首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
2.
We have used proteinase K as a probe to detect cytoplasmically and luminally exposed segments of nascent polypeptides undergoing transport across mammalian microsomal membranes. A series of translocation intermediates consisting of discrete-sized nascent chains was prepared by including microsomal membranes in cell-free translations of mRNAs lacking termination codons. The truncated mRNAs were derived from preprolactin and the G protein of vesicular stomatitis virus and encoded nascent chains ranging between 64 and 200 amino acid residues long. Partially translocated nascent chains of 100 amino acid residues or less were insensitive to protease digestion from the external surface of the membrane while longer nascent chains were susceptible to digestion by externally added protease. We conclude that the increased protease sensitivity of larger nascent chains is due to the exposure of a segment of the nascent polypeptide on the cytoplasmic face of the membrane. In contrast, low molecular weight nascent chains were remarkably resistant to protease digestion even after detergent solubilization of the membrane. The protease resistant behaviour of detergent solubilized nascent chains could be abolished by release of the polypeptide from the ribosome or by the addition of protein denaturants. We propose that the protease resistance of partially translocated nascent chains can be ascribed to components of the translocation apparatus that remain bound to the nascent chain after detergent solubilization of the membrane.  相似文献   

3.
T Sato  M Sakaguchi  K Mihara    T Omura 《The EMBO journal》1990,9(8):2391-2397
We previously showed that the amino-terminal region of P-450 is responsible not only for targeting to endoplasmic reticulum (ER) membrane but also for stable anchoring to the membrane. In the present study, we introduced several mutations or deletions into the signal-anchor region of the chimeric proteins in which the amino-terminal regions of two forms of cytochrome P-450 were fused to the mature portion of interleukin 2. The amino-terminal acidic amino acid residues were replaced with basic amino acid residues or the hydrophobic core sequences were partially deleted, and these mutant proteins were assayed in vitro for their capacity to be inserted into or translocated across the ER membrane. The proteins that received the former manipulations were processed and the IL-2 portion was translocated across the membrane. In one case, the processing did not occur, thereby enabling the chimeric protein to anchor on the luminal side of the ER. Those that received the latter manipulation were also processed and the IL-2 portion translocated across the ER. These results strongly suggest that the signal-anchor function is determined both by the amino-terminal charged amino acid residues and by the length of the hydrophobic stretch.  相似文献   

4.
Cytochrome P450b is an integral membrane protein of the rat hepatocyte endoplasmic reticulum (ER) which is cotranslationally inserted into the membrane but remains largely exposed on its cytoplasmic surface. The extreme hydrophobicity of the amino-terminal portion of P450b suggests that it not only serves to initiate the cotranslational insertion of the nascent polypeptide but that it also halts translocation of downstream portions into the lumen of the ER and anchors the mature protein in the membrane. In an in vitro system, we studied the cotranslational insertion into ER membranes of the normal P450b polypeptide and of various deletion variants and chimeric proteins that contain portion of P450b linked to segments of pregrowth hormone or bovine opsin. The results directly established that the amino-terminal 20 residues of P450b function as a combined insertion-halt-transfer signal. Evidence was also obtained that suggests that during the early stages of insertion, this signal enters the membrane in a loop configuration since, when the amino-terminal hydrophobic segment was placed immediately before a signal peptide cleavage site, cleavage by the luminally located signal peptidase took place. After entering the membrane, the P450b signal, however, appeared to be capable of reorienting within the membrane since a bovine opsin peptide segment linked to the amino terminus of the signal became translocated into the microsomal lumen. It was also found that, in addition to the amino-terminal combined insertion-halt-transfer signal, only one other segment within the P450b polypeptide, located between residues 167 and 185, could serve as a halt-transfer signal and membrane-anchoring domain. This segment was shown to prevent translocation of downstream sequences when the amino-terminal combined signal was replaced by the conventional cleavable insertion signal of a secretory protein.  相似文献   

5.
Uncleaved signal-anchor sequences of membrane proteins inserted into the endoplasmic reticulum initiate the translocation of either the amino-terminal or the carboxyl-terminal polypeptide segment across the bilayer. Which topology is acquired is not determined by the apolar segment of the signal but rather by the hydrophilic sequences flanking it. To study the role of charged residues in determining the membrane topology, the insertion of mutants of the asialoglycoprotein receptor H1, a single-spanning protein with a cytoplasmic amino terminus, was analyzed in transfected COS-7 cells. When the charged amino acids flanking the hydrophobic signal were mutated to residues of opposite charge, half the polypeptides inserted with the inverted orientation. When, in addition, the amino-terminal domain of the mutant protein was truncated, approximately 90% of the polypeptides acquired the inverted topology. The transmembrane orientation appears to be primarily determined by the charges flanking the signal sequence but is modulated by the domains to be translocated.  相似文献   

