respectively, and showed that the mutants have increased susceptibilities to most beta-lactam antibiotics, particularly the penicillins. However, there is still a basal level of resistance in the mutants to certain penicillins, and the susceptibilities of the mutants to some cephalosporin-based beta-lactams are essentially the same as those of the wild types. We hypothesized that characterizing additional mutants (derived from beta-lactamase deletion mutants) that are hypersusceptible to beta-lactam antibiotics might reveal novel genes involved with other mechanisms of beta-lactam resistance, peptidoglycan assembly, and cell envelope physiology. We report here the isolation and characterization of nine beta-lactam antibiotic-hypersusceptible transposon mutants, two of which have insertions in genes known to be involved with peptidoglycan biosynthesis (ponA2 and dapB); the other seven mutants have insertions which affect novel genes. These genes can be classified into three groups: those involved with peptidoglycan biosynthesis, cell division, and other cell envelope processes. Two of the peptidoglycan-biosynthetic genes (ponA2 and pbpX) may encode beta-lactam antibiotic-resistant enzymes proposed to be involved with the synthesis of the unusual diaminopimelyl linkages within the mycobacterial peptidoglycan.  相似文献   

12.
New mechanisms for beta-lactam resistance independent on the target penicillin-binding proteins were detected in beta-lactam-resistant laboratory mutants of Streptococcus pneumoniae. The link between mutations in the histidine protein kinase CiaH and phenotypic expression of cefotaxime resistance suggests that the cell is able to monitor the integrity of the cell wall and in emergency cases such as during the action of beta-lactams can counteract such danger. At least one ciaH mutation Thr230 > Pro is likely to affect its phosphatase activity resulting in elevated phosphorylation of CiaR, the cognate response regulator, but other CiaH-independent signaling pathways may also result in CiaR phosphorylation. Mutants in CiaH, either alone or in combination with a mutated penicillin-binding protein 2x(PBP2x) fail to develop genetic competence. In all cases complementation of this phenotype was observed upon addition of the competence inducing pheromone peptide CSP, the processed product of the comC gene. This indicates that the cia system is part of a regulatory network that includes another two component system comDE. The DNA binding property of CiaR and ComE were exploited to isolate specifically interacting DNA fragments as a first step to identify genes targeted by individual response regulators.  相似文献   

13.
Penicillin-binding protein 2x (PBP2x) isolated from clinical beta-lactam-resistant strains of Streptococcus pneumoniae (R-PBP2x) have a reduced affinity for beta-lactam antibiotics. Their transpeptidase domain carries numerous substitutions compared with homologous sequences from beta-lactam-sensitive streptococci (S-PBP2x). Comparison of R-PBP2x sequences suggested that the mutation Gln552 --> Glu is important for resistance development. Mutants selected in the laboratory with cephalosporins frequently contain a mutation Thr550 --> Ala. The high resolution structure of a complex between S-PBP2x* and cefuroxime revealed that Gln552 and Thr550, which belong to strand beta3, are in direct contact with the cephalosporin. We have studied the effect of alterations at positions 552 and 550 in soluble S-PBP2x (S-PBP2x*) expressed in Escherichia coli. Mutation Q552E lowered the acylation efficiency for both penicillin G and cefotaxime when compared with S-PBP2x*. We propose that the introduction of a negative charge in strand beta3 conflicts with the negative charge of the beta-lactam. Mutation T550A lowered the acylation efficiency of the protein for cefotaxime but not for penicillin G. The in vitro data presented here are in agreement with the distinct resistance profiles mediated by these mutations in vivo and underline their role as powerful resistance determinants.  相似文献   

14.
The increasing number of penicillin-resistant clinical strains of Streptococcus pneumoniae has raised questions about the mechanism involved. We have isolated a large number of independent, spontaneous laboratory mutants with increasing resistance against either piperacillin or cefotaxime. Both classes of mutants showed a different pathway of penicillin-binding protein (PBP) alterations, and within each group of mutants the individual PBPs appeared to have changed at different resistance levels and in different sequences. The mutations led to decreased beta-lactam affinity and possibly to a reduction in the amount of protein present in the cell, but differences in apparent molecular weight, like those reported in low- and high-level resistant pathogenic strains, were not found. Some mutants showed a high degree of cross-resistance to a variety of penicillins and cephalosporins independently of the acquired PBP alterations, indicating that different genotypes can be responsible for the same phenotypic expression of resistance.  相似文献   

15.
Mutations in the transpeptidase domain of penicillin-binding protein 2x (PBP2x) of Streptococcus pneumoniae that reduce the affinity to beta-lactams are important determinants of resistance to these antibiotics. We have now analyzed in vitro and in vivo properties of PBP2x variants from cefotaxime-resistant laboratory mutants and a clinical isolate. The patterns of two to four resistance-specific mutations present in each of the proteins, all of which are placed between 6.6 and 24 Å around the active site, fall into three categories according to their positions in the three-dimensional structure. The first PBP2x group is characterized by mutations at the end of helix α11 and carries the well-known T550A change and/or one mutation on the surface of the penicillin-binding domain in close contact with the C-terminal domain. All group I proteins display very low acylation efficiencies, ≤ 1700 M− 1 s− 1, for cefotaxime. The second class represented by PBP2x of the mutant C505 shows acylation efficiencies below 100 M− 1 s− 1 for both cefotaxime and benzylpenicillin and contains the mutation L403F at a critical site close to the active serine. PBP2x of the clinical isolate 669 reveals a third mutational pathway where at least the two mutations Q552E and S389L are important for resistance, and acylation efficiency is reduced for both beta-lactams to around 10,000 M− 1 s− 1. In each group, at least one mutation is located in close vicinity to the active site and mediates a resistance phenotype in vivo alone, whereas other mutations might exhibit secondary effects only in context with other alterations.  相似文献   

