首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An internal signal sequence: the asialoglycoprotein receptor membrane anchor   总被引:56,自引:0,他引:56  
M Spiess  H F Lodish 《Cell》1986,44(1):177-185
The human asialoglycoprotein receptor H1 is anchored in the membrane by a single stretch of 20 hydrophobic amino acids; the hydrophilic amino terminus faces the cytoplasm, and the carboxyl terminus is exoplasmic. We show here that glycosylation and insertion of the asialoglycoprotein receptor into the endoplasmic reticulum membrane is cotranslational and SRP-dependent and occurs without proteolytic cleavage. The membrane-anchor domain is necessary for membrane insertion, since a receptor with the segment deleted is neither inserted nor glycosylated. The segment is also sufficient for membrane insertion, since it will initiate translocation of a carboxy-terminal domain of rat alpha-tubulin across the membrane. We propose that a helical hairpin mechanism of membrane insertion is used both by cleaved amino-terminal and uncleaved internal signal sequences.  相似文献   

2.
Opsin, a member of the G-protein-coupled receptor family, is a polytopic membrane protein that does not encode a cleaved amino-terminal signal sequence. The amino terminus of opsin precedes the first known targeting information, suggesting that it translocates across the endoplasmic reticulum (ER) membrane after synthesis, uncoupled from translation. However, translocation across the mammalian ER is believed to be coupled to protein synthesis. In this study we show that opsin, within a range of nascent peptide lengths, targets and translocates equally efficiently co- and posttranslationally. Longer nascent opsin peptides have a lower efficiency of cotranslational translocation but an even lower efficiency of posttranslational translocation. We also show that SRP is required for both co- and posttranslational targeting.  相似文献   

3.
The co-translational insertion of polypeptides into endoplasmic reticulum membranes may be initiated by cleavable amino-terminal insertion signals, as well as by permanent insertion signals located at the amino-terminus or in the interior of a polypeptide. To determine whether the location of an insertion signal within a polypeptide affects its function, possibly by affecting its capacity to achieve a loop disposition during its insertion into the membrane, we have investigated the functional properties of relocated insertion signals within chimeric polypeptides. An artificial gene encoding a polypeptide (THA-HA), consisting of the luminal domain of the influenza hemagglutinin preceded by its amino-terminal signal sequence and linked at its carboxy-terminus to an intact prehemagglutinin polypeptide, was constructed and expressed in in vitro translation systems containing microsomal membranes. As expected, the amino-terminal signal initiated co-translational insertion of the hybrid polypeptide into the membranes. The second, identical, interiorized signal, however, was not recognized by the signal peptidase and was translocated across the membrane. The failure of the interiorized signal to be cleaved may be attributed to the fact that it enters the membrane as part of a translocating polypeptide and therefore cannot achieve the loop configuration that is thought to be adopted by signals that initiate insertion. The finding that the interiorized signal did not halt translocation of downstream sequences, even though it contains a hydrophobic region and must enter the membrane in the same configuration as natural stop-transfer signals, indicates that the HA insertion signal lacks essential elements of halt transfer signals that makes the latter effective membrane-anchoring domains. When the amino-terminal insertion signal of the THA-HA chimera was deleted, the interior signal was incapable of mediating insertion, probably because of steric hindrance by the folded preceding portions of the chimera. Several chimeras were constructed in which the interiorized signal was preceded by polypeptide segments of various lengths. A signal preceded by a segment of 111 amino acids was also incapable of initiating insertion, but insertion took place normally when the segment preceding the signal was only 11-amino acids long.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Microsomal forms of eukaryotic cytochrome P450 proteins are integral membrane proteins of the endoplasmic reticulum (ER) membrane which are targeted to the ER via the signal recognition particle pathway. A hydrophobic amino terminus serves as a combined signal sequence and major membrane anchor (signal-anchor sequence) for the microsomal P450s. We have examined the insertion of bovine 17 alpha-hydroxylase (P45017 alpha) into the ER of COS 1 cells in order to evaluate the role of membrane insertion of the amino-terminal signal-anchor of microsomal P450s as a functional determinant for these enzymes. Previously, we have shown that deletion of the hydrophobic amino terminus from P45017 alpha reduced membrane targeting and insertion by 5-fold compared with the wild-type protein, abolished enzymatic activity, and resulted in an aberrant CO difference spectrum. In the present study we have replaced the amino terminus of P45017 alpha with two heterologous signal-anchor sequences, one that is similar and one that is very different from the P45017 alpha sequence. The chimeric proteins were expressed in COS 1 cells. Immunoblot analysis of isolated microsomal membranes show that the heterologous signal-anchor sequences functioned to target the P45017 alpha protein to the ER. Enzymatic assays in intact COS 1 cells indicate that both the chimeric proteins are efficient 17 alpha-hydroxylase enzymes. The amino terminus of P45017 alpha was also replaced with a sequence that is not a signal-anchor, and the expressed protein was neither targeted to the ER nor was functional in COS 1 cells. In conclusion, both the structure and catalytic activity of P45017 alpha in COS 1 cells is dependent upon an amino-terminal sequence that functions as a signal-anchor sequence and not upon the precise sequence of the amino terminus.  相似文献   

