首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
An autofluorescent substance occurs in the flagella of flagellate cells of the golden and brown algae. It is localized only in the posterior (short) flagellum and could not be detected in the anterior (long) one. It showed maximum fluorescence emission at 515–520 nm upon excitation of 440 nm; therefore, it is considered to be a flavin. This substance is distributed widely among flagellate cells of golden and brown algae irrespective of their nature (vegetative cells, zoospores, gametes, or sperm). It is absent, however, in some brown algal zoospores and sperm which lack an eyespot and flagellar swelling and are considered to lack phototaxis. Because the flagellar swelling in the posterior flagellum is a presumptive photoreceptor for phototaxis in these groups, it is suggested that the flavin located in the posterior flagellum acts as a photoreceptor pigment in phototaxis.  相似文献   

2.
Specific binding of fluoresceinated succinyl-concanavalin A, wheat germ agglutinin, and ricin to untreated and trypsinized bloodstream forms of Trypanosoma brucei rhodesiense was quantitated by flow cytofluorimetry, and sites of lectin binding were identified by fluorescence microscopy. All three lectins only bound to the flagellar pocket of untreated parasites. When parasites were trypsinized to remove the variant surface glycoprotein coat, new lectin binding sites were exposed, and specific binding of all three lectins increased significantly. New specific binding sites for succinyl-concanavalin A and wheat germ agglutinin were present along both the free flagellum and flagellar adhesion zone and were uniformly distributed on the parasite surface. However, ricin did not bind uniformly on the surface and did not stain the free flagellum of trypsinized cells. Ricin only bound to the flagellar adhesion zone of trypsinized cells and of cells that had been treated with formaldehyde prior to staining. Electron microscopy of cells exposed to ricin-colloidal gold complexes revealed that that ricin binding was restricted to the anterior membrane of the flagellar pocket of untrypsinized cells and to this portion of the flagellar pocket and the cell body membrane in the flagellar adhesion zone of trypsinized cells. Evidence that these membranes constitute a functionally important membrane microdomain is reviewed.  相似文献   

3.
Specific binding of fluoresceinated succinyl-concanavalin A, wheat germ agglutinin, and ricin to untreated and trypsinized bloodstream forms of Trypanosoma brucei rhodesiense was quantitated by flow cytofluorimetry, and sites of lectin binding were identified by fluorescence microscopy. All three lectins only bound to the flagellar pocket of untreated parasites. When parasites were trypsinized to remove the variant surface glycoprotein coat, new lectin binding sites were exposed, and specific binding of all three lectins increased significantly. New specific binding sites for succinyl-concanavalin A and wheat germ agglutinin were present along both the free flagellum and flagellar adhesion zone and were uniformly distributed on the parasite surface. However, ricin did not bind uniformly on the surface and did not stain the free flagellum of trypsinized cells. Ricin only bound to the flagellar adhesion zone of trypsinized cells and of cells that had been treated with formaldehyde prior to staining. Electron microscopy of cells exposed to ricin-colloidal gold complexes revealed that that ricin binding was restricted to the anterior membrane of the flagellar pocket of untrypsinized cells and to this portion of the flagellar pocket and the cell body membrane in the flagellar adhesion zone of trypsinized cells. Evidence that these membranes constitute a functionally important membrane microdomain is reviewed.  相似文献   

4.
A colorless euglenoid flagellate Peranema trichophorum shows unique unidirectional gliding cell locomotion on the substratum at velocities up to 30 micro m/s by an as yet unexplained mechanism. In this study, we found that (1) treatment with NiCl(2) inhibited flagellar beating without any effect on gliding movement; (2) water currents applied to a gliding cell from opposite sides caused detachment of the cell body from the substratum. With only the anterior flagellum adhering to the substratum, gliding movement continued along the direction of the anterior flagellum; (3) gentle pipetting induced flagellar severance into various lengths. In these cells, gliding velocity was proportional to the flagellar length; and (4) Polystyrene beads were translocated along the surface of the anterior flagellum. All of these results indicate that a cell surface motility system is present on the anterior flagellum, which is responsible for cell gliding in P. trichophorum.  相似文献   

