首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Methane fermentation of Japanese cedar wood was carried out after pretreatment with four strains of white rot fungi, Ceriporiopsis subvermispora ATCC 90467, CZ-3, CBS 347.63 and Pleurocybella porrigens K-2855. These fungi were cultivated on wood chip media with and without wheat bran for 4-8 weeks. The pretreated wood chip was fermented anaerobically with sludge from a sewage treatment plant. Pretreatments with C. subvermispora ATCC 90467, CZ-3 and CBS 347.63 in the presence of wheat bran for 8 weeks decreased 74-76% of beta-O-4 aryl ether linkages in the lignin to accelerate production of methane. After fungal treatments with C. subvermispora ATCC 90467 and subsequent 30-days methane fermentation, the methane yield reached 35 and 25% of the theoretical yield based on the holocellulose contents of the decayed and original wood, respectively. In contrast, treatment with the three strains of C. subvermispora without wheat bran cleaved 15-26% of the linkage and produced 6-9% of methane. There were no significant accelerating effects in wood chips treated with P. porrigens which has a lower ability to decompose the lignin. Thus, it was found that C. subvermispora, with a high ability to decompose aryl ether bonds of lignin, promoted methane fermentation of softwood in the presence of wheat bran.  相似文献   

2.
The enzymatic digestibility of steam-exploded Douglas-fir wood chips (steam exploded at 195 degrees C, 4.5 min, and 4.5% (w/w) SO(2)) was significantly improved using an optimized alkaline peroxide treatment. Best hydrolysis yields were attained when the steam-exploded material was post-treated with 1% hydrogen peroxide at pH 11.5 and 80 degrees C for 45 min. This alkaline peroxide treatment was applied directly to the water-washed, steam-exploded material eliminating the need for independent alkali treatment with 0.4% NaOH, which has been traditionally used to post-treat wood samples to try to remove residual lignin. Approximately 90% of the lignin in the original wood was solubilized by this novel procedure, leaving a cellulose-rich residue that was completely hydrolyzed within 48 h, using an enzyme loading of 10 FPU/g cellulose. About 82% of the originally available polysaccharide components of the wood could be recovered. The 18% of the carbohydrate that was not recovered was lost primarily to sugar degradation during steam explosion.  相似文献   

3.
Previous optimization strategies for the bioconversion of lignocellulosics by steam explosion technologies have focused on the effects of temperature, pH, and treatment time, but have not accounted for changes in severity brought about by properties inherent in the starting feedstock. Consequently, this study evaluated the effects of chip properties, feedstock size (40-mesh, 1.5 x 1.5 cm, 5 x 5 cm), and moisture content (12% and 30%) on the overall bioconversion process, and more specifically on the efficacy of removal of recalcitrant lignin from the lignocellulosic substrates following steam explosion. Increasing chip size resulted in an improvement in the solids recovery, with concurrent increases in the water soluble, hemicellulose-derived sugar recovery (7.5%). This increased recovery is a result of a decrease in the "relative severity" of the pretreatment as chip size increases. Additionally, the decreased relative severity minimized the condensation of the recalcitrant residual lignin and therefore increased the efficacy of peroxide fractionation, where a 60% improvement in lignin removal was possible with chips of larger initial size. Similarly, increased initial moisture content reduced the relative severity of the pretreatment, generating improved solids and hemicellulose-derived carbohydrate recovery. Both increased chip size and higher initial moisture content results in a substrate that performs better during peroxide delignification, and consequently enzymatic hydrolysis. Furthermore, a post steam-explosion refining step increased hemicellulose-derived sugar recovery and was most effectively delignified (to as low as 6.5%). The refined substrate could be enzymatically hydrolyzed to very high levels (98%) and relatively fast rates (1.23 g/L/h).  相似文献   

4.
Biomass of olive tree pruning can be considered a suitable raw material for the production of ethanol due to its high content of potentially fermentable carbohydrates. However its high extractives content could cause condensation reactions between extractives and acid insoluble lignin during pretreatment, hindering the enzymatic hydrolysis of pretreated material. In this work, the effect of extractives removal before steam explosion of olive tree pruning was evaluated. The objectives are to recover as much glucose as possible in the extraction stage and to avoid the condensation reactions. The effect of temperature and time of water extracted material on sugars recovery was studied using a response surface method according to a central composite design. Extractive removal previous to steam explosion resulted in 20% more total sugars recovery in comparison to a material without water extraction stage.  相似文献   

5.

