首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Potential importance of the subsoil for the P and Mg nutrition of wheat   总被引:2,自引:0,他引:2  
A method is described which allowed the quantification of the potential uptake of P and Mg from the subsoil (>30cm) by spring wheat. Wheat was grown on an artificial topsoil (sand with no plant available P or Mg) which was superimposed on loess subsoils in N. Germany. The supply of P and Mg in the topsoil was varied by application of different quantities of P and Mg fertilizer. Uptake of P and Mg from the subsoil was calculated as the difference between total plant uptake (determined by plant analysis) and the quantities of P and Mg removed from the topsoil (determined by soil analysis). P uptake from the subsoil increased from 37% to 85% of total P uptake, with decreasing P supply in the topsoil. Calculations of potential supply by diffusion showed that, with a CAL-extractable P2O5 content in the subsoil of 9 mg 100g-1, supply from the subsoil was only possible if the influence of root hairs was considered. The method also showed that the total demand for Mg by spring wheat could be satisfield from the supply of Mg from the subsoil of typical loess soils. Mg uptake from the subsoil decreased to 33% of total uptake with increasing Mg supply in the topsoil.  相似文献   

2.
Mineral sands mining involves stripping topsoil to access heavy-mineral bearing deposits, which are then rehabilitated to their original state, commonly pasture in south-west Western Australia. Organic amendments such as biosolids (digested sewage sludge) can contribute organic carbon to the rehabilitating system and improve soil chemical fertility and physical conditions. Use of biosolids also introduces the risk of contamination of the soil-plant system with heavy metals, but may be a useful source of trace elements to plants if the concentrations of these elements are low in unamended soil. We expected that biosolids amendment of areas mined for mineral sands would result in increased concentrations of metals in soils and plants, and that metal uptake would be decreased by adding stockpiled topsoil or by liming. A glasshouse experiment growing a mixed annual ryegrass (Lolium rigidum)-subterranean clover (Trifolium subterraneum) sward was conducted using two soil materials (residue sand/clay and conserved topsoil) from a mineral sands mine amended with different rates of biosolids (0, 10, 20, 50 dry t/ha), and including a liming treatment (2 t/ha). Total concentrations of metals (As, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil increased with increasing rate of biosolids application. Metal uptake was generally lower where topsoil was present and was decreased by liming. With increasing biosolids application, plant metal concentrations increased for Cd, Ni and Zn but decreased or were erratic for other elements. In clover, biosolids application removed the Zn deficiency observed where biosolids were not applied. Plant uptake of all elements increased with increasing biosolids application, suggesting dilution by increased plant biomass was responsible for erratic metal concentration results. Despite the observed increases in uptake of metals by plants, metal concentrations in both species were low and below food standard thresholds. It is unlikely that a single application of biosolids in this system posed a threat from heavy metal contamination of soils or plants, and was beneficial in terms of Zn nutrition of T. subterraneum.  相似文献   

3.
Summary A greenhouse experiment was conducted in order to evaluate the chemical activity and the uptake by Italian ryegrass (Lolium perenne cv. S24) of Zn, Cu, Cd and Ni added to a sandy and a heavy clay soil in two different forms: as inorganic salts and sludge-borne.The chemical activity of heavy metals as evaluated with different extractants was higher for the inorganic salt treatment and for the sandy soil, indicating that the chemical form of the metal and soil characteristics largely affect their extractability.The different chemical activity was also reflected in plant uptake. For all metals the degree of plant accumulation decreased in the following order: sandy soil-salt sandy soil-sludge> clay soil-salt>clay soil-sludge.These findings indicate that caution must be used when using results of inorganic salt treatments and different soil types to evaluate plant uptake of heavy metals from sludge amended soils.  相似文献   

4.
Crop uptake of heavy metals from polluted river clay soils is shown to be reduced by covering the polluted soil with a layer of unpolluted clay soil. Plant experiments have been performed to determine the thickness of such a layer required either to comply with permissible levels for metal concentrations in foods and feeds, or to exclude any effect on plant metal levels. The experiments included cover layers up to 0.7 m and 1.6 m, respectively. Crops grown included cereals, potatoes, sugar beet, maize and various vegetables. Protection of all food crops tested against exceeding permissible levels for cadmium requires a clean topsoil of over 1.6 m; for individual crops ranging from zero (no cover layer required) for red cabbage, leek, onion, potato) to 1.2 m–1.6 m for celery tuber and leaf. Results for feed crops were variable: required topsoil depths for maize range from 0.25–1.2 m, and for wheat straw from 0.55 to 1.6 m. No-effect depths calculated for Cd, Cu and Zn demonstrate that inmany experiments the effect of the polluted soil may be observed at all topsoil depths tested. Heavy-metal concentrations in the soil profile, measured after completion of the experiments, showed no significant migration of metals from the polluted soil into the cover soil.  相似文献   

