首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
绿荧光蛋白(greenfluorescentprotein,GFP)是源于水母(Jelyfish)、海笔(SeaPen,SeaPansy)等海洋无脊椎动物的一种蛋白质,这种蛋白质在体外经适当波长的光激发便可发出绿光,所发出的绿光用普通荧光显微镜或荧光激活细胞分拣器(FACS)均可检测到。GFP作为动、植物以及微生物基因工程研究上的一种选择标记具有检测灵敏度高,操作简便,对机体毒副作用小且不需要添加任何底物或辅助因子等优点,更重要的是检测GFP无损于细胞或胚胎的完整性及活力。本文概括介绍GFP的生化、发光光谱及遗传学特征及其在转基因动物研究上的应用。  相似文献   

2.
Green fluorescent protein (GFP) expression was evaluated in tissues of different transgenic rodents--Sprague-Dawley (SD) rat strain [SD-Tg(GFP)Bal], W rat strain [Wistar-TgN(CAG-GFP)184ys], and M mouse strain [Tg(GFPU)5Nagy/J]--by direct fluorescence of native GFP expression and by immunohistochemistry. The constitutively expressing GFP transgenic strains showed tissue-specific differences in GFP expression, and GFP immunohistochemistry amplified the fluorescent signal. The fluorescence of stem/progenitor cells cultured as neurospheres from the ependymal region of the adult spinal cord from the GFP SD and W rat strains was assessed in vitro. After transplantation of the cells into wild-type spinal cord, the ability to track the grafted cells was evaluated in vivo. Cultured stem/progenitor cells from the SD strain required GFP immunostaining to be visualized. Likewise, after transplantation of SD cells into the spinal cord, immunohistochemical amplification of the GFP signal was required for detection. In contrast, GFP expression of stem/progenitor cells generated from the W strain was readily detected by direct fluorescence both in vitro and in vivo without the need for immunohistochemical amplification. The cultured stem/progenitor cells transplanted into the spinal cord survived for at least 49 days after transplantation, and continued to express GFP, demonstrating stable expression of the GFP transgene in vivo.  相似文献   

3.
Green fluorescent protein (GFP) is a popular qualitative reporter protein used to study different aspects of plant biology. However, to be used as a reliable quantitative reporter in expression studies using fluorescence based assays, methods to eliminate interfering endogenous molecules must be considered. Therefore, a standard curve based solid phase fluorescent immunoassay that eliminates the effects of interfering endogenous molecules was developed to quantify the GFP levels in soluble green extracts prepared from plants. Microtiter plates coated with anti-GFP were used to capture GFP from soluble plant extracts, interfering endogenous molecules was eliminated by washing without disturbing the anti-GFP binding of GFP, and then the fluorescence intensity of bound GFP was measured using a spectrofluorometer. We report in this study the use of this method to quantify the expression levels of soluble modified GFP in transgenic Arabidopsis thaliana.  相似文献   

4.
A dual-marker combination, manA-gfp, comprising 2 independent expression cassettes of genes encoding an Escherichia coli phosphomannose isomerase (PMI) and a synthetic green fluorescent protein (GFP), was incorporated into the binary vector pPZP201. Agrobacterium tumefaciens-mediated transfer was used to introduce the manA-gfp into the mature-seed derived calli of Agrostis stoloifera L. 'Crenshaw'. The putative transgenic bentgrass calli were screened in Murashige and Skoog medium containing 15 g mannose/L, in conjunction with a visual examination of the GFP expression with a fluorescence stereomicroscope. Calli with GFP fluorescence grew well on the mannose selection media. A total of 24 transgenic plants derived from a single piece of callus lobe were studied for the genomic integration, expression, and function of the transgene. Genomic integration of the dual markers manA and gfp was confirmed by Southern blotting analysis, and the expression of manA also was validated by using PMI-specific antiserum. The inheritance and expression of the dual marker, manA-gfp, was demonstrated in the T1 generation. This study on the environmentally friendly markers further documented the feasibility of using alternative selection methods without using herbicide- or antibiotic-resistance markers.  相似文献   