6.
Molecular sorting of proteins into the cisternal secretory pathway   总被引:1,自引:0,他引:1  
G A Scheele 《Biochimie》1988,70(9):1269-1276
Cotranslational translocation of exportable proteins across the RER membrane prior to their release into the extracellular space has been essentially described by use of canine pancreatic microsomal membranes. Intracisternal segregation of nascent secretory proteins was observed to be irreversible and proteolytic removal of signal sequences resulted in conformationally mature and stable proteins. Structural studies on various translocation peptides from both eukaryotic and prokaryotic preparations showed that many of them have a comparable three-domain organization. A hydrophilic amino-terminal domain is followed by a core region of hydrophobic amino acids and by the region in which the proteolytic cleavage occurs. Membrane components involved in the translocation process namely the signal recognition particle and the SRP receptor as well as the way the vectorial transport mechanism of nascent secretory proteins occurs are also discussed.  相似文献   

7.
I gamma CAT is a hybrid protein that inserts into the membrane of the endoplasmic reticulum as a type II membrane protein. These proteins span the membrane once and expose the NH2-terminal end on the cytoplasmic side and the COOH terminus on the exoplasmic side. I gamma CAT has a single hydrophobic segment of 30 amino acid residues that functions as a signal for membrane insertion and anchoring. The signal-anchor region in I gamma CAT was analyzed by deletion mutagenesis from its COOH-terminal end (delta C mutants). The results show that the 13 amino acid residues on the amino-terminal side of the hydrophobic segment are not sufficient for membrane insertion and translocation. Mutant proteins with at least 16 of the hydrophobic residues are inserted into the membrane, glycosylated, and partially proteolytically processed by a microsomal protease (signal peptidase). The degree of processing varies between different delta C mutants. Mutant proteins retaining 20 or more of the hydrophobic amino acid residues can span the membrane like the parent I gamma CAT protein and are not proteolytically processed. Our data suggest that in the type II membrane protein I gamma CAT, the signals for membrane insertion and anchoring are overlapping and that hydrophilic amino acid residues at the COOH-terminal end of the hydrophobic segment can influence cleavage by signal peptidase. From this and previous work, we conclude that the function of the signal-anchor sequence in I gamma CAT is determined by three segments: a positively charged NH2 terminus, a hydrophobic core of at least 16 amino acid residues, and the COOH-terminal flanking hydrophilic segment.  相似文献   

8.
The effects of a hydrophobic peptide segment inserted into the amino-terminal region of the mature domain of OmpC, an outer membrane protein, on its translocation across the cytoplasmic membrane was studied. Both the intact OmpC and central domain-deleted OmpC were examined. The hydrophobic segment was derived from the signal peptide of OmpF. Secretory translocation across the cytoplasmic membrane was examined by means of proteinase K treatment. Four monoclonal antibodies that recognize different regions of OmpC were used to characterize proteinase K-resistant fragments. Insertion of the hydrophobic segment did not appreciably prevent the translocation of these proteins across the cytoplasmic membrane, larger parts of them being found as mature forms, which were mostly localized outside the cytoplasmic membrane. Circumstantial evidence supports the view, on the other hand, that the inserted hydrophobic domain was retained in the cytoplasmic membrane. It is concluded, therefore, that the hydrophobic segment, although it is not exported across the cytoplasmic membrane, does not prevent the secretion of the following polypeptide chain. The secretion was dependent on the amino-terminal signal peptide. Insertion of positive charges immediately after the hydrophobic segment resulted in suppression of the translocation. Based on these results possible mechanisms by which the secretion of the polypeptide chain after the hydrophobic segment are discussed.  相似文献   