Background

While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock.

Results

Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively.

Conclusions

Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing pentose fermentation efficiency and reducing biomass and enzyme costs. The results demonstrated the importance of addressing the tradeoffs in capital costs, pretreatment and downstream processing technologies.  相似文献   

6.
Relatively poor SCP production (4.2 mg/L h) was obtained using C. cellulolyticum and ground aspen wood treated with steam at atmospheric pressure for 1 h. The percentage of protein in the final product increased to 21.4% at a specific growth rate of 0.15 h?1 when the wood sample was treated with steam at a higher pressure (280 psig for 4 min) according to the "Stake" process. Alkali treatment (10% and 15% w/w at 121°C for 30 min), known to solubilize hemicelluloses and some of the lignin, gave intermediate results. More complete delignification of wood using NaClO2 increased the protein composition in the final product to 37.9%, at a specific growth rate of 0.19 h?1. Cellulose utilization was lowest (12.4%) in the case of the wood treated with steam at atmospheric pressure; it was higher at 75.3 and 78.5% for wood treated with NaOH at 10 and 15% w/w levels, respectively. The cellulose utilization was highest (90%) for wood treated with NaClO2.  相似文献   

7.
Effect of steam explosion on biodegradation of lignin in wheat straw   总被引:5,自引:1,他引:4  
The effect of steam explosion pretreatment on biodegradation of lignin in wheat straw was studied in this paper. Through experiments and analysis, 0.8MPa operation pressure and 1:20 wheat straw to water ratio are optimum for destroying lignin and the maximum of lignin loss rate is 19.94%. After steam explosion pretreatment, the wheat straw was retted by Trametes versicolor for 40 days. Biodegradation rate of lignin was tested and the maximum of 55.40% lignin loss rate was found on day 30. During the whole process of both steam explosion pretreatment and biodegradation, 75.34% lignin was degraded, without steam explosion the biodegradation of raw material the degradation rate of lignin was 31.23% only. FT-IR spectroscopy, TGA and SEM were used for further validating the results of biodegradation.  相似文献   

8.
It is important to develop efficient and economically feasible pretreatment methods for lignocellulosic biomass, to increase annual biomass production. A number of pretreatment methods were introduced to promote subsequent enzymatic hydrolysis of biomass for green energy processes. Pretreatment with steam explosion removes the only xylan at high severity but increases lignin content. In this study, corn stover soaked in choline chloride solution before the steam explosion is economically feasible as it reduced cost. Enzymatic hydrolysis of de-lignified corn stover is enhanced by combinatorial pretreatments of steam explosion and choline chloride. Corn stover pretreated with choline chloride at the ratio of 1:2.2 (w/w), 1.0 MPa, 184 °C, for 15 min efficiently expelled 84.7% lignin and 78.9% xylan. The residual solid comprised of 74.59% glucan and 7.51% xylan was changed to 84.2% glucose and 78.3% xylose with enzyme stacking of 10FPU/g. This single-step pretreatment had ∼ 4.5 and 6.4 times higher glucose yield than SE-pretreated and untreated corn stover, respectively. Furthermore, SEM, XRD and FTIR indicated the porosity, crystalline changes, methoxy bond-cleavage respectively due to the lignin and hemicellulose expulsion. Thus, the released acetic acid during this process introduced this novel strategy, which significantly builds the viability of biomass in short pretreatment time.  相似文献   