5.
Vegetative cells of Pelagomonas calceolata Andersen & Saunders were confirmed to possess a reduced flagellar apparatus, consisting of a single basal body/flagellum that is not accompanied by either flagellar roots or a barren basal body. Just prior to division, the parental flagellum retracts (or is abscised) as two new basal bodies/flagella arise de novo. During cytokinesis the parental basal body segregates with a new basal body/flagellum, briefly producing a progeny cell typical of other known uniflagellates (i.e. containing a basal body/flagellum and accompanying barren basal body). The parental basal body then disintegrates or "transforms" out of existence, leaving both progeny cells with a single basal body/flagellum (i.e. neither progeny cell possesses any vestige of a mature flagellum/basal body ). Pelagomonas calceolata belongs to a lineage of chromophyte algae characterized by having a reduced flagellar apparatus, but it is the only known species, not only in this lineage but among all eukaryotes, to have undergone the complete elimination of the mature flagellum /basal body .  相似文献   

6.
Antibodies raised against the Sarkosyl-insoluble, major flagellar glycoprotein fraction, mastigonemes, were used to determine the source of flagellar surface glycoproteins and to define the general properties of flagellar surface assembly in Euglena. After suitable absorption, mastigoneme antiserum reacts with several specific mastigoneme glycoproteins but does not bind either to the other major flagellar glycoprotein, xyloglycorien, or to other Sarkosyl-soluble flagellar components. When Fab' fragments of this mastigoneme-specific antiserum were used in combination with a biotin-avidin secondary label, antigen was localized not only on the flagellum as previously described but also in the contiguous reservoir region. If deflagellated cells are reservoir pulse-labeled with Fab' antibody, this antibody appears subsequently on the newly regenerated flagellum. This chased antibody is uniformly distributed throughout the length of the flagellum and shows no preferred growth zone after visualization with either fluorescein or ferritin-conjugated secondary label. From these and tunicamycin inhibition experiments it is concluded that (a) a surface pool of at least some flagellar surface antigens is present in the reservoir membrane adjacent to the flagellum and that (b) the reservoir antigen pool is transferred to the flagellar surface during regeneration.  相似文献   

7.
Flagella can be removed from the biflagellate Chlamydomonas and the cells begin to regenerate flagella almost immediately by deceleratory kinetics. Under usual conditions of deflagellation, more than 98% of all flagella are removed. Under less drastic conditions, cells can be selected in which one flagellum is removed and the other left intact. When only one of the two flagella is amputated, the intact flagellum shortens by linear kinetics while the amputated one regenerates. The two flagella attain an equal intermediate length and then approach their initial length at the same rate. A concentration of cycloheximide which inhibits protein synthesis permits less than one-third of each flagellum to form when both flagella are amputated. When only one is amputated in cycloheximide, shortening proceeds normally and the degree of elongation in the amputated flagellum is greater than if both were amputated in the presence of cycloheximide. The shortening process is therefore independent of protein synthesis, and the protein from the shortening flagellum probably enters the pool of precursors available for flagellar formation. Partial regeneration of flagella occurs in concentrations of cycloheximide inhibitory to protein synthesis suggesting that some flagellar precursors are present. Cycloheximide and flagellar pulse-labeling studies indicate that precursor is used during the first part of elongation, is resynthesized at mid-elongation, and approaches its original level as the flagella reach their initial length. Colchicine completely blocks regeneration without affecting protein synthesis, and extended exposure of deflagellated cells to colchicine increases the amount of flagellar growth upon transfer to cycloheximide. When colchicine is applied to cells with only one flagellum removed, shortening continues normally but regeneration is blocked. Therefore, colchicine can be used to separate the processes of shortening and elongation. Radioautographic studies of the growth zone of Chlamydomonas flagella corroborate previous findings that assembly is occurring at the distal end (tip growth) of the organelle.  相似文献   

8.
The unicellular green alga Spermatozopsis similis Preisig et Melkonian bears two flagella of unequal length. After deflagellation, cells first regenerated the longer flagellum to about one third of its original length, before the shorter flagellum started to develop. Growth rates were similar for both flagella. Thus, the length difference between both flagella was restored by a lag-phase during regeneration of the shorter flagellum. To explain the lag-phase, we have considered a gating mechanism near the flagellar base that controls the entry of precursors into the flagellum. This would allow cells to restrict the time of effective flagellar growth and thereby control flagellar length. Our data indicated that cells are capable of individually regulating flagellar assembly onto basal bodies. We discuss a recent model of flagellar length regulation based on a balance of assembly and disassembly and conclude that flagellar length is controlled by additional factors, including the availability of flagellar proteins and the developmental status of basal bodies.  相似文献   