5.
用绿色荧光蛋白监测转基因植物中选择标记基因的消除   总被引:1,自引:1,他引:0  
绿色荧光蛋白(GFP)可直接进行活体观察,它的这个优点可被用于监测转基因植物中选择标记基因的消除。为此,构建了植物表达载体pGNG,将绿色荧光蛋白基因(gfp)和卡那霉素抗性基因表达盒(NosP-nptll-NosT)一起克隆在两个同向的lox位点间,在第一个lox位点上游置有CaMV 35S启动子以驱动GFP表达,第二个lox位点下游置有不含启动子的大肠杆菌β-葡萄糖醛酸酶(GUS)基因。首先在含卡那霉素(Kan)的培养基上筛选出转pGNG的烟草,借助绿色荧光可容易地检出表达GFP的转化体。然后用另一转化载体pCambia1300Cre二次转化表达GFP的转基因植物,利用另一选择标记基因潮霉素抗性基因(hpt)进行筛选,在获得的再生植株中,Cre重组酶的表达消除了转化体中两lox位点间的gfpnptll。实验结果表明可借助GFP荧光的消失,快速选出nptII被消除的二次转化体,同时GUS(作为目的蛋白) 在CaMV 35S启动子驱动下获得表达。最后利用后代的分离将hptcre除去。  相似文献   

6.
The color of mice: in the light of GFP-variant reporters   总被引:7,自引:0,他引:7  
The mouse currently represents the premier model organism for mammalian genetic studies. Over the past decade the production of targeted and transgenic lines of mice has become commonplace, with current technology allowing the creation of mutations at base pair resolution. Such genome modifications are becoming increasingly elaborate and often incorporate gene-based reporters for tagging different cellular populations. Until recently, lacZ, the bacterial beta-galactosidase gene has been the marker of choice for most studies in the mouse. However, over the past 3 years another valuable reporter has emerged, and its attractiveness is reflected by an explosion in its use in mice. Green fluorescent protein (GFP), a novel autofluorescent genetic reporter derived from the bioluminescent jellyfish Aequorea victoria, currently represents a unique alternative to other gene-based reporters in that its visualization is non-invasive and so can be monitored in real-time in vitro or in vivo. It has the added advantage that it can be quantified by, for example, flow cytometry, confocal microscopy, and fluorometric assays. Several mutants of the original wild-type GFP gene that improve thermostability and fluorescence have been engineered. Enhanced GFP is one such variant, which has gained popularity for use in transgenic or targeted mice. Moreover, various GFP spectral variants have also been developed, and two of these novel color variants, enhanced yellow fluorescent protein (EYFP) and enhanced cyan fluorescent protein (ECFP), can also be used in mice. Since the spectral profiles of the ECFP and EYFP color variants are distinct and non-overlapping, these two reporters can be co-visualized, and are therefore ideal for in vivo double-labeling or fluorescent energy transfer analyses. The use of GFP and its color variants as reporters provides an unprecedented level of sophistication and represents the next step in mouse genome engineering technology by opening up the possibility of combinatorial non-invasive reporter usage within a single animal.  相似文献   

7.
The green fluorescent protein (GFP) from the jellyfish Aequorea victoria is a widely used reporter that can be directly visualized in the living cells in both animals and plants. We inserted a synthetic gene (sgfp) encoding a modified form of the GFP into expression vector, Act1-sgfp for the direct expression of GFP which is easily detectable in rice plants. Green fluorescence emitted from GFP could be visualized in calli, dry seeds, roots and seedlings with green shoots of transgenic rice plants. In our visualization system with a charge-coupled device camera, band-pass filters and a light source, the presence of red chlorophyll autofluorescence from chloroplasts did not alter the green fluorescence of GFP. These results demonstrate that GFP could be used as a non-destructive visual selection marker for examining gene expression in transformed calli, dry seeds and young plants.  相似文献   

8.
9.
Several modifications of a wild-type green fluorescent protein (GFP) gene were combined into a single construct, driven by the ubi-1 promoter and intron region, and transformed into maize. Green fluorescence, indicative of GFP expression, was observed in stably transformed callus as well as in leaves and roots of regenerated plants and their progeny. Cell wall autofluorescence made GFP expression difficult to observe in sections of leaves and roots. However, staining sections with toluidine blue allowed detection of GFP in transgenic tissue. Bright GFP fluorescence was observed in approximately 50% of the pollen of transgenic plants. These results suggest that GFP can be used as a reporter gene in transgenic maize; however, further modification, i.e., to alter the emission spectra, would increase its utility. Received: 17 December 1997 / Revision received: 6 March 1998 / Accepted: 20 March 1998  相似文献   