9.
Steam explosion of Eucalyptus grandis has been carried out under various pretreatment conditions (200-210 degrees C, 2-5 min) after impregnation of the wood chips with 0.087 and 0.175% (w/w) H2SO4. This study, arranged as a 2(3) factorial design, indicated that pretreatment temperature is the most critical variable affecting the yield of steam-treated fractions. Pretreatment of 0.175% (w/w) H2SO4-impregnated chips at 210 degrees C for 2 min was the best condition for hemicellulose recovery (mostly as xylose) in the water soluble fraction, reaching almost 70% of the corresponding xylose theoretical yield. By contrast, lower pretreatment temperatures of 200 degrees C were enough to yield steam-treated substrates from which a 90% cellulose conversion was obtained in 48 h, using low enzyme loadings of a Celluclast 1.5 1 plus Novozym 188 mixture (Novo Nordisk). Release of water-soluble chromophores was monitored by UV spectroscopy and their concentration increased with pretreatment severity. The yield of alkali-soluble lignin increased at higher levels of acid impregnation and pretreatment temperatures. Thermoanalysis of these lignin fractions indicated a pattern of lignin fragmentation towards greater pretreatment severities but lignin condensation prevailed at the most drastic pretreatment conditions.  相似文献   

10.
Summary Previous publications have revealed that a pretreatment of lignocellulosic wastes is necessary if they are to be employed as the hydrocarbon source of single cell protein production. A hot alkaline treatment is the most common.We have treated sugar cane bagasse pith with 1% NaOH solution at room temperature, at a NaOH/pith ratio of 10%. Different contact times were used in the experiments. The shortest contact period required for maximum protein production was 24 h at 25° C. A mixed culture of Cellulomonas sp. and Bacillus subtilis was used in the experiments. The values obtained for hemicellulose and cellulose in the treated pith did not differ greatly from those of untreated pith, in contrast the amount of lignin was 33% lower in the treated pith. The effect of reutilization of the alkaline liquor used for the pretreatment of pith upon protein production was also investigated. With four recyclings, there was a NaOH saving of 34.4 kg per 100 kg produced protein as compared to when the liquor was only used once.The quality of the resulting effluents, as measured by the chemical oxygen demand (COD), proved to be very similar for both types of treatment.  相似文献   

11.
An unpolluted process of wheat straw fractionation by steam explosion coupled with ethanol extraction was studied. The wheat straw was steam exploded for 4.5 min with moisture of 34.01%, a pressure of 1.5 MPa without acid or alkali. Hemicellulose sugars were recovered by water countercurrent extraction and decolored with chelating ion exchange resin D412. The gas chromatography (GC) and high-performance liquid chromatography (HPLC) analysis results indicated that there were organic acids in the hemicellulose sugars and the ratio of monosaccharides to oligosaccharides was 1:9 and the main component, xylose, was 85.9% in content. The total recovery rate of hemicellulose was 80%. Water washed materials were subsequently extracted with ethanol. The optimum extraction conditions in this work were 40% ethanol, fiber/liquor ratio 1:50 (w/v), severity log(R)=3.657 (180 degrees C for 20 min), 0.1% NaOH. The lignin yield was 75% by acid precipitation and 85% ethanol solvent was recovered. The lignin was purified using Bj?rkman method. Infrared spectrometry (IR) results indicated that the lignin belonged to GSH (guaiacyl (G) syringyl (S) and p-hydroxyphenyl (H)) lignin and its purity rate reached 85.3%. The cellulose recovery rate was 94% and the results of electron spectroscopy for chemical analysis (ESCA) and infrared spectrometry (IR) showed that hemicellulose and lignin content decreased after steam explosion and ethanol extraction.  相似文献   

12.
The effects of consecutive treatments by a lignin-degrading fungus Phanerochaete chrysosporium and by steam explosion for the enzymatic saccharification of plant biomass were studied experimentally, and the optimal operational conditions for obtaining the maximum saccharification were evaluated. Beech wood-meal was treated by the fungus for 98 days and then by high steam temperatures of 170-230 degrees C with steaming times of 0-10 min. The treatment of the wood-meal by fungus prior to steam explosion enhanced the saccharification of wood-meal. The treated wood-meal was separated into holo-cellulose, water soluble material, methanol soluble lignin, and Klason lignin. The saccharification decreased linearly with the increase in the amount of Klason lignin. It was estimated by the equation for the saccharification of exploded wood-meal expressed as a function of steam temperature and steaming time that the maximum saccharification of wood-meal was obtained by consecutive treatments such as fungal treatment for 28 days and then steam explosion at a steam temperature of 215 degrees C and a steaming time of 6.5 min. (c) 1995 John Wiley & Sons, Inc.  相似文献   

