首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
When rats were exposed to a cold environment (4 degrees C) for 10 days, tissue glucose utilization was increased in brown adipose tissue (BAT), a tissue specified for non-shivering thermogenesis, but not in skeletal muscle. Cold exposure also caused an increase in the amount of GLUT4, an isoform of glucose transporters expressed in insulin-sensitive tissues, in parallel with an increased cellular level of GLUT4 mRNA. In contrast to BAT, no significant effect of cold exposure was found in skeletal muscle. The results suggest the cold-induced increase in glucose utilization by BAT is attributable, at least in part, to the increased expression of GLUT4.  相似文献   

4.
《Journal of thermal biology》1999,24(5-6):385-389

1. Effects of acute (6 h) and chronic (21 day) cold (6°C) exposure, as well as propranolol (15 mg/kg) on the activities of CuZnSOD, MnSOD and catalase in the rat skeletal muscle (SM) and brown adipose tissue (BAT), which are important sites of cold-induced thermogenesis, were investigated.

2. The changes in the activity of antioxidant enzymes were tissue specific and dependent on the duration of cold exposure. Thus, in the SM of acutely cold exposed rats, the activity of all antioxidant enzymes studied was elevated, whereas in the BAT the activity of both SODs decreased and that of catalase remained unchanged. In cold acclimated rats, the activity of all the three enzymes was increased in the BAT whereas in the SM, CuZnSOD activity was enhanced, MnSOD activity decreased and catalase activity returned to the control level.

3. Propranolol also differently altered the antioxidant enzyme activity in SM and BAT, alterations being dependent on the acclimation temperature. Thus, in room acclimated rats propranolol decreased the activity of all antioxidant enzymes in SM but did not affect those in BAT. However, in the SM propranolol prevented the elevation of MnSOD and catalase activities, induced by acute cold. In cold acclimated rats propranolol inhibited CuZnSOD activity in both SM and BAT but increased that of MnSOD.

Author Keywords: Rats; Cold; Acclimation; Propranolol; Skeletal muscle; Interscapular brown adipose tissue; CuZnSOD; MnSOD; Catalase  相似文献   


5.
6.
7.
Jakus PB  Sipos K  Kispal G  Sandor A 《FEBS letters》2002,519(1-3):210-214
Earlier we reported a 14-fold increase of glycogen in the brown adipose tissue (BAT) in rats when the animals were placed back from cold to neutral temperature. To elucidate the mechanism, here we compared the level of glucose transporter 4 (GLUT4) protein, uncoupling protein (UCP) 1 and UCP3 mRNA and protein expressions in the BAT under the same conditions. We found that the increased GLUT4 level in cold was maintained during the reacclimation. After 1 week cold exposure the mRNA and protein content of UCP1 increased parallel, while the protein level of UCP3 decreased, contrary to its own mRNA level.  相似文献   

8.
The importance of the sympathetic innervation in the regulation of 5'-deiodinase activity in the interscapular brown adipose tissue (BAT) of the Djungarian hamster was studied. Interscapular BAT of Djungarian hamsters was either unilaterally or bilaterally denervated, and thereafter the animals were maintained at thermoneutral temperature or exposed to 0 degree C for 24 h. Denervation reduced the norepinephrine content to 2-10% of the level in the control groups. Unilateral denervation was as effective as bilateral denervation in depressing the norepinephrine content of the interscapular BAT. Cold exposure for 24 h resulted in a pronounced 5'-deiodinase activation. Denervation reduced, but did not completely prevent, the cold-induced increase in 5'-deiodinase activity. The basal level of 5'-deiodinase activity at thermoneutral temperature was not reduced by denervation. We conclude that cold-induced activation of BAT 5'-deiodinase primarily depends on the intact sympathetic innervation.  相似文献   

9.
The effects of long-term cold exposure on brown adipose tissue (BAT) thermogenesis in hypothyroid rats have been examined. Thyroid ablation was performed in normal rats after 2 mo of exposure to 4 degrees C, when BAT hypertrophy and thermogenic activity were maximal. After ablation, hypothyroid and normal controls remained in the cold for 2 additional months. At the end of the 4-mo cold exposure, all untreated hypothyroid rats were alive, had normal body temperature, and had gained an average 12.8% more weight than normal controls. Long-term cold exposure of hypothyroid rats markedly increased BAT weight, mitochondrial proteins, uncoupling protein (UCP)-1, mRNA for UCP-1, and oxygen consumption to levels similar to those seen in cold-exposed normal rats. The results indicate that thyroid hormones are required for increased thermogenic capacity to occur as an adaptation to long-term cold exposure. However, cold adaptation can be maintained in the absence of thyroid hormone.  相似文献   