10.
The pig represents the xenogeneic donor of choice for future organ transplantation in humans for anatomical and physiological reasons. However, to bypass several immunological barriers, strong and stable human genes expression must occur in the pig's organs. In this study we created transgenic pigs using in vitro transfection of cultured cells combined with somatic cell nuclear transfer (SCNT) to evaluate the ubiquitous transgene expression driven by pCAGGS vector in presence of different selectors. pCAGGS confirmed to be a very effective vector for ubiquitous transgene expression, irrespective of the selector that was used. Green fluorescent protein (GFP) expression observed in transfected fibroblasts was also maintained after nuclear transfer, through pre- and postimplantation development, at birth and during adulthood. Germ line transmission without silencing of the transgene was demonstrated. The ubiquitous expression of GFP was clearly confirmed in several tissues including endothelial cells, thus making it a suitable vector for the expression of multiple genes relevant to xenotransplantation where tissue specificity is not required. Finally cotransfection of green and red fluorescence protein transgenes was performed in fibroblasts and after nuclear transfer blastocysts expressing both fluorescent proteins were obtained.  相似文献   

11.
Molecular approaches to sugar beet improvement will benefit from an efficient transformation procedure that does not rely upon exploitation of selectable marker genes such as those which confer antibiotic or herbicide resistance upon the transgenic plants. The expression of the green fluorescent protein (GFP) signal has been investigated during a program of research that was designed to address the need to increase the speed and efficiency of selection of sugar beet transformants. It was envisaged that the GFP reporter could be used initially as a supplement to current selection regimes in order to help eliminate “escapes” and perhaps eventually as a replacement marker in order to avoid the public disquiet associated with antibiotic/herbicide-resistance genes in field-released crops. The sgfp-S65T gene has been modified to have a plant-compatible codon usage, and a serine to threonine mutation at position 65 for enhanced fluorescence under blue light. This gene, under the control of the CaMV 35S promoter, was introduced into sugar beet via Agrobacterium-mediated transformation. Early gene expression in cocultivated sugar beet cultures was signified by green fluorescence several days after cocultivation. Stably transformed calli, which showed green fluorescence at a range of densities, were obtained at frequencies of 3–11% after transferring the inoculated cultures to selection media. Cocultivated shoot explants or embryogenic calli were regularly monitored under the microscope with blue light when they were transferred to media without selective agents. Green fluorescent shoots were obtained at frequencies of 2–5%. It was concluded that the sgfp-S65T gene can be used as a vital marker for noninvasive screening of cells and shoots for transformation, and that it has potential for the development of selectable marker-free transgenic sugar beet.  相似文献   

12.
GABAergic inhibitory neurons are a large population of neurons in the central nervous system (CNS) of mammals and crucially contribute to the function of the circuitry of the brain. To identify specific cell types and investigate their functions labelling of cell populations by transgenic expression of fluorescent proteins is a powerful approach. While a number of mouse lines expressing the green fluorescent protein (GFP) in different subpopulations of GABAergic cells are available, GFP expressing mouse lines are not suitable for either crossbreeding to other mouse lines expressing GFP in other cell types or for Ca2+-imaging using the superior green Ca2+-indicator dyes. Therefore, we have generated a novel transgenic mouse line expressing the red fluorescent protein tdTomato in GABAergic neurons using a bacterial artificial chromosome based strategy and inserting the tdTomato open reading frame at the start codon within exon 1 of the GAD2 gene encoding glutamic acid decarboxylase 65 (GAD65). TdTomato expression was observed in all expected brain regions; however, the fluorescence intensity was highest in the olfactory bulb and the striatum. Robust expression was also observed in cortical and hippocampal neurons, Purkinje cells in the cerebellum, amacrine cells in the retina as well as in cells migrating along the rostral migratory stream. In cortex, hippocampus, olfactory bulb and brainstem, 80% to 90% of neurons expressing endogenous GAD65 also expressed the fluorescent protein. Moreover, almost all tdTomato-expressing cells coexpressed GAD65, indicating that indeed only GABAergic neurons are labelled by tdTomato expression. This mouse line with its unique spectral properties for labelling GABAergic neurons will therefore be a valuable new tool for research addressing this fascinating cell type.  相似文献   