5.
Deep ploughing increases agricultural soil organic matter stocks   总被引:4,自引:0,他引:4       下载免费PDF全文
Subsoils play an important role within the global C cycle, since they have high soil organic carbon (SOC) storage capacity due to generally low SOC concentrations. However, measures for enhancing SOC storage commonly focus on topsoils. This study assessed the long‐term storage and stability of SOC in topsoils buried in arable subsoils by deep ploughing, a globally applied method for breaking up hard pans and improving soil structure to optimize crop growing conditions. One effect of deep ploughing is translocation of SOC formed near the surface into the subsoil, with concomitant mixing of SOC‐poor subsoil material into the ‘new’ topsoil. Deep‐ploughed croplands represent unique long‐term in situ incubations of SOC‐rich material in subsoils. In this study, we sampled five loamy and five sandy soils that were ploughed to 55–90 cm depth 35–50 years ago. Adjacent, similarly managed but conventionally ploughed subplots were sampled as reference. The deep‐ploughed soils contained on average 42 ± 13% more SOC than the reference subplots. On average, 45 years after deep ploughing, the ‘new’ topsoil still contained 15% less SOC than the reference topsoil, indicating long‐term SOC accumulation potential in the topsoil. In vitro incubation experiments on the buried sandy soils revealed 63 ± 6% lower potential SOC mineralisation rates and also 67 ± 2% lower SOC mineralisation per unit SOC in the buried topsoils than in the reference topsoils. Wider C/N ratio in the buried sandy topsoils than in the reference topsoils indicates that deep ploughing preserved SOC. The SOC mineralisation per unit SOC in the buried loamy topsoils was not significantly different from that in the reference topsoils. However, 56 ± 4% of the initial SOC was preserved in the buried topsoils. It can be concluded that deep ploughing contributes to SOC sequestration by enlarging the storage space for SOC‐rich material.  相似文献   

6.
Subsoil constraints to root growth exacerbate frequent water and nutrient limitations to crop yields in Mediterranean-type environments. Amelioration of subsoil constraints can relieve these limitations by opening root-access to subsoil water and nutrients. However, decisions in subsoil amelioration are hampered by seasonally variable yield responses in these environments. We used the APSIM model to analyse the impact of subsoil constraints on yield and yield variability. The simulated yield data were used to calculate the financial benefits of subsoil amelioration across several scenarios. There was a strong yield-dependence on accessible soil water governed by root depth. Root depth development was limited to a minimum of either the effect of subsoil constraints or the weather-dependent depth of the soil wetting front. Insufficient rainfall in dry years or in a drier region often resulted in shallow soil wetting fronts and correspondingly shallow roots even in the absence of subsoil compaction. In these situations, there is little response to subsoil amelioration. Positive yield responses and positive financial returns to subsoil amelioration are therefore greater in good rainfall years and are more likely in a wetter region. A yield response to amelioration is also greater in coarser textured sand than finer textured sandy loam in an average rainfall season because the same amount of rainfall results in a deeper wetting front in sand than in sandy loam. Hence, roots in a sand are required to grow deeper compared to a sandy loam to access the same amount of water and therefore benefited more from subsoil amelioration in an average rainfall year. In wet years, sands leach more nitrate than sandy loam, which decreases yields and the response to subsoil amelioration in sands is more than in the sandy loam. Environmental threats occur along with yield loss when roots cannot access subsoil water. These include increased nitrate leaching and deep drainage due to unused water remaining in the soil profile. By allowing roots to access deep soil water, ameliorating subsoil is expected to yield financial gains in average to good rainfall seasons and decrease the environmental risk of drainage and leaching loss. The financial gains are expected to offset potential financial losses in dry and dry finish seasons especially in coarser textured soils and wetter environment. Responsible Editor: Jan Vos.  相似文献   