13.
Steam explosion was investigated as a pretreatment step in the isolation of agar from the macroalgaGracilaria dura. As compared to conventional procedures, the yield of agar obtained using this method on alkali (Na2CO3) conditioned algal material was higher. Extractions performed first at 95 °C and then at 121 °C showed that the major fraction of the agar was extracted at 95 °C, independently of the pretreatment. The efficiency of sulphate hydrolysis during steam explosion ofG. dura previously conditioned in Na2CO3, was similar to that of a NaOH based alkali pretreatment. Except for a lower nitrogen content of the sample obtained after NaOH based alkali pretreatment and a higher 6-O-methyl--d-galactose content in the agar after steam explosion, the chemical composition of the agars showed no significant difference. Agars extracted after steam explosion had melting temperature, gel strength and apparent modulus of elasticity lower than those of corresponding native and alkali (NaOH) pretreated samples, but comparable to those of a commercial sample.Author for correspondence  相似文献   

14.
During tree growth, hardwoods can initiate the formation of tension wood, which is a strongly stressed wood on the upper side of the stem and branches. In Eucalyptus globulus, tension wood presents wider and thicker cell walls with low lignin, similar glucan and high xylan content, as compared to opposite wood. In this work, tension and opposite wood of E. globulus trees were separated and evaluated for the production of bioethanol using ethanol/water delignification as pretreatment followed by simultaneous saccharification and fermentation (SSF). Low residual lignin and high glucan retention was obtained in organosolv pulps of tension wood as compared to pulps from opposite wood at the same H-factor of reaction. The faster delignification was associated with the low lignin content in tension wood, which was 15% lower than in opposite wood. Organosolv pulps obtained at low and high H-factor (3,900 and 12,500, respectively) were saccharified by cellulases resulting in glucan-to-glucose yields up to 69 and 77%, respectively. SSF of the pulps resulted in bioethanol yields up to 35 g/l that corresponded to 85–95% of the maximum theoretical yield on wood basis, considering 51% the yield of glucose to ethanol conversion in fermentation, which could be considered a very satisfactory result compared to previous studies on the conversion of organosolv pulps from hardwoods to bioethanol. Both tension and opposite wood of E. globulus were suitable raw materials for organosolv pretreatment and bioethanol production with high conversion yields.  相似文献   

15.
This research was conducted to investigate the suitability of peanut hull to produce general purpose particleboards. A series of panels were produced using peanut hull and mixture of peanut hull and European Black pine wood chips. Particleboards were manufactured using various hull ratios in the mixture (0%, 25%, 50%, 75% and 100%). Urea formaldehyde adhesive was utilized in board production and boards were produced to target panel's density of 0.7 g/cm3. Panels were tested for some physical (water absorption and thickness swelling), chemical (holocellulose content, lignin content, alcohol-benzene solubility, 1% NaOH solubility, hot water solubility and cold water solubility) and mechanical (modulus of rupture, modulus of elasticity and internal bond) properties. The main observation was that increase in peanut hull in the mixture resulted in a decrease in mechanical and physical properties of produced panels and panel including 25% hull in the mixture solely met the standard required by TS-EN 312 standard. Conclusively, a valuable renewable natural resource, peanut hull could be utilized in panel production while it has been mixed to the wood chips.  相似文献   

16.
Drimys winteri and Nothofagus dombeyi, two native Chilean wood species with high potential for pulp production, were biodegraded by Ganoderma australe. This fungus is known to provoke extensive and selective biodelignification of these wood species in the field. Under laboratory conditions, N. dombeyi underwent higher weight and component losses than D. winteri. In neither case was the lignin removal selective, because glucan loss was almost simultaneous with lignin degradation. The decayed wood chips became progressively discoloured throughout the biodegradation time. The brightness increase was only partly reversed in thermal reversion assays. Nothofagus dombey solubility in 1% NaOH increased by 13.7% after 9 weeks of biodegradation, while D. winteri solubility increased by 14.2% in a shorter period (6 weeks). In both cases, the solubility increase was proportional to the liquor absorbance increase at 272 nm, which indicates that the wood solubility in 1% NaOH was dependent of lignin solubilization.  相似文献   