9.
Bacteria swim in liquid environments by means of a complex rotating structure known as the flagellum. Approximately 40 proteins are required for the assembly and functionality of this structure. Rhodobacter sphaeroides has two flagellar systems. One of these systems has been shown to be functional and is required for the synthesis of the well-characterized single subpolar flagellum, while the other was found only after the genome sequence of this bacterium was completed. In this work we found that the second flagellar system of R. sphaeroides can be expressed and produces a functional flagellum. In many bacteria with two flagellar systems, one is required for swimming, while the other allows movement in denser environments by producing a large number of flagella over the entire cell surface. In contrast, the second flagellar system of R. sphaeroides produces polar flagella that are required for swimming. Expression of the second set of flagellar genes seems to be positively regulated under anaerobic growth conditions. Phylogenic analysis suggests that the flagellar system that was initially characterized was in fact acquired by horizontal transfer from a gamma-proteobacterium, while the second flagellar system contains the native genes. Interestingly, other alpha-proteobacteria closely related to R. sphaeroides have also acquired a set of flagellar genes similar to the set found in R. sphaeroides, suggesting that a common ancestor received this gene cluster.  相似文献   

10.
Summary Cells ofEpipyxis pulchra possess two heteromorphic flagella that differ markedly in function, particularly during motility and prey capture. Flagellar heterogeneity is achieved during the course of at least three cell cycles. Prior to cell division, cells produce two new long, hairy flagella while the parental long flagellum is transformed into a new short, smooth flagellum. The parental short flagellum remains a short flagellum for this and subsequent cell division cycles. Although flagellar transformation requires only two cell cycles, developmental differences exist between daughter cells and the maturation of a flagellum/basal body requires at least three cycles.  相似文献   

11.
An important question in cell biology is whether cells are able to measure size, either whole cell size or organelle size. Perhaps cells have an internal chemical representation of size that can be used to precisely regulate growth, or perhaps size is just an accident that emerges due to constraint of nutrients. The eukaryotic flagellum is an ideal model for studying size sensing and control because its linear geometry makes it essentially one-dimensional, greatly simplifying mathematical modeling. The assembly of flagella is regulated by intraflagellar transport (IFT), in which kinesin motors carry cargo adaptors for flagellar proteins along the flagellum and then deposit them at the tip, lengthening the flagellum. The rate at which IFT motors are recruited to begin transport into the flagellum is anticorrelated with the flagellar length, implying some kind of communication between the base and the tip and possibly indicating that cells contain some mechanism for measuring flagellar length. Although it is possible to imagine many complex scenarios in which additional signaling molecules sense length and carry feedback signals to the cell body to control IFT, might the already-known components of the IFT system be sufficient to allow length dependence of IFT? Here we investigate a model in which the anterograde kinesin motors unbind after cargo delivery, diffuse back to the base, and are subsequently reused to power entry of new IFT trains into the flagellum. By mathematically modeling and simulating such a system, we are able to show that the diffusion time of the motors can in principle be sufficient to serve as a proxy for length measurement. We found that the diffusion model can not only achieve a stable steady-state length without the addition of any other signaling molecules or pathways, but also is able to produce the anticorrelation between length and IFT recruitment rate that has been observed in quantitative imaging studies.  相似文献   

12.
Mating between gametes of the biflagellated unicellular green alga Chlamydomonas reinhardi consists of several events culminating in zygote formation. Initially, the cells agglutinate by their flagellar tips. This is followed by pairing, cell wall loss, and cell fusion. Here we report on the relationship between the length of the flagellum, and the cells' ability to agglutinate, undergo cell wall loss (as measured by medium carbohydrate accumulation), and to form zygotes. We found that deflagellated gametes regained the potential for sexual agglutination when the flagella had regenerated to less than 3 μm (compared to the full length flagella of approx. 11 μm), while medium carbohydrate appeared only after the flagella had reached an average length greater than 5 μm. By inhibiting flagellar regeneration with cycloheximide or colchicine, we determined that carbohydrate release is related to the length of the flagellum and not to the time after deflagellation. A flagellar length dependence similar to that of carbohydrate release was also observed when we measured the relationship between the gametes' ability to fuse and flagellar length.  相似文献   