7.
Water extraction from subsoil in upland rice (Oryza sativa L.) was examined as related to topsoil desiccation and subsoil compaction. The water extraction was observed by measurements of heavy water concentrations in transpiring plants. The plants were grown in pots that were filled with sandy soil and vertically compartmented into two columns. Heavy water was applied to the subsoil. Plants exposed to mild topsoil desiccation (–120 kPa in water potential) eventually increased water extraction from the subsoil and maintained photosynthetic rate and stomatal conductance at the wet condition level. The rates of the plants subjected to severely droughted topsoil (–190 kPa) were significantly lowered due to less water uptake from the subsoil. Subsoil compaction at bulk densities of 1.45 and 1.50 Mg m–3 inhibited increase of root length densities. Limited water extraction from the subsoil was insufficient to maintain plant productivity under drought conditions. Daily water uptake per unit of root length in the lower tube did not apparently increase even if water demand on the unit root length increased. When water to topsoil was completely withheld, water extraction from the subsoil gradually increased as the topsoil dried out. Plants that were watered and rewatered took up very little water from the subsoil. The extraction from the subsoil occurred only when water potential of the topsoil was below about –190 kPa.  相似文献   

8.
Summary The influence of heavy metal additions on availability and uptake of cadmium, lead, zinc, copper, manganese and iron by oat was studied. The experiments were carried out as pot experiments using sandy loam, sandy soil and organic soil. Selective extractants were used to remove metals held in different soil fractions.Lead and copper were preferently bound by organics and oxides, zinc by oxides and inorganics, and cadmium by inorganics and organics.Addition of cadmium to the soils resulted in higher cadmium concentrations in all plant parts but lower concentrations of lead, zinc, copper, manganese and iron, and the accumulation indexes of these metals were also lower when cadmium was added to the soil.Addition of cadmium plus lead, zinc and copper resulted in higher cadmium concentrations in leaves and straw of plants grown in sandy loam and sandy soil, but lower concentrations when plants were grown in organic soil as compared with the results when cadmium was added separately. The transfer of cadmium, lead, zinc and copper from soil to plant was greatest from sandy soil, and zinc and cadmium were more mobile in the plant than were lead and copper.Cadmium concentrations in leaves correlated significantly with CaCl2 and CH3COOH extractions in sandy loam and sandy soil and with CH3COOH extractions in organic soil.Generally, the total metal uptake was lowest from organic soil.  相似文献   

9.
The study presents the levels and enrichment factors of heavy metals in soils of southern Nigeria that have received significant impact of crude oil spillage. The results revealed that the concentrations of heavy metals in the examined soils fitted into levels found in agricultural soils except for cadmium. Heavily impacted sites showed elevated levels of heavy metals compared to less impacted sites and background levels. The mean enrichment factors for Cd, Cu, Cr, Pb, Mn, Ni, and Zn were 37.3, 2.8, 14.4, 14.0, 0.77, 5.4, and 1.27 for topsoil and 37.5, 1.30, 7.81, 1.59, 4.12, and 1.28 for subsoil, respectively. This clearly indicates that there is gradual build-up of heavy metals in these soils as a result of the oil spillage and related anthropogenic activities in this area.  相似文献   

10.
Historical emissions of old nonferrous factories lead to large geographical areas of metals-contaminated sites. At least 50 sites in Europe are contaminated with metals like Zn, Cd, Cu, and Pb. Several methods, based on granular differentiation, were developed to reduce the metals content. However, the obtained cleaned soil is just sand. Methods based on chemical leaching or extraction or on electrochemistry do release a soil without any salts and with an increased bioavailability of the remaining metals content. In this review a method is presented for the treatment of sandy soil contaminated with heavy metals. The system is based on the metal solubilization on biocyrstallization capacity of Alcaligenes eutrophus CH34. The bacterium can solubilize the metals (or increase their bioavailability) via the production of siderophores and adsorb the metals in their biomass on metal-induced outer membrane proteins and by bioprecipitation. After the addition of CH34 to a soil slurry, the metals move toward the biomass. As the bacterium tends to float quite easily, the biomass is separated from the water via a flocculation process. The Cd concentration in sandy soils could be reduced from 21 mg Cd/kg to 3.3 mg Cd/kg. At the same time, Zn was reduced from 1070 mg Zn/kg to 172 mg Zn/kg. The lead concentration went down from 459 mg Pb/kg to 74 mg Pb/kg. With the aid of biosensors, a complete decrease in bioavailability of the metals was measured.  相似文献   