5.
6.
7.
8.
The human cytomegalovirus US2 gene product targets major histocompatibility class I molecules for degradation in a proteasome-dependent fashion. Degradation requires interaction between the endoplasmic reticulum (ER) lumenal domains of US2 and class I. While ER insertion of US2 is essential for US2 function, US2 lacks a cleavable signal peptide. Radiosequence analysis of glycosylated US2 confirms the presence of the NH(2) terminus predicted on the basis of the amino acid sequence, with no evidence for processing by signal peptidase. Despite the absence of cleavage, the US2 NH(2)-terminal segment constitutes its signal peptide and is sufficient to drive ER translocation of chimeric reporter proteins, again without further cleavage. The putative US2 signal peptide c-region is responsible for the absence of cleavage, despite the presence of a suitable -3,-1 amino acid motif for signal peptidase recognition. In addition, the US2 signal peptide affects the early processing events of the nascent polypeptide, altering the efficiency of ER insertion and subsequent N-linked glycosylation. To our knowledge, US2 is the first example of a membrane protein that does not contain a cleavable signal peptide, yet otherwise behaves like a type I membrane glycoprotein.  相似文献   

9.
Nascent polypeptide chains synthesized by membrane bound ribosomes are cotranslationally translocated through and integrated into the endoplasmic reticulum translocon. Hydrophobic segments and positive charges on the chain are critical to halt the ongoing translocation. A marginally hydrophobic segment, which cannot be inserted into the membrane by itself, can be a transmembrane segment depending on its downstream positive charges. In certain conditions, positive charges even 60 residues downstream cause the marginally hydrophobic segment to span the membrane by inducing the segment to slide back from the lumen. Here we systematically examined the effect of a core sugar chain on the fate of a marginally hydrophobic segment using a cell-free translation and translocation system. A sugar chain added within 12 residues upstream of the marginally hydrophobic segment prevents the sliding back and promotes forward movement of the polypeptide chain. The sugar chain apparently functions as a ratchet to keep the polypeptide chain in the lumen. We propose that the sugar chain is a third topology determinant of membrane proteins, in addition to a hydrophobic segment and positive charges of the nascent chain.  相似文献   

10.
The effects of a hydrophobic peptide segment inserted into the amino-terminal region of the mature domain of OmpC, an outer membrane protein, on its translocation across the cytoplasmic membrane was studied. Both the intact OmpC and central domain-deleted OmpC were examined. The hydrophobic segment was derived from the signal peptide of OmpF. Secretory translocation across the cytoplasmic membrane was examined by means of proteinase K treatment. Four monoclonal antibodies that recognize different regions of OmpC were used to characterize proteinase K-resistant fragments. Insertion of the hydrophobic segment did not appreciably prevent the translocation of these proteins across the cytoplasmic membrane, larger parts of them being found as mature forms, which were mostly localized outside the cytoplasmic membrane. Circumstantial evidence supports the view, on the other hand, that the inserted hydrophobic domain was retained in the cytoplasmic membrane. It is concluded, therefore, that the hydrophobic segment, although it is not exported across the cytoplasmic membrane, does not prevent the secretion of the following polypeptide chain. The secretion was dependent on the amino-terminal signal peptide. Insertion of positive charges immediately after the hydrophobic segment resulted in suppression of the translocation. Based on these results possible mechanisms by which the secretion of the polypeptide chain after the hydrophobic segment are discussed.  相似文献   