13.
The use of the green fluorescent protein (GFP) to label specific cell types and track gene expression in animal models, such as mice, has evolved to become an essential tool in biological research. Transgenic animals expressing genes of interest linked to GFP, either as a fusion protein or transcribed from an internal ribosomal entry site (IRES) are widely used. Enhanced GFP (eGFP) is the most common form of GFP used for such applications. However, a red fluorescent protein (RFP) would be highly desirable for use in dual‐labeling applications with GFP derived fluorescent proteins, and for deep in vivo imaging of tissues. Recently, a new generation of monomeric (m)RFPs, such as monomeric (m)Cherry, has been developed that are potentially useful experimentally. mCherry exhibits brighter fluorescence, matures more rapidly, has a higher tolerance for N‐terminal fusion proteins, and is more photostable compared with its predecessor mRFP1. mRFP1 itself was the first true monomer derived from its ancestor DsRed, an obligate tetramer in vivo. Here, we report the successful generation of a transgenic mouse line expressing mCherry as a fluorescent marker, driven by the ubiquitin‐C promoter. mCherry is expressed in almost all tissues analyzed including pre‐ and post‐implantation stage embryos, and white blood cells. No expression was detected in erythrocytes and thrombocytes. Importantly, we did not encounter any changes in normal development, general physiology, or reproduction. mCherry is spectrally and genetically distinct from eGFP and, therefore, serves as an excellent red fluorescent marker alone or in combination with eGFP for labelling transgenic animals. genesis 48:723–729, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Wei M  Kong Z  Zhong L  Qiu L  Li Y  Zhao L  Li X  Zhong W 《Plasmid》2012,68(1):61-68
Green fluorescent protein (GFP) is the most potential useful marker for the in situ monitoring of biofilm microbes. The objective of this study was to construct and compare the efficacy of transposon vectors containing native and foreign promoters in monitoring the denitrifying bacterium Pseudomonas stutzeri LYS-86 by chromosomal-integrated gfp. The promoter of nitrite reductase (Pnir) was cloned from LYS-86 and utilized to construct the transposon vector pUT/mini-Tn5-km2-Pnir-gfp. Another transposon vector, pUT/mini-Tn5-km2-Plac-gfp, containing the lactose promoter Plac was also constructed. These two transposon vectors and pUT-luxAB-gfp containing the promoter PpsbA were individually inserted into the chromosome of P. stutzeri LYS-86 by conjugation. Three GFP-tagged recombinant strains, LYS-Plac-gfp, LYS-Pnir-gfp, and LYS-PpsbA-gfp, were selected from the conjugants. Green fluorescence was observed only in LYS-Pnir-gfp, suggesting that the native promoter Pnir may be more suitable for GFP expression in P. stutzeri than the foreign promoters Plac and PpsbA. Indeed, LYS-Pnir-gfp maintained stable GFP fluorescence over 16 subcultures without significant changes in the denitrifying capacity.  相似文献   

15.
The murine stem cell virus (MSCV) promoter exhibits activity in mouse hematopoietic cells and embryonic stem cells. We generated transgenic mice that expressed enhanced green fluorescent protein (GFP) under the control of the MSCV promoter. We obtained 12 transgenic founder mice through 2 independent experiments and found that the bodies of 9 of the founder neonates emitted different levels of GFP fluorescence. Flow cytometric analysis of circulating leukocytes revealed that the frequency of GFP-labeled leukocytes among white blood cells ranged from 1.6% to 47.5% across the 12 transgenic mice. The bodies of 9 founder transgenic mice showed various levels of GFP expression. GFP fluorescence was consistently observed in the cerebellum, with faint or almost no fluorescence in other brain regions. In the cerebellum, 10 founders exhibited GFP expression in Purkinje cells at frequencies of 3% to 76%. Of these, 4 mice showed Purkinje cell-specific expression, while 4 and 2 mice expressed GFP in the Bergmann glia and endothelial cells, respectively. The intensity of the GFP fluorescence in the body was relative to the proportion of GFP-positive leukocytes. Moreover, the frequency of the GFP-expressing leukocytes was significantly correlated with the frequency of GFP-expressing Purkinje cells. These results suggest that the MSCV promoter is useful for preferentially expressing a transgene in Purkinje cells. In addition, the proportion of transduced leukocytes in the peripheral circulation reflects the expression level of the transgene in Purkinje cells, which can be used as a way to monitor transgene expression properties in the cerebellum without invasive techniques.  相似文献   