9.
The co-translational insertion of polypeptides into endoplasmic reticulum membranes may be initiated by cleavable amino-terminal insertion signals, as well as by permanent insertion signals located at the amino-terminus or in the interior of a polypeptide. To determine whether the location of an insertion signal within a polypeptide affects its function, possibly by affecting its capacity to achieve a loop disposition during its insertion into the membrane, we have investigated the functional properties of relocated insertion signals within chimeric polypeptides. An artificial gene encoding a polypeptide (THA-HA), consisting of the luminal domain of the influenza hemagglutinin preceded by its amino-terminal signal sequence and linked at its carboxy-terminus to an intact prehemagglutinin polypeptide, was constructed and expressed in in vitro translation systems containing microsomal membranes. As expected, the amino-terminal signal initiated co-translational insertion of the hybrid polypeptide into the membranes. The second, identical, interiorized signal, however, was not recognized by the signal peptidase and was translocated across the membrane. The failure of the interiorized signal to be cleaved may be attributed to the fact that it enters the membrane as part of a translocating polypeptide and therefore cannot achieve the loop configuration that is thought to be adopted by signals that initiate insertion. The finding that the interiorized signal did not halt translocation of downstream sequences, even though it contains a hydrophobic region and must enter the membrane in the same configuration as natural stop-transfer signals, indicates that the HA insertion signal lacks essential elements of halt transfer signals that makes the latter effective membrane-anchoring domains. When the amino-terminal insertion signal of the THA-HA chimera was deleted, the interior signal was incapable of mediating insertion, probably because of steric hindrance by the folded preceding portions of the chimera. Several chimeras were constructed in which the interiorized signal was preceded by polypeptide segments of various lengths. A signal preceded by a segment of 111 amino acids was also incapable of initiating insertion, but insertion took place normally when the segment preceding the signal was only 11-amino acids long.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
11.
Yamamoto H  Fujita H  Kida Y  Sakaguchi M 《Biochemistry》2012,51(17):3596-3605
Various proteins are translocated through and inserted into the endoplasmic reticulum membrane via translocon channels. The hydrophobic segments of signal sequences initiate translocation, and those on translocating polypeptides interrupt translocation to be inserted into the membrane. Positive charges suppress translocation to regulate the orientation of the signal sequences. Here, we investigated the effect of membrane cholesterol on the translocational behavior of nascent chains in a cell-free system. We found that the three distinct translocation processes were sensitive to membrane cholesterol. Cholesterol inhibited the initiation of translocation by the signal sequence, and the extent of inhibition depended on the signal sequence. Even when initiation was not inhibited, cholesterol impeded the movement of the positively charged residues of the translocating polypeptide chain. In surprising contrast, cholesterol enhanced the translocation of hydrophobic sequences through the translocon. On the basis of these findings, we propose that membrane cholesterol greatly affects partitioning of hydrophobic segments into the membrane and impedes the movement of positive charges.  相似文献   

12.
13.
Signal sequences for insertion of proteins into the endoplasmic reticulum induce translocation of either the C- or the N-terminal sequence across the membrane. The end that is translocated is primarily determined by the flanking charges and the hydrophobic domain of the signal. To characterize the hydrophobic contribution to topogenesis, we have challenged the translocation machinery in vivo in transfected COS cells with model proteins differing exclusively in the apolar segment of the signal. Homo-oligomers of hydrophobic amino acids as different in size and shape as Val(19), Trp(19), and Tyr(22) generated functional signal sequences with similar topologies in the membrane. The longer a homo-oligomeric sequence of a given residue, the more N-terminal translocation was obtained. To determine the topogenic contribution of all uncharged amino acids in the context of a hydrophobic signal sequence, two residues in a generic oligoleucine signal were exchanged for all uncharged amino acids. The resulting scale resembles a hydrophobicity scale with the more hydrophobic residues promoting N-terminal translocation. In addition, the helix breakers glycine and proline showed a position-dependent effect, which raises the possibility of a conformational contribution to topogenesis.  相似文献   

14.
Nascent polypeptide chains synthesized by membrane bound ribosomes are cotranslationally translocated through and integrated into the endoplasmic reticulum translocon. Hydrophobic segments and positive charges on the chain are critical to halt the ongoing translocation. A marginally hydrophobic segment, which cannot be inserted into the membrane by itself, can be a transmembrane segment depending on its downstream positive charges. In certain conditions, positive charges even 60 residues downstream cause the marginally hydrophobic segment to span the membrane by inducing the segment to slide back from the lumen. Here we systematically examined the effect of a core sugar chain on the fate of a marginally hydrophobic segment using a cell-free translation and translocation system. A sugar chain added within 12 residues upstream of the marginally hydrophobic segment prevents the sliding back and promotes forward movement of the polypeptide chain. The sugar chain apparently functions as a ratchet to keep the polypeptide chain in the lumen. We propose that the sugar chain is a third topology determinant of membrane proteins, in addition to a hydrophobic segment and positive charges of the nascent chain.  相似文献   

15.
The previously observed (Walter, et al. 1981 J. Cell Biol. 91:545-550) inhibitory effect of SRP selectively on the cell-free translation of mRNA for secretory protein (preprolactin) was shown here to be caused by a signal sequence-induced and site-specific arrest in polypeptide chain elongation. The Mr of the SRP-arrested nascent preprolactin chain was estimated to be 8,000 corresponding to approximately 70 amino acid residues. Because the signal sequence of preprolactin comprises 30 residues and because approximately 40 residues of the nascent chain are buried (protected from protease) in the large ribosomal subunit, we conclude that it is the interaction of SRP with the amino-terminal signal peptide of the nascent chain (emerged from the large ribosomal subunit) that modulates translation and thereby causes an arrest in chain elongation. This arrest is released upon SRP-mediated binding of the elongation-arrested ribosomes to the microsomal membrane, resulting in chain completion and translocation into the microsomal vesicle.  相似文献   