11.
Synaptobrevin/vesicle-associated membrane protein is one of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is proposed to provide specificity for the targeting and fusion of vesicles with the plasma membrane. It belongs to a class of membrane proteins which lack a signal sequence and contain a single hydrophobic segment close to their C-terminus, leaving most of the polypeptide chain in the cytoplasm (tail-anchored). We show that in neuroendocrine PC12 cells, synaptobrevin is not directly incorporated into the target organelle, synaptic-like vesicles. Rather, it is first inserted into the endoplasmic reticulum (ER) membrane and is then transported via the Golgi apparatus. Its insertion into the ER membrane in vitro occurs post-translationally, is dependent on ATP and results in a trans-membrane orientation of the hydrophobic tail. Membrane integration requires ER protein(s) different from the translocation components needed for proteins with signal sequences, thus suggesting a novel mechanism of insertion.  相似文献   

12.
A membrane-integrated , core-glycosylated form of bovine opsin was synthesized in vitro when bovine retina mRNA was translated in a wheat germ cell-free system supplemented with dog pancreas microsomal vesicles; glycosylation and integration of opsin into membranes were coupled to translation. Proteolysis with themolysin was used to probe the orientation of opsin within the dog pancreas microsomal membrane, and to compare it with that of opsin in rod cell disk membranes isolated from bovine retina. Intact microsomal or disk vesicles were required for production of discrete, membrane-associated thermolysin fragments of opsin; no discrete opsin fragments were detected when membranes were incubated with thermolysin in the presence of the nonionic detergent, Triton X-100. The major opsin fragments produced by themosylin treatment of intact microsomal vesicles resembled those from disk vesicles in their size, oligosaccharide content, and order of appearance. In each case, the first cleavage of opsin took place at the COOH-terminus, generating a glycosylated fragment, O’, which was only slightly smaller than intact opsin. Both the microsomal and disk membrane forms of O’ were next cleaved internally; glycosylated fragments of similar sizes in both cases were detected which were derived from the NH(2)-terminal portion of O’. Several smaller NH(2)-terminal fragments of opsin were detected only in thermolysin-treated microsomal membranes, and not in disk membranes. The data suggest that the topology of opsin integrated into dog pancreas microsomal vesicles is similar to that in rod cell disk vesicles, although not identical. In each case, the glycosylated NH(2)-terminal region of opsin is located within the lumen of the vesicle, while discrete COOH-terminal and internal segments of opsin apparently emerge at the outer, cytoplasmic face of the membrane. Thus, opsin in the heterologous microsomal membrane, like its counterpart in the native disk membrane, may cross the bilayer at least three times. The internal domain of the polypeptide that emerges at the outer membrane surface is apparently more highly exposed in the case of opsin in microsomal membranes, evidenced by the additional internal thermolysin cleavage sites detected.  相似文献   

13.
Oleosin proteins from Arabidopsis assume a unique endoplasmic reticulum (ER) topology with a membrane-integrated hydrophobic (H) domain of 72 residues, flanked by two cytosolic hydrophilic domains. We have investigated the targeting and topological determinants present within the oleosin polypeptide sequence using ER-derived canine pancreatic microsomes. Our data indicate that oleosins are integrated into membranes by a cotranslational, translocon-mediated pathway. This is supported by the identification of two independent functional signal sequences in the H domain, and by demonstrating the involvement of the SRP receptor in membrane targeting. Oleosin topology was manipulated by the addition of an N-terminal cleavable signal sequence, resulting in translocation of the N terminus to the microsomal lumen. Surprisingly, the C terminus failed to translocate. Inhibition of C-terminal translocation was not dependent on either the sequence of hydrophobic segments in the H domain, the central proline knot motif or charges flanking the H domain. Therefore, the topological constraint results from the length and/or the hydrophobicity of the H domain, implying a general case that long hydrophobic spans are unable to translocate their C terminus to the ER lumen.  相似文献   