10.
In urethane/α-chloralose anesthetized rats, cold exposure increased brown adipose tissue sympathetic nerve activity (BAT SNA: +699 ± 104% control). Intravenous administration of 2-deoxy-D-glucose (2-DG; 200 mg·ml(-1)·kg(-1)) reversed the cold-evoked activation of BAT SNA (nadir: 139 ± 36% of control) and decreased BAT temperature (-1.1 ± 0.2°C), expired CO(2) (-0.4 ± 0.1%), and core temperature (-0.5 ± 0.0). Similarly, unilateral nanoinjection of the glucoprivic agent 5-thioglucose (5-TG; 12 μg/100 nl) in the ventrolateral medulla (VLM) completely reversed the cold-evoked increase in BAT SNA (nadir: 104 ± 7% of control), and decreased T(BAT) (-1.4 ± 0.3°C), expired CO(2) (-0.2 ± 0.0%), and heart rate (-35 ± 10 beats/min). The percentage of rostral raphé pallidus (RPa)-projecting neurons in the dorsal hypothalamic area/dorsomedial hypothalamus that expressed Fos in response to cold exposure (ambient temperature: 4-10°C) did not differ between saline (28 ± 6%) and 2-DG (30 ± 5%) pretreated rats, whereas the percentage of spinally projecting neurons in the RPa/raphé magnus that expressed Fos in response to cold exposure was lower in 2-DG- compared with saline-pretreated rats (22 ± 6% vs. 42 ± 5%, respectively). The increases in BAT SNA evoked by nanoinjection of bicuculline in the RPa or by transection of the neuraxis at the pontomedullary border were resistant to inhibition by glucoprivation. These results suggest that neurons within the VLM play a role in the glucoprivic inhibition of BAT SNA and metabolism, that this inhibition requires neural structures rostral to the pontomedullary border, and that this inhibition is mediated by a GABAergic input to the RPa.  相似文献   

11.
The thermogenic activity of brown adipose tissue (BAT) largely depends on the mitochondrial uncoupling protein 1 (UCP1), which is up-regulated by environmental alterations such as cold. Recently, CIDEA (cell death-inducing DNA fragmentation factor-α-like effector A) has also been shown to be expressed at high levels in the mitochondria of BAT. Here we examined the effect of cold on the mRNA and protein levels of CIDEA in interscapular BAT of conscious rats with regard to the sympathetic nervous system. Cold exposure (4 °C for 3 h) elevated the plasma norepinephrine level and increased norepinephrine turnover in BAT. Cold exposure resulted in down-regulation of the mRNA and protein levels of CIDEA in BAT, accompanied by up-regulation of mRNA and protein levels of UCP1. The cold exposure-induced changes of CIDEA and UCP1 were attenuated by intraperitoneal pretreatment with propranolol (a non-selective β-adrenoreceptor antagonist) (2 mg/animal) or SR59230A (a selective β3-adrenoreceptor antagonist) (2 mg/animal), respectively. These results suggest that acute cold exposure resulted in down-regulation of CIDEA in interscapular BAT by sympathetically activated β3-adrenoreceptor-mediated mechanisms in rats.  相似文献   

12.
13.
In a morphological study of brown adipose tissue (BAT) of rats returned after exposure to cold (+5 degrees C) to neutral temperature (+25 degrees C), striking periodic acid Schiff staining was observed, indicating substantial glycogen accumulation. Enzymatic analysis revealed that the glycogen content increased from the 4.05 +/- 0.51 (micromol glucose unit per gram of tissue, mean +/- SE) control value to 57.3 +/- 9.66 when the animals were returned to neutral temperature for 24 h after a 1-week cold period. Glycogen repletion was also observed in liver and skeletal muscle; however, the glycogen levels in these tissues never exceeded the control values. The accumulation of glycogen in the BAT started by the 3rd hour of replacement and peaked by the 24th hour. This glycogen was readily utilized during the next short cold exposure of the animals. The plasma leptin concentration was reduced at the cold temperature. The hexokinase II activity in the BAT increased to 29.3 +/- 1.46 vs the 11.8 +/- 1.06 control (mU/mg protein +/- SE) after a 1-week cold exposure and this level was maintained during the return to neutral temperature. The total glycogen synthetase (GStot) and the glycogen synthetase a activity also increased after a 1-week cold exposure and increased further during the replacement. The level of GStot reached 26.9 +/- 1.39 vs 9.54 +/- 1.43 control by the 24th hour of replacement. At the same time, the glycogen phosphorylase a activity declined during the replacement. The concentration of glucose 6-phosphate (an activator of GS) decreased in the cold but returned to normal during the replacement. These changes in the BAT are in favor of glycogen synthesis.  相似文献   