11.
Gill  J. S.  Sivasithamparam  K.  Smettem  K. R. J. 《Plant and Soil》2000,221(2):113-120
The effect of different soil textures, sandy (97.5% sand, 1.6% silt, 0.9% clay), loamy sand (77% sand, 11% silt, 12% clay) and a sandy clay loam (69% sand, 7% silt, 24% clay), on root rot of wheat caused by Rhizoctonia solani Kühn Anastomosis Group (AG) 8 was studied under glasshouse conditions. The reduction in root and shoot biomass following inoculation with AG-8 was greater in sand than in loamy sand or sandy clay loam. Dry root weight of wheat in the sand, loamy sand and sandy clay loam soils infested with AG-8 was 91%, 55% and 28% less than in control uninfested soils. There was greater moisture retention in the loamy sand and sandy clay loam soils as compared to the sand in the upper 10–20 cm. Root penetration resistance was greater in loamy sand and sandy clay loam than in sand. Root growth in the uninfested soil column was faster in the sand than in the loamy sand and sandy clay loam soils, the roots in the sandy soil being thinner than in the other two soils. Radial spread of the pathogen in these soils in seedling trays was twice as fast in the sand in comparison to the loamy sand which in turn was more than twice that in the sandy clay loam soil. There was no evidence that differences among soils in pathogenicity or soil spread of the pathogen was related to their nutrient status. This behaviour may be related to the severity of the disease in fields with sandy soils as compared to those with loam or clay soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Questions: (1) Does soil acidification in calcareous sandy grasslands lead to loss of plant diversity? (2) What is the relationship between the soil content of lime and the plant availability of mineral nitrogen (N) and phosphorus (P) in sandy grasslands? Location: Sandy glaciofluvial deposits in south‐eastern Sweden covered by xeric sand calcareous grasslands (EU habitat directive 6120). Methods: Soil and vegetation were investigated in most of the xeric sand calcareous grasslands in the Scania region (136 sample plots distributed over four or five major areas and about 25 different sites). Environmental variables were recorded at each plot, and soil samples were analysed for exchangeable P and N, as well as limestone content and pH. Data were analysed with regression analysis and canonical correspondence analysis. Results: Plant species richness was highest on weakly acid to slightly alkaline soil; a number of nationally red‐listed species showed a similar pattern. Plant species diversity and number of red‐listed species increased with slope. Where the topsoil had been acidified, limestone was rarely present above a depth of 30 cm. The presence of limestone restricts the availability of soil P, placing a major constraint on primary productivity in sandy soils. Conclusions: Acidification of sandy grasslands leads to reduced abundance of desirable species, although the overall effect is rather weak between pH 5 and pH 9. Slopes are important for high diversity in sandy grasslands. Calcareous soils cannot be restored through shallow ploughing, but deep perturbation could increase the limestone content of the topsoil and favour of target species.  相似文献   

13.
Survival of vegetation on soil-capped mining wastes is often impaired during dry seasons due to the limited amount of water stored in the shallow soil capping. Growth and survival of Rhodes grass (Chloris gayana) during soil drying on various layered capping sequences constructed of combinations of topsoil, subsoil, seawater-neutralised residue sand and low grade bauxite was determined in a glasshouse. The aim was to describe the survival of Rhodes grass in terms of plant and soil water relationships. The soil water characteristic curve and soil texture analysis was a good predictor of plant survival. The combination of soil with a high water holding capacity and low soil water diffusivity (e.g. subsoil with high clay contents) with soil having a high water holding capacity and high diffusivity (e.g. residue sand) gave best survival during drying down (up to 88 days without water), whereas topsoil and low grade bauxite were unsuitable (plants died within 18–39 days). Clayey soil improved plant survival by triggering a water stress response during peak evaporative water demand once residue sand dried down and its diffusivity fell below a critical range. Thus, for revegetation in seasonally dry climates, soil capping should combine one soil with low diffusivity and one or more soils with high total water holding capacity and high diffusivity.  相似文献   