13.
The biflagellate somatic cells of Volvox carteri f. nagariensis lyengar exhibit an asymmetric pattern of flagellar development. Initiallt each somatic cell has two short (4 μm) flagella but after several hours one flagellum on each cell elongates unitl it reaches a length of 12 μm. Due to the regular arrangement of somatic cells in the Volvox spheroid it is apparent that the same flagellum on each somatic is the first to elongale. The asymmetric flagellar length is maintained for about 8 h after which the second flagellum on each somatic cell elongates. When the second flagellum attains the same length (12 μm) as the first flagellum, both flagella elongale at the same rate until reaching a final length of 22 μm. Experimental removal of somatic cell flagella results in their regeneration. Somatis cells regenerate both flagella simultaneously and full length flagella are produced in about 2 h. The intial rate of flagellar regeneration is about ten times faster than the intial rate of flagllar growth in development. Cycloheximide, an inhibitor of protein synthesis, has no effect on the initial rate of flagellar regeneration but the flagella produced in the presence of the drug are half the length of flagella produced in its absence. Somatic cells are able to regenerate flagella up to the time of α and β tubulin, the major structural proteins of the flagellar axoneme, and other cellular proteins.  相似文献   

14.
Adenosine 3',5'-cyclic monophosphate (cAMP) influences both flagellar function and flagellar regeneration in Chlamydomonas reinhardtii. The methylxanthine, aminophylline, which can cause a tenfold increase in cAMP level in C. reinhardtii, inhibits flagellar movement and flagellar regeneration by wild-type cells, without inhibiting cell multiplication. Caffeine, a closely related inhibitor, also inhibits flagellar movement and regeneration, but it inhibits cell multiplication too. Regeneration by a mutant lacking the central pair of flagellar microtubules was found to be more sensitive than wild type to inhibition by caffeine and to be subject to synergistic inhibition by aminophylline plus dibutyryl cAMP. Regeneration by three out of seven mutants with different flagellar abnormalities was more sensitive than wild type to these inhibitors. We interpret these results to mean that cAMP affects a component of the flagellum directly or indirectly, and that the responsiveness of that component to cAMP is enhanced by mutations which affect the integrity of the flagellum. The component in question could be microtubule protein.  相似文献   

15.
Twenty-six FliF monomers assemble into the MS ring, a central motor component of the bacterial flagellum that anchors the structure in the inner membrane. Approximately 100 amino acids at the C terminus of FliF are exposed to the cytoplasm and, through the interaction with the FliG switch protein, a component of the flagellar C ring, are essential for the assembly of the motor. In this study, we have dissected the entire cytoplasmic C terminus of the Caulobacter crescentus FliF protein by high-resolution mutational analysis and studied the mutant forms with regard to the assembly, checkpoint control, and function of the flagellum. Only nine amino acids at the very C terminus of FliF are essential for flagellar assembly. Deletion or substitution of about 10 amino acids preceding the very C terminus of FliF resulted in assembly-competent but nonfunctional flagella, making these the first fliF mutations described so far with a Fla(+) but Mot(-) phenotype. Removal of about 20 amino acids further upstream resulted in functional flagella, but cells carrying these mutations were not able to spread efficiently on semisolid agar plates. At least 61 amino acids located between the functionally relevant C terminus and the second membrane-spanning domain of FliF were not required for flagellar assembly and performance. A strict correlation was found between the ability of FliF mutant versions to assemble into a flagellum, flagellar class III gene expression, and a block in cell division. Motile suppressors could be isolated for nonmotile mutants but not for mutants lacking a flagellum. Several of these suppressor mutations were localized to the 5' region of the fliG gene. These results provide genetic support for a model in which only a short stretch of amino acids at the immediate C terminus of FliF is required for flagellar assembly through stable interaction with the FliG switch protein.  相似文献   

16.
Monoclonal antibodies specific for the soluble, secreted acid phosphatase (EC 3.1.3.2) of Leishmania donovani were used to investigate the localization of this enzyme in extracellular promastigotes and intracellular amastigotes. Indirect immunofluorescence showed a weak general staining in the promastigote cytoplasm, together with strong fluorescence in the flagellar reservoir. Immunofluorescence studies on U937 cells infected in vitro with L. donovani showed that the pathogenic amastigote stage also produced soluble acid phosphatase. Metabolic labeling experiments using promastigotes indicated that the intracellular enzyme was soluble prior to secretion and no evidence was found for the association of secretory acid phosphatase with cell membranes after protein synthesis. The rapid release of acid phosphatase from the flagellar reservoir was energy dependent and may be coupled to beating of the flagellum. The results demonstrated that acid phosphatase was secreted into the flagellar reservoir by Leishmania promastigotes using a conventional constitutive secretory mechanism, and subsequently released from the reservoir into the extracellular medium.  相似文献   