14.
Cytochrome P4501A1 is a hepatic, microsomal membrane–bound enzyme that is highly induced by various xenobiotic agents. Two NH2-terminal truncated forms of this P450, termed P450MT2a and MT2b, are also found localized in mitochondria from β-naphthoflavone–induced livers. In this paper, we demonstrate that P4501A1 has a chimeric NH2-terminal signal that facilitates the targeting of the protein to both the ER and mitochondria. The NH2-terminal 30–amino acid stretch of P4501A1 is thought to provide signals for ER membrane insertion and also stop transfer. The present study provides evidence that a sequence motif immediately COOH-terminal (residues 33–44) to the transmembrane domain functions as a mitochondrial targeting signal under both in vivo and in vitro conditions, and that the positively charged residues at positions 34 and 39 are critical for mitochondrial targeting. Results suggest that 25% of P4501A1 nascent chains, which escape ER membrane insertion, are processed by a liver cytosolic endoprotease. We postulate that the NH2-terminal proteolytic cleavage activates a cryptic mitochondrial targeting signal. Immunofluorescence microscopy showed that a portion of transiently expressed P4501A1 is colocalized with the mitochondrial-specific marker protein cytochrome oxidase subunit I. The mitochondrial-associated MT2a and MT2b are localized within the inner membrane compartment, as tested by resistance to limited proteolysis in both intact mitochondria and mitoplasts. Our results therefore describe a novel mechanism whereby proteins with chimeric signal sequence are targeted to the ER as well as to the mitochondria.  相似文献   

15.
Multilineage colony stimulating factor is a secretory protein with a cleavable signal sequence that is unusually long and hydrophobic. Using molecular cloning techniques we exchanged sequences NH2- or COOH-terminally flanking the hydrophobic signal sequence. Such modified fusion proteins still inserted into the membrane but their signal sequence was not cleaved. Instead the proteins were now anchored in the membrane by the formerly cleaved signal sequence (signal-anchor sequence). They exposed the NH2 terminus on the exoplasmic and the COOH terminus on the cytoplasmic side of the membrane. We conclude from our results that hydrophilic sequences flanking the hydrophobic core of a signal sequence can determine cleavage by signal peptidase and insertion into the membrane. It appears that negatively charged amino acid residues close to the NH2 terminal side of the hydrophobic segment are compatible with translocation of this segment across the membrane. A tripartite structure is proposed for signal-anchor sequences: a hydrophobic core region that mediates targeting to and insertion into the ER membrane and flanking hydrophilic segments that determine the orientation of the protein in the membrane.  相似文献   

16.
The Sec61 complex is the central component of the protein translocation apparatus of the ER membrane. We have addressed the role of the β subunit (Sec61β) during cotranslational protein translocation. With a reconstituted system, we show that a Sec61 complex lacking Sec61β is essentially inactive when elongation and membrane targeting of a nascent chain occur at the same time. The translocation process is perturbed at a step where the nascent chain would be inserted into the translocation channel. However, if sufficient time is given for the interaction of the nascent polypeptide with the mutant Sec61 complex, translocation is almost normal. Thus Sec61β kinetically facilitates cotranslational translocation, but is not essential for it.

Using chemical cross-linking we show that Sec61β not only interacts with subunits of the Sec61 complex but also with the 25-kD subunit of the signal peptidase complex (SPC25), thus demonstrating for the first time a tight interaction between the SPC and the Sec61 complex. Interestingly, the cross-links between Sec61β and SPC25 and between Sec61β and Sec61α depend on the presence of membrane-bound ribosomes, suggesting that these interactions are induced when translocation is initiated. We propose that the SPC is transiently recruited to the translocation site, thus enhancing its activity.