16.
17.
 The green fluorescent protein (GFP) from Aequorea victoria has been introduced into three different citrus genotypes [Citrus aurantium L., C. aurantifolia (Christm.) Swing. and C. sinensis L. Osbeck×Poncirus trifoliata (L.) Raf.] which are considered recalcitrant to transformation, mainly due to low transformation frequencies and to the regeneration of escape shoots at high frequencies from the Agrobacterium-inoculated explants. High-level GFP expression was detected in transgenic cells, tissues and plants. Using GFP as a vital marker has allowed us to localize the sites of transgene expression in specific cells, always occurring in callus tissue formed from the cambium of the cut ends of explants. Whereas green fluorescent shoots regenerated in all cases from this callus, most escapes regenerated directly from explants with almost no callus formation. Thus, development of callus from cambium is a prerequisite for citrus transformation. Furthermore, in vivo monitoring of GFP expression permitted a rapid and easy discrimination of transgenic and escape shoots. The selection of transgenic shoots could be easily favored by eliminating the escapes and/or by performing shoot-tip grafting of the transgenic buds soon after their origin. GFP-expressing shoots have also been observed in citrus explants co-cultivated with Agrobacterium but cultured in a medium without the selective agent kanamycin. This opens the possibility to rescue the transgenic sectors and to regenerate transgenic plants without using selectable marker genes conferring antibiotic or herbicide resistance, which is currently a topic of much discussion for the commercialization of transgenic plants. Received: 28 October 1998 / Accepted: 28 November 1998  相似文献   

18.
绿色荧光蛋白cDNA在腺病毒重组载体转染中的应用   总被引:6,自引:2,他引:4  
绿色荧光蛋白(green fluorescent protein, GFP)基因是目前发现的唯一能在细胞内表达,且不需要其他外源底物参与的全新报告基因.将GFP cDNA与腺病毒载体pAdE1CMV重组,以lipofectin转染293细胞(一种人胚肾细胞),观察其在真核细胞内的表达情况,为转基因技术提供了新的监测方法.  相似文献   

19.
Germ-line transformation was achieved in the Caribbean fruit fly, Anastrepha suspensa, using a piggyBac vector marked with an enhanced green fluorescent protein gene regulated by the Drosophila melanogaster polyubiquitin promoter. Four transgenic G(0) lines were selected exhibiting unambiguous GFP expression. Southern hybridization indicated the presence of one to four integrations in each of the transgenic lines with two integrations verified as piggyBac-mediated by sequencing their insertion sites. Fluorescence was detectable throughout development, and in adults was most intense from the thoracic flight muscle. Although adult cuticle quenched fluorescence, GFP was routinely detectable in the thorax. A quantitative spectrofluorometric assay was developed for GFP fluorescence that indicated differing levels of fluorescence among the transgenic lines, suggesting some level of position effect variegation/suppression. These results are encouraging for the use of this marker system in insect species not amenable to mutation-based visible markers. Together with the piggyBac vector, a transformation system is presented that has the potential to be universally applicable in insect species.  相似文献   

20.
绿色荧光蛋白(GFP)是海洋生物水母(Aequorea victoria)体内的一种发光蛋白,分子量27kD,由238个氨基酸组成。该蛋白65~67位Ser-Tyr-Gly三种氨基酸环化加氧形成特殊的生色团结构。野生型GFP发光较弱,而且gfp-cDNA含有隐蔽型剪切位点,而加工改造的GFP在植物中能够正常表达并且加强了荧光信号。GFP作为新的报告基因和遗传标记被广泛应用于植物研究之中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号