16.
Penicillin-binding protein 2 (PBP2) from N. gonorrhoeae is the major molecular target for beta-lactam antibiotics used to treat gonococcal infections. PBP2 from penicillin-resistant strains of N. gonorrhoeae harbors an aspartate insertion after position 345 (Asp-345a) and 4-8 additional mutations, but how these alter the architecture of the protein is unknown. We have determined the crystal structure of PBP2 derived from the penicillin-susceptible strain FA19, which shows that the likely effect of Asp-345a is to alter a hydrogen-bonding network involving Asp-346 and the SXN triad at the active site. We have also solved the crystal structure of PBP2 derived from the penicillin-resistant strain FA6140 that contains four mutations near the C terminus of the protein. Although these mutations lower the second order rate of acylation for penicillin by 5-fold relative to wild type, comparison of the two structures shows only minor structural differences, with the positions of the conserved residues in the active site essentially the same in both. Kinetic analyses indicate that two mutations, P551S and F504L, are mainly responsible for the decrease in acylation rate. Melting curves show that the four mutations lower the thermal stability of the enzyme. Overall, these data suggest that the molecular mechanism underlying antibiotic resistance contributed by the four mutations is subtle and involves a small but measurable disordering of residues in the active site region that either restricts the binding of antibiotic or impedes conformational changes that are required for acylation by beta-lactam antibiotics.  相似文献   

17.
Streptococcus pneumoniae is a life-threatening human pathogen that is increasingly resistant to a wide array of drugs. Resistance to beta-lactams, the most widely used antibiotics, is correlated with tens of amino acid substitutions in their targets; that is, the penicillin-binding proteins (PBPs), resulting from multiple events of recombination. To discriminate relevant substitutions from those that are incidental to the recombination process, we report the exhaustive characterization of all the mutations in the transpeptidase domain of PBP2x from the highly resistant strain 5204. A semi-automated method combining biochemical and microbiological approaches singled out 6 mutations of 41 (15%) that are essential for high level resistance. The hitherto uncharacterized I371T, R384G, M400T, and N605T together with the previously studied T338M and M339F account for nearly all the loss of affinity of PBP2x for beta-lactams. Most interestingly, I371T and R384G cause the conformational change of a loop that borders the entrance of the active site cavity, hampering antibiotic binding. For the first time all the mutations of a PBP relevant to beta-lactam resistance have been identified, providing new mechanistic insights. Most notable is the relationship between the decreased susceptibility to beta-lactams and the dynamic behavior of a loop.  相似文献   

18.
Penicillin resistance in Streptococcus pneumoniae has been attributed so far to the production of penicillin-binding protein (PBP) variants with decreased affinities for β-lactam antibiotics. Cefotaxime-resistant laboratory mutants, selected after several steps on increasing concentrations of this β-lactam, become deficient in transformation as well. A DNA fragment conferring both cefotaxime resistance and transformation deficiency was isolated and cloned from the mutant C306. The cefotaxime resistance associated with this resistance determinant was not accompanied with apparent changes in PBP properties, and it mapped on the chromosome distinct from the known resistance determinants, genes encoding PBP2x, PBP1a or PBP2b. Determination of a 2265 bp DNA sequence of the resistance determinant revealed two open reading frames, claR and claH, whose deduced amino acid sequence identified the corresponding proteins as the response regulator and histidine kinase receptor, respectively (members of the two families of bacterial signal-transducing proteins). Two hydrophobic peptide regions divided the histidine kinase ClaH into two putative domains: an N-terminal extracelluiar sensor part, and an intracelluiar C-terminal domain with the conserved His-226 residue, the presumed phosphorylation site. The single point mutations responsible for cefotaxime-resistance and transformation deficiency of C306 and of another two independently isolated cefotaxime-resistant mutants were each located in the C-terminal half of ClaH. A small extracellular protein, the competence factor, is required for induction of competence. Neither C306 nor the transformants obtained with the mutated claH gene produced competence factor, and exogenous competence factor could not complement the transformation deficiency, indicating that the signal-transducing system cia is involved in early steps of competence regulation.  相似文献   

19.
To understand the biochemical basis of resistance of bacteria to beta-lactam antibiotics, we purified a penicillin-resistant penicillin-binding protein 2x (R-PBP2x) and a penicillin-sensitive PBP2x (S-PBP2x) enzyme of Streptococcus pneumoniae and characterized their transpeptidase activities, using a thioester analog of stem peptides as a substrate. A comparison of the k(cat)/Km values for the two purified enzymes (3,400 M(-1) s(-1) for S-PBP2x and 11.2 M(-1) s(-1) for R-PBP2x) suggests that they are significantly different kinetically. Implications of this finding are discussed. We also found that the two purified enzymes did not possess a detectable level of beta-lactam hydrolytic activity. Finally, we show that the expression levels of both PBP2x enzymes were similar during different growth phases.  相似文献   

20.
The effects of inactivation of the genes encoding penicillin-binding protein 1a (PBP1a), PBP1b, and PBP2a in Streptococcus pneumoniae were examined. Insertional mutants did not exhibit detectable changes in growth rate or morphology, although a pbp1a pbp1b double-disruption mutant grew more slowly than its parent did. Attempts to generate a pbp1a pbp2a double-disruption mutant failed. The pbp2a mutants, but not the other mutants, were more sensitive to moenomycin, a transglycosylase inhibitor. These observations suggest that individually the pbp1a, pbp1b, and pbp2a genes are dispensable but that either pbp1a or pbp2a is required for growth in vitro. These results also suggest that PBP2a is a functional transglycosylase in S. pneumoniae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号