  相似文献   

17.
Human asialoglycoprotein receptor H1 is a single-spanning membrane protein with an amino-terminal domain of 40 residues exposed to the cytoplasm and the carboxyl-terminal domain translocated to the exoplasmic side of the membrane. It has been shown earlier that the transmembrane segment functions as an internal uncleaved signal sequence for insertion into the endoplasmic reticulum. In a deletion protein lacking almost the entire cytoplasmic domain, the signal sequence is cleaved at the carboxyl-terminal end of the transmembrane segment. All available criteria suggest that the protein is processed by signal peptidase. The cytoplasmic domain of the receptor does not directly inhibit signal cleavage since it does not detectably hinder cleavage of the normally amino-terminal signal sequence of influenza hemagglutinin in fusion proteins. We suggest that by its size or structure it affects the position of the receptor in the membrane and thus the accessibility of the potential cleavage site to signal peptidase.  相似文献   

18.
The 54 kDa subunit of the signal recognition particle (SRP54) binds to the signal sequences of nascent secretory and membrane proteins and it contributes to the targeting of these precursors to the membrane of the endoplasmic reticulum (ER). At the ER membrane, the binding of the signal recognition particle (SRP) to its receptor triggers the release of SRP54 from its bound signal sequence and the nascent polypeptide is transferred to the Sec61 translocon for insertion into, or translocation across, the ER membrane. In the current article, we have characterized the specificity of anti-SRP54 autoantibodies, which are highly characteristic of polymyositis patients, and investigated the effect of these autoantibodies on the SRP function in vitro. We found that the anti-SRP54 autoantibodies had a pronounced and specific inhibitory effect upon the translocation of the secretory protein preprolactin when analysed using a cell-free system. Our mapping studies showed that the anti-SRP54 autoantibodies bind to the amino-terminal SRP54 N-domain and to the central SRP54 G-domain, but do not bind to the carboxy-terminal M-domain that is known to bind ER signal sequences. Nevertheless, anti-SRP54 autoantibodies interfere with signal-sequence binding to SRP54, most probably by steric hindrance. When the effect of anti-SRP autoantibodies on protein targeting the ER membrane was further investigated, we found that the autoantibodies prevent the SRP receptor-mediated release of ER signal sequences from the SRP54 subunit. This observation supports a model where the binding of the homologous GTPase domains of SRP54 and the α-subunit of the SRP receptor to each other regulates the release of ER signal sequences from the SRP54 M-domain.  相似文献   

19.
Uncleaved signal-anchor sequences of membrane proteins inserted into the endoplasmic reticulum initiate the translocation of either the amino-terminal or the carboxyl-terminal polypeptide segment across the bilayer. Which topology is acquired is not determined by the apolar segment of the signal but rather by the hydrophilic sequences flanking it. To study the role of charged residues in determining the membrane topology, the insertion of mutants of the asialoglycoprotein receptor H1, a single-spanning protein with a cytoplasmic amino terminus, was analyzed in transfected COS-7 cells. When the charged amino acids flanking the hydrophobic signal were mutated to residues of opposite charge, half the polypeptides inserted with the inverted orientation. When, in addition, the amino-terminal domain of the mutant protein was truncated, approximately 90% of the polypeptides acquired the inverted topology. The transmembrane orientation appears to be primarily determined by the charges flanking the signal sequence but is modulated by the domains to be translocated.  相似文献   

20.
The translocating chain-associating membrane protein (TRAM) is a glycoprotein involved in the translocation of secreted proteins into the endoplasmic reticulum (ER) lumen and in the insertion of integral membrane proteins into the lipid bilayer. As a major step toward elucidating the structure of the functional ER translocation/insertion machinery, we have characterized the membrane integration mechanism and the transmembrane topology of TRAM using two approaches: photocross-linking and truncated C-terminal reporter tag fusions. Our data indicate that TRAM is recognized by the signal recognition particle and translocon components, and suggest a membrane topology with eight transmembrane segments, including several poorly hydrophobic segments. Furthermore, we studied the membrane insertion capacity of these poorly hydrophobic segments into the ER membrane by themselves. Finally, we confirmed the main features of the proposed membrane topology in mammalian cells expressing full-length TRAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号