17.
Chen WH  Pen BL  Yu CT  Hwang WS 《Bioresource technology》2011,102(3):2916-2924
The combined pretreatment of rice straw using dilute-acid and steam explosion followed by enzymatic hydrolysis was investigated and compared with acid-catalyzed steam explosion pretreatment. In addition to measuring the chemical composition, including glucan, xylan and lignin content, changes in rice straw features after pretreatment were investigated in terms of the straw's physical properties. These properties included crystallinity, surface area, mean particle size and scanning electron microscopy imagery. The effect of acid concentration on the acid-catalyzed steam explosion was studied in a range between 1% and 15% acid at 180°C for 2 min. We also investigated the influence of the residence time of the steam explosion in the combined pretreatment and the optimum conditions for the dilute-acid hydrolysis step in order to develop an integrated process for the dilute-acid and steam explosion. The optimum operational conditions for the first dilute-acid hydrolysis step were determined to be 165°C for 2 min with 2% H(2)SO(4) and for the second steam explosion step was to be carried out at 180°C for 20 min; this gave the most favorable combination in terms of an integrated process. We found that rice straw pretreated by the dilute-acid/steam explosions had a higher xylose yield, a lower level of inhibitor in the hydrolysate and a greater degree of enzymatic hydrolysis; this resulted in a 1.5-fold increase in the overall sugar yield when compared to the acid-catalyzed steam explosion.  相似文献   

18.
汽爆秸秆漆酶协同作用提取木质素   总被引:2,自引:0,他引:2  
组分分离是秸秆炼制的关键技术。本文建立了汽爆耦合漆酶协同作用工艺,研究其对秸秆物理形态、化学组成以及木质素碱提取过程的影响。研究结果表明汽爆破坏秸秆表面致密结构,提高比表面积,促进漆酶对秸秆木质素的氧化作用;红外分析表明,漆酶破坏了汽爆秸秆中半纤维素酯键,且愈创木基吸收峰减弱,漆酶削弱了木质素与纤维素间相互作用;汽爆漆酶协同作用后的秸秆木质素提取率提高约20%(70℃,120 min)。Nuclei Growth模型分析温和条件下秸秆木质素提取过程,动力学结果表明,汽爆漆酶协同预处理增加了汽爆秸秆木质素碱提过程中反应起始作用位点,并提高了该过程对温度的敏感性。汽爆-漆酶协同预处理是一种有效的分离木质素的方法,将在木质纤维素原料的生物炼制中发挥重要作用。  相似文献   

19.
Steam explosion is an important process for the fractionation of biomass components. In order to understand the behaviour of lignin under the conditions encountered in the steam explosion process, as well as in other types of steam treatment, aspen wood and isolated lignin from aspen were subjected to steam treatment under various conditions. The lignin portion was analyzed using NMR and size exclusion chromatography as major analytical techniques. Thereby, the competition between lignin depolymerization and repolymerization was revealed and the conditions required for these two types of reaction identified. Addition of a reactive phenol, 2-naphthol, was shown to inhibit the repolymerization reaction strongly, resulting in a highly improved delignification by subsequent solvent extraction and an extracted lignin of uniform structure.  相似文献   

20.
The main objective of this study was to investigate the potential of peanut husk (Arachis hypogaea L.) as a fiber–peanut mixture to produce fiberboards for general purposes. For panel production, the addition of peanut husk at various percentages to the wood fiber was the only variable. Panels produced utilizing peanut husk were compared to panels produced using 100% wood fiber. The chemical properties of peanut husk; holocellulose and lignin content, alcohol–benzene, hot and cold water, and dilute alkali (1% NaOH) solubility, were also determined. Results indicated that panels could be produced utilizing up to 30% peanut husk without affecting the usability of the panels. It was not possible to meet the minimum IB strength standards when peanut husk was added to the mixture. Higher additions resulted in panels having lower elastic and rupture moduli than the minimum requirements according to TS-EN standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号