14.
Brown (BAT) and white (WAT) adipose tissues play a key role in the body energy balance orchestrated by the central nervous system. Hibernators have developed a seasonal obesity to respond to inhospitable environment. Jerboa is one of the deep hibernator originated from sub-desert highlands. Thus, this animal represents an excellent model to study cold adaptation mechanism. We report that the adipogenic factor PPARgamma exhibits a differential expression between BAT and WAT at mRNA level. A specific induction was only seen in WAT of pre-hibernating jerboa. Interestingly, PPAR beta/delta is specifically induced in BAT and brain of pre-hibernating jerboa, highlighting for the first time the possible key role of this ubiquitous isoform in the cold adaptation of this true hibernator. Inductions of PPARgamma(2) in WAT and PPAR beta/delta in BAT are blunted by a hypolipemic drug, the ciprofibrate. These changes may be correlated with hibernation arrest and death of treated jerboa. Mitochondrial acyl-CoA dehydrogenase and peroxisomal acyl-CoA oxidase activities in brown and white adipose tissues are decreased up to 85% during cold acclimatization (without food privation). These enzyme activities are subject to a strong induction in BAT and in WAT (3.4-7.5 fold) during the hibernation period. The BAT thermogenesis marker is also largely induced (approximately 4 fold of UCP1 mRNA level) during pre-hibernation period. Unexpectedly, treatment with ciprofibrate deeply affects lipolysis in BAT by increasing acyl-CoA dehydrogenase activity (3.4 fold) and acyl-CoA oxidase at both activity and mRNA levels (2.8 and 3.8 fold, respectively) and enhances strongly UCP1 mRNA level (9.5 fold) during pre-hibernation.  相似文献   

15.
Effects of bombesin on brown adipose tissue (BAT) thyroxine (T4) 5'-deiodinase (5'D) activity and rectal temperature were examined in male mice. Immediately following an intracerebroventricular (ICV) or intravenous (IV) injection of bombesin (0.1-100 ng/animal) or vehicle (20 mM bacitracin dissolved in 0.9% saline), the mice were placed in a room at 4 degrees C or 22 degrees C for 30, 60, 120 or 240 min. The ICV injection of bombesin dose-dependently lessened cold-induced increase in BAT 5'D activity and increased hypothermia determined at 120 min of cold exposure, whereas the IV injection of bombesin was without effect. Bombesin (ICV)-induced hypothermia preceded the inhibition of BAT 5'D activity by at least 30 min at 4 degrees C. BAT 5'D activity was not affected by ICV injection of bombesin in mice kept at 22 degrees C, although the rectal temperature was significantly decreased. Bombesin thus appears to prevent cold-induced increase in T4 5'D activity in mouse BAT by its central effect. Bombesin-induced excessive hypothermia itself and/or the decrease in sympathetic tone of BAT by bombesin might decrease cold-induced increase in BAT 5'D activity.  相似文献   