14.
Summary Five soils of increasing specific surface area (SSA) were loaded to five levels of contamination with Cd, Pb and Cu, and bean plants (Phaseolus vulgaris L.) were grown on the soils for 30 days. A linear correlation was found between the concentration of Cd in the soil solutions and the amount absorbed by the plant per gram root material for four out of the five soils, and, in the case of Cu, for all five soils. Quantitatively, there was insufficient Cd or Cu in the soil solution to account for plant uptake of these metals. The amount of Cd absorbed by plants could also be related to the adsorption density (concentration/SSA soil) of the metal in four of the five soils, whereas the Cu content of plants could be related to the adsorption density of all five soils. It is thought that the metals were removed from the soil solution by root absorption and replenished by metal cations adsorbed onto surface sites in the soil. Consideration of the adsorption density of these metals in the soil may be a useful means to determine the permissible limits for heavy metal application for a wide range of soils. Lead uptake was significantly correlated to total Pb in soils, but not to the adsorption density or soil solution concentrations. The possible interpretation of the results are discussed.  相似文献   

15.
A K/Rb isotope dilution method was used to determine the uptake of K from undisturbed subsoils. Rb was applied to the topsoil (0–30 cm) to trace the K taken up from the topsoil by crops. The K/Rb ratio in the crops increases when roots contact the Rb-free subsoil. This change in the K/Rb ratio enables the calculation of the uptake of K from the subsoil. Results of 34 field experiments on loess-parabrown soils in N. Germany showed that the subsoil (>30 cm) supplied, on average, 34% of the total K uptake by spring wheat (range 9–70%). The range between the experimental sites is considered in relation to the contents of K in the top and subsoils (as extracted by 0.025 N CaCl2 solution), the proportion of the total root length in the subsoils, and competition for K between roots in the top and subsoil. In subsoils with similar K contents, uptake from the subsoil decreased significantly from 65 to 21% of total K uptake, as K contents in the topsoils increased from 4 to 8 mg K/100 g. On sites with the same K contents in topsoils (9 mg K/100 g), the subsoil supplied 12 to 61% of total K uptake as the K contents of the subsoil increased from 2 to 27 mg K/100 g. The contribution of uptake of K from the subsoil increased with the development of the crop, from 8% at first node stage to 35% at ear emergence, as the proportion of total root length in the subsoil increased. High root length densities in the topsoil (9 cm/cm3) resulted in competition for K between roots and increased uptake of K from the subsoil.  相似文献   

16.
The effects of soil type, irrigation, and population density of Rotylenchulus reniformis on cotton were evaluated in a two-year microplot experiment. Six soil types, Fuquay sand, Norfolk sandy loam, Portsmouth loamy sand, Muck, Cecil sandy loam, and Cecil sandy clay, were arranged in randomized complete blocks with five replications. Each block had numerous plots previously inoculated with R. reniformis and two or more noninoculated microplots per soil type, one half of which were irrigated in each replicate for a total of 240 plots. Greatest cotton lint yields were achieved in the Muck, Norfolk sandy loam, and Portsmouth loamy sand soils. Cotton yield in the Portsmouth loamy sand did not differ from the Muck soil which averaged the greatest lint yield per plot of all soil types. Cotton yield was negatively related to R. reniformis PI (initial population density) in all soil types except for the Cecil sandy clay which had the highest clay content. Supplemental irrigation increased yields in the higher yielding Muck, Norfolk sandy loam, and Portsmouth loamy sand soils compared to the lower yielding Cecil sandy clay, Cecil sandy loam, and Fuquay sand soils. The Portsmouth sandy loam was among the highest yielding soils, and also supported the greatest R. reniformis population density. Cotton lint yield was affected more by R. reniformis Pi with irrigation in the Portsmouth loamy sand soil with a greater influence of Pi on lint yield in irrigated plots than other soils. A significant first degree PI × irrigation interaction for this soil type confirms this observation.  相似文献   