16.
Synaptotagmin II is a type I signal-anchor protein, in which the NH(2)-terminal domain of 60 residues (N-domain) is located within the lumenal space of the membrane and the following hydrophobic region (H-region) shows transmembrane topology. We explored the early steps of cotranslational integration of this molecule on the endoplasmic reticulum membrane and demonstrated the following: (a) The translocation of the N-domain occurs immediately after the H-region and the successive positively charged residues emerge from the ribosome. (b) Positively charged residues that follow the H-region are essential for maintaining the correct topology. (c) It is possible to dissect the lengths of the nascent polypeptide chains which are required for ER targeting of the ribosome and for translocation of the N-domain, thereby demonstrating that different nascent polypeptide chain lengths are required for membrane targeting and N-domain translocation. (d) The H-region is sufficiently long for membrane integration. (e) Proline residues preceding H-region are critical for N-domain translocation, but not for ER targeting. The proline can be replaced with amino acid with low helical propensity.  相似文献   

17.
Cell-free processing and segregation of insulin precursors   总被引:3,自引:0,他引:3  
The biosynthesis, segregation, and processing of preproinsulin (116 amino acids) was investigated to determine the mechanism(s) by which it is translocated across the endoplasmic reticulum membrane. Islet mRNA was translated in the wheat germ cell-free system, and at various times during preproinsulin synthesis, puromycin was added, followed by addition of microsomal membranes. Neither processing of preproinsulin nor translocation of proinsulin into microsomal membranes occurred in the presence of puromycin. Synchronization of preproinsulin translation by addition of 7-methylguanosine 5'-phosphate enabled the timing of preproinsulin synthesis and proinsulin (91 amino acids) segregation into microsomal membranes to be determined. Membrane binding occurs when about 60 amino acids have been polymerized, i.e. prior to the completion of the polypeptide chain. The binding of signal recognition particle to the nascent signal is demonstrated to be an absolute requirement for translocation and processing of preproinsulin. The results indicate that segregation and processing of preproinsulin are co-translational events; no evidence for a post-translational mechanism was found. Furthermore, this work, together with similar studies, suggests that presecretory polypeptides must be synthesized as part of a precursor with a minimum size of 60-80 amino acids in order to effect membrane binding and translocation of the polypeptide chain within the intracisternal space of the endoplasmic reticulum.  相似文献   

18.
19.
The rotavirus non-structural glycoprotein (NS28), the receptor for the virus core during budding into the lumen of the rough endoplasmic reticulum (RER), is 175 amino acids long and possesses an uncleaved signal sequence and two amino-terminal glycosylation sites. Utilizing one of three potential hydrophobic domains, the protein spans the membrane only once, with the glycosylated amino-terminal region oriented to the luminal side of the ER and the carboxy-terminal region to the cytoplasmic side. To localize sequences involved in translocation of NS28, we constructed a series of mutations in the coding regions for the hydrophobic domains of the protein. Mutant protein products were studied by in vitro translation and by transfection in vivo. In transfected cells, all mutant forms localize to the ER, and none are secreted. In vitro, each of the three hydrophobic domains is able to associate with microsomes. However, glycosylation and proteolysis of wild-type and mutant forms of NS28 indicates that the wild-type protein is anchored in the membrane only by the second hydrophobic domain, leaving approximately 131 residues exposed on the cytoplasmic side for receptor - ligand interaction.  相似文献   

20.
The major 70-kd protein of the yeast mitochondrial outer membrane is made on cytosolic ribosomes and imported into the outer membrane without proteolytic cleavage. We have attempted to identify the sequences which target the protein to the mitochondria and which permanently anchor it to the lipid bilayer of the outer membrane. By manipulating the cloned gene we have deleted 13 different regions throughout the polypeptide; in addition, we have fused amino-terminal regions of different length to beta-galactosidase. Each altered gene was introduced into yeast and the intracellular fate of the corresponding polypeptide product was determined by subcellular fractionation. All the information for targeting and anchoring the 70-kd protein (617 amino acids) was contained within the amino-terminal 41 amino acids. When this entire region was deleted, the protein was recovered with the cytosol fraction. However, several restricted deletions within this amino-terminal region appeared to affect targeting and anchoring differentially: most of the altered protein remained in the cytosol but a small fraction was misrouted into the mitochondrial matrix space. We suggest that targeting is mediated by a region which includes the 11 amino-terminal amino acids whereas the permanent membrane anchor is provided by a typical transmembrane sequence between residues 9 and 38.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号