17.
The ultrastructure of Trypanosoma brucei gambiense was investigated by the freeze-fracture method. Three different regions of the continuous plasma membrane; cell body proper, flagellar pocket, and flagellum were compared in density and distribution of the intramembranous particles (IMP's). The IMP-density was highest in the flagellar pocket membrane and lowest in flagellum. Intra membranous particles of the cell body membrane were distributed uniformly on both the protoplasmic (P) and exoplasmic (E) faces. On the P face of the flagellar membrane, a single row of IMP-clusters was seen along the juncture of the flagllum to the cell body. Since the spacing of the IMP-clusters was almost equal to the spacing of the paired rivet structures observed in thin section, these clusters likely are related to the junction of flagellum and cell body. At the neck of the flagellar pocket, several linear arrays of IMP's were found on the P face of the flagellar membrane, while on the E face rows of depressions were seen. At the flagellar base, the clusters of IMP's were only seen on the P face. On the flagellar pocket membrane, particle-rich depressions and linear particle arrays were also found on the P face, while on the E face such special particle arrangements were not recognized. These particle-rich depressions may correspond to the sites of pinocytosis of the bloodstream forms which have been demonstrated in thin sections.  相似文献   

18.
Certain structures, associated with the flagellum, and which had hitherto been described as appearing occasionally in some species of trypanosomes, were found very frequently in epimastigote forms of strain F of Trypanosoma cruzi: (a) a group of tubular elements in an electron-dense mass enclosed within a swelling of the flagellar membrane as the flagellum emerges from its reservoir; (b) an expansion of the flagellar membrane at the point of the above swelling, which in cross-sections appears as a ring; and (c) an electron dense band in the body of the organism alongside the border of the flagellar pocket. The possible significance of these structures and the fact that so far they have been found only in one strain of T. cruzi are discussed.  相似文献   

19.
The bacterial flagellum is important for motility and adaptation to environmental niches. The sequence of events required for the synthesis of the flagellar apparatus has been extensively studied, yet the events that dictate where the flagellum is placed at the onset of flagellar biosynthesis remain largely unknown. We addressed this question for alphaproteobacteria by using the polarly flagellated alphaproteobacterium Caulobacter crescentus as an experimental model system. To identify candidates for a role in flagellar placement, we searched all available alphaproteobacterial genomes for genes of unknown function that cluster with early flagellar genes and that are present in polarly flagellated alphaproteobacteria while being absent in alphaproteobacteria with other flagellation patterns. From this in silico screen, we identified pflI. Loss of PflI function in C. crescentus results in an abnormally high frequency of cells with a randomly placed flagellum, while other aspects of cell polarization remain normal. In a wild-type background, a fusion of green fluorescent protein (GFP) and PflI localizes to the pole where the flagellum develops. This polar localization is independent of the flagellar protein FliF, whose oligomerization into the MS ring is thought to define the site of flagellar synthesis, suggesting that PflI acts before or independently of this event. Overproduction of PflI-GFP often leads to ectopic localization at the wrong, stalked pole. This is accompanied by a high frequency of flagellum formation at this ectopic site, suggesting that the location of PflI is a sufficient marker for a site for flagellar assembly.  相似文献   

20.
Summary The flagellum of the trypanosomatid flagellate Crithidia fasciculata expands asymmetrically as it emerges from the reservoir. Where the flagellar memhrane approaches the membrane lining the reservoir, desmosomes are found. These structures are arranged in several slightly curved lines and have many features in common with vertebrate desmosomes.In cultures, the flagellates stick to each other by their flagella and form rosettes. In these bundles of cells, probable sites of adhesion between flagella, or between flagella and pieces of debris, are marked by a dense filamentous tract which passes posteriorly along the flagellum and by a thick band lying just below the flagellar membrane. It is suggested that similar adhesions are found in the insect host where the flagellate attaches itself to the gut wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号