17.
Perennial bioenergy crops have been shown to increase soil organic carbon (SOC) stocks, potentially offsetting anthropogenic C emissions. The effects of perennial bioenergy crops on SOC are typically assessed at shallow depths (<30 cm), but the deep root systems of these crops may also have substantial effects on SOC stocks at greater depths. We hypothesized that deep (>30 cm) SOC stocks would be greater under bioenergy crops relative to stocks under shallow‐rooted conventional crop cover. To test this, we sampled soils to between 1‐ and 3‐m depth at three sites in Oklahoma with 10‐ to 20‐year‐old switchgrass (Panicum virgatum) stands, and collected paired samples from nearby fields cultivated with shallow rooted annual crops. We measured root biomass, total organic C, 14C, 13C, and other soil properties in three replicate soil cores in each field and used a mixing model to estimate the proportion of recently fixed C under switchgrass based on 14C. The subsoil C stock under switchgrass (defined over 500–1500 kg/m2 equivalent soil mass, approximately 30–100 cm depth) exceeded the subsoil stock in neighboring fields by 1.5 kg C/m2 at a sandy loam site, 0.6 kg C/m2 at a site with loam soils, and showed no significant difference at a third site with clay soils. Using the mixing model, we estimated that additional SOC introduced after switchgrass cultivation comprised 31% of the subsoil C stock at the sandy loam site, 22% at the loam site, and 0% at the clay site. These results suggest that switchgrass can contribute significantly to subsoil organic C—but also indicated that this effect varies across sites. Our analysis shows that agricultural strategies that emphasize deep‐rooted grass cultivars can increase soil C relative to conventional crops while expanding energy biomass production on marginal lands.  相似文献   

18.
重金属对土壤中小麦种子发芽与根伸长抑制的生态毒性   总被引:51,自引:4,他引:47  
测定了4种土壤(红壤、草甸棕壤、暗棕壤和栗钙土)条件下,Cu,Zn,Pb和Cd单一污染对小麦种子发芽与根伸长抑制主及其复合污染效应(暗棕壤条件下)。结果表明,同一浓度下,重金属对小麦根伸长抑制率均明显大于对种子发芽抑制率,植物根对金属污染的生态毒性比种子发芽敏感,土壤有机质和土壤N含量与Cu,Zn,Pb和Cd污染对小麦根伸长抑制率显著负相关(R^2OR=0.91,R^2K-N=0.92),土壤PH和阳离子交换量与Cu,Zn,Pb和Cd污染对小麦根伸长抑制率的相关性不显著(R^2PH=0.62,R^2CEC=0.60),在单一污染对小麦根伸长为刺激作用浓度(较低浓度)或为抑制作用浓度下(较高浓度),复合污染均表现为协同作用。^  相似文献   

19.
L. M. Chu  M. H. Wong 《Plant and Soil》1987,103(2):191-197
Refuse compost and sewage sludge were mixed with a loamy sand at various rates in pots and sown withBrassica chinensis, Daucus carota andLycopersicon esculentum in a glasshouse. A commercial fertilizer was also applied to the same soil for comparison. Dry matter production of the three crops and contents of Cd, Cu, Mn, Pb and Zn in the harvested tissues were determined at the end of the experiment. In general, crop yield in refuse compost treatment was improved over that in sandy soil alone, but was less than that in the sludge and fertilizer treatments. Despite the relatively high heavy metal contents of refuse compost, crops grown on compost-treated soils accumulated lower levels of metal than those grown on sludge-treated soils. This is probably due to the high pH and organic matter content of the composted refuse. Higher levels of heavy metals were found in the roots than in the aerial parts ofB. chinensis andL. esculentum, but the reverse was found inD. carota. In the edible tissue of the three crops,L. esculentum accumulated metals to a lesser extent than the other two.  相似文献   

20.
Short rotation coppice (SRC) is a biomass production system for energy usually grown on former agricultural land with fast-growing tree species. In Sweden, willow SRC has been grown since the late 1980s. SRC on arable soils may induce changes in some soil quality parameters due to differences in crop characteristics and management practices. In this study, pH, organic carbon (C), and trace element concentrations in the soil of 14 long-term (10–20 years) commercial willow SRC fields in Sweden were compared with those in adjacent, conventionally managed arable soils. The results showed that organic C concentrations in the topsoil and subsoil of SRC fields were, on average, significantly higher (9 % in topsoil, 27 % in subsoil) than in the reference fields. When comparisons were made only for the ten sites where the reference field had a crop rotation dominated by cereal crops, the corresponding figures were 10 % and 22 %. The average concentration of cadmium (Cd), which is considered the most hazardous trace element for human health in the food chain, was 12 % lower in the topsoil of SRC fields than in the reference fields. In the corresponding comparison of subsoils, no such difference was found. For chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn), there were no significant differences in concentrations between SRC fields and the reference fields in either topsoil or subsoil. Negligible differences in pH in the same comparisons were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号