16.
17.
Factors affecting cold-induced hypertension in rats   总被引:3,自引:0,他引:3  
A 3- to 4-week exposure of rats to a cold environment (5 +/- 2 degrees C) induces hypertension, including elevation of systolic, diastolic, and mean blood pressures and cardiac (left ventricular) hypertrophy. The studies described here were designed to investigate some factors affecting both the magnitude and the time course for development of cold-induced hypertension. The objective of the first study was to determine whether there was an ambient temperature at which the cold-induced elevation of blood pressure did not occur. The objective of the second experiment was to determine whether body weight at the time of exposure to cold affected the magnitude and time course for development of hypertension. To assess the first objective, male rats were housed in a chamber whose temperature was maintained at 5 +/- 2 degrees C while others were housed in an identical chamber at 9 +/- 2 degrees C. After 7 days of exposure to cold, the rats exposed to the colder temperature had a significant elevation of blood pressure (140 +/- 2 mm Hg) compared with the group maintained at 9 degrees C (122 +/- 3 mm Hg). The rats exposed to 9 degrees C had no significant elevation of systolic blood pressure at either 27 or 40 days after initiation of exposure to cold. At the latter time, the temperature in the second chamber was reduced to 5 +/- 2 degrees C. By the 25th day of exposure to this ambient temperature, the rats had a significant increase in systolic blood pressure above their levels at 9 degrees C. Thus, there appears to be a threshold ambient temperature for elevation of blood pressure during exposure to cold. That temperature appears to lie somewhere between 5 and 9 degrees C. The second objective was assessed by placing rats varying in weight from approximately 250 to 430 g in air at 5 degrees C. There was a highly significant direct relationship (r = 0.96) between body weight at the time of introduction to cold and the number of days required to increase systolic blood pressure by 10 mm Hg above pre-cold exposure level. The third objective was to make an initial assessment of potential differences among strains of rats with respect to development of cold-induced hypertension. To this end, rats of the Fischer 344 strain were used. Systolic blood pressures of these rats also increased during chronic exposure to cold.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
布氏田鼠 (Microtusbrandti)随机分组暴露在冷环境 [12L∶12D ,(4± 2 )℃ ]中 12h ,1d ,3d ,7d ,14d ,2 1d和 2 8d ;对照组生活在温暖环境下 [12L∶12D ,(2 5± 2 )℃ ]。与对照组相比 ,布氏田鼠的褐色脂肪组织 (BAT)重量在冷暴露 12h~ 3d时降低 ,7~ 2 1d时则增加。 7~ 2 8d冷暴露组动物的BAT总蛋白和总DNA含量均比对照组明显提高。冷环境中的布氏田鼠解偶联蛋白 (UCP)的mRNA随时间的延长而表达上调 ,在冷暴露 2 1d时达到高峰。结果表明 ,冷暴露能够诱导布氏田鼠BAT细胞增补和UCP基因表达 ,从而使适应性产热增加。  相似文献   

19.
In a four-part study, we expand on our previous report that bulbospinal serotonin (5HT) neuronal activation occurs with 24 h of cold exposure. To characterize temporal aspects, rats were exposed to 3 degrees C or were maintained at 22 degrees C for 2, 8, 48, or 96 h (experiment 1) or for 15, 30, or 60 min (experiment 2). To ensure that cold-induced changes in 5HT activity were not due to disturbances in diurnal pattern, rats in experiment 3 were exposed to cold (8 h) during the dark cycle. To explore the hypothesis that cold-induced 5HT activation is part of a broad metabolic response that includes activation of the sympathetic nervous system, metabolically impaired (hypothyroid) rats were exposed to 8 degrees C in experiment 4. Significant increments in 5-hydroxyindoleacetic acid (SHIAA) concentration were evident by 60 min of cold exposure and existed at all later time points measured. These findings were most robust in spinal cord and rostral brainstem. Activation in spinal cord was also found when rats were exposed to 8 h of cold during the dark cycle, the active period for rats. In experiment 4, hypothyroid rats exhibited significantly greater norepinephrine excretion compared with control rats exposed to the same cold stimulus; this finding was accompanied by significantly greater increments in 5HIAA concentration in rostral brainstem and spinal cord of hypothyroid rats. In addition, significant elevations in tryptophan concentration were noted throughout the brainstem and spinal cord of cold-exposed, hypothyroid rats relative to room temperature, hypothyroid rats. This finding suggested that elevations in 5HIAA concentration in these rats were due to increases in precursor availability. The implications of these findings relative to autonomic and metabolic control are discussed.  相似文献   

20.
Regulation of thermogenic activity and uncoupling protein1 (UCP1) expression in brown adipose tissue (BAT) were studied in euthermic Daurian ground squirrel after acute and chronic cold exposure at 4 degrees C. The UCP1 concentration was indirectly determined by titration with its specific ligand [3H]-labeled GTP, and Ucp1 mRNA was detected by using a [32P]-labeled antisense oligonucleotide probe. Both acute and chronic cold exposure stimulated up-regulation of Ucp1 mRNA. Although UCP1 concentration is not significantly increased after 24 h of cold exposure, it is markedly elevated by 75% in squirrels after 4-week cold adaptation compared with controls raised at 22 degrees C. Changes in T4 5'-deiodinase activity were closely associated with variations of Ucp1 mRNA level. Ucp1 gene expression is significantly affected by cold exposure in BAT from euthermic Daurian ground squirrels. In addition, the activation of T4 5'-deiodinase may be an important regulatory factor in cold-induced Ucp1 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号