首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Tocopherols are essential micronutrients for humans and animals, with several beneficial effects in plants. Among cereals, only maize grains contain high concentrations of tocopherols. In this investigation we analyzed, during 2004 and 2005, by high-performance liquid chromatography (HPLC), a population of 233 recombinant inbred lines (RIL) which were derived from two diverse parents and had extremely variable tocopherol content and composition. A genetic map was constructed using 208 polymorphic molecular markers including gene-targeted markers based on six candidate genes of the tocopherol biosynthesis pathway (HPPD, VTE1, VTE3, VTE4, P3VTE5, and P4VTE5). Thirty-one quantitative trait loci (QTL) associated with quantitative variation of tocopherol content and composition were identified by composite interval mapping (CIM); these were located on sixteen genomic regions covering all the chromosomes except chromosome 4. Most (65%) QTL were co-located, suggesting that in some cases the same QTL predominantly affected the amounts of more than one tocopherol. Two candidate genes, HPPD and VTE4 showed co-localization with major QTL for tocopherol content and composition whereas only one interval (umc1075–umc1304) on chromosome eight exhibited a QTL for α, δ, γ, and total tocopherols with high LOD and PVE values. The candidate genes associated with tocopherol content and with composition, especially VTE4 and HPPD, could be precisely used for alteration of the tocopherol content and composition of maize grains by development of functional markers. Other identified major QTL especially those on chromosomes 8, 1, and 2 (near candidate gene VTE5) can also be used for improvement of maize grain quality by marker-assisted selection.  相似文献   

2.
Interest in phytosterol contents due to their potential benefits for human health has been largely documented in several crop species. Studies were focused mainly on total sterol content and their concentration or distribution in seed. This study aimed at providing new insight into the genetic control of total and individual sterol contents in sunflower seed through QTL analyses in a RIL population characterized over 2?years showing contrasted rainfall during seed filling. Results indicated that 13 regions on 9 linkage groups were involved in different phytosterol traits. Most of the QTL mapped were stable across years in spite of contrasted growing conditions. Some of them explained up to 30?% of phenotypic variation. Two QTL, located on LG10, near b1, and on LG14, were found to co-localize with QTL for oil content, indicating that likely, a part of the genetic variation for sterol content is only the result of genetic variation for oil content. However, three other QTL, stable over the 2?years, were found on LG1, LG4 and LG7 each associated with a particular class of sterols, suggesting that some enzymes known to be involved in the sterol metabolic pathway may determine the specificity of sterol profiles in sunflower seeds. These results suggest that it may be possible to introduce these traits as criteria in breeding programmes for quality in sunflower. The molecular markers linked to genetic factors controlling phytosterol contents could help selection during breeding programs.  相似文献   

3.
Regions of the genome affecting physical and chemical wood properties (quantitative trait loci (QTL)), as well as growth, were identified using a clonally replicated, outbred F2 family (112 genotypes, each with two ramets) of Eucalyptus globulus, planted in a field trial in north-west Tasmania. Traits studied were growth (assessed by stem diameter), wood density, cellulose content, pulp yield and lignin content. These traits are important in breeding for pulpwood, and will be important in breeding for carbon sequestration and biofuel production. Between one and four QTL were located for each trait, with each QTL explaining between 4% and 12% of the phenotypic variation. Several QTL for chemical wood properties were co-located, consistent with their high phenotypic correlations, and may reflect pleiotropic effects of the same genes. In contrast, QTL for density and lignin content with overlapping confidence intervals were considered to be due to independent genes, since the QTL effects were inherited from different parents. The inclusion of fully informative microsatellites on the linkage map allowed the determination of homology at the linkage group level between QTL and candidate genes in different pedigrees of E. globulus and different eucalypt species. None of the candidate genes mapped in comparable studies co-located with our major QTL for wood chemical properties, arguing that there are important candidate genes yet to be discovered.  相似文献   

4.
Mapping minor QTL for increased stearic acid content in sunflower seed oil   总被引:1,自引:0,他引:1  
Increased stearic acid (C18:0) content in the seed oil of sunflower would improve the oil quality for some edible uses. The sunflower line CAS-20 (C18:0 genotype Es1Es1es2es2), developed from the high C18:0 mutant line CAS-3 (C18:0 genotype es1es1es2es2; 25% C18:0), shows increased C18:0 levels in its seed oil (8.6%). The objective of this research was to map quantitative trait loci (QTL) conferring increased C18:0 content in CAS-20 in an F2 mapping population developed from crosses between HA-89 (wild type Es1Es1Es2Es2; low C18:0) and CAS-20, which segregates independently of the macromutation Es1 controlling high C18:0 content in CAS-3. Seed oil fatty acid composition was measured in the F2 population by gas-liquid chromatography. A genetic linkage map of 17 linkage groups (LGs) comprising 80 RFLP and 19 SSR marker loci from this population was used to identify QTL controlling fatty acid composition. Three QTL affecting C18:0 content were identified on LG3, LG11, and LG13, with all alleles for increased C18:0 content inherited from CAS-20. In total, these QTL explained 43.6% of the C18:0 phenotypic variation. Additionally, four candidate genes (two stearate desaturase genes, SAD6 and SAD17, and a FatA and a FatB thioesterase gene) were placed on the QTL map. On the basis of positional information, QTL on LG11 was suggested to be a SAD6 locus. The results presented show that increased C18:0 content in sunflower seed oil is not a simple trait, and the markers flanking these QTL constitute a powerful tool for plant breeding programs.  相似文献   

5.
Improving oil and protein quality for food and feed purposes is an important goal in rapeseed (Brassica napus L.) breeding programs. Rapeseed contains phytosterols, used to enrich food products, and sinapate esters, which are limiting the utilization of rapeseed proteins in the feed industry. Increasing the phytosterol content of oil and lowering sinapate ester content of meal could increase the value of the oilseed rape crop. The objective of the present study was to identify quantitative trait loci (QTL) for phytosterol and sinapate ester content in a winter rapeseed population of 148 doubled haploid lines, previously found to have a large variation for these two traits. This population also segregated for the two erucic acid genes. A close negative correlation was found between erucic acid and phytosterol content (Spearman’s rank correlation, r s = −0.80**). For total phytosterol content, three QTL were detected, explaining 60% of the genetic variance. The two QTL with the strongest additive effects were mapped on linkage groups N8 and N13 within the confidence intervals of the two erucic acid genes. For sinapate ester content four QTL were detected, explaining 53% of the genetic variance. Again, a close negative correlation was found between erucic acid and sinapate ester content (r s = −0.66**) and the QTL with the strongest additive effects mapped on linkage groups N8 and N13 within the confidence intervals of the two erucic acid genes. The results suggests, that there is a pleiotropic effect of the two erucic acid genes on phytosterol and sinapate ester content; the effect of the alleles for low erucic acid content is to increase phytosterol and sinapate ester content. Possible reasons for this are discussed based on known biosynthetic pathways. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Vegetables are critical for human health as they are a source of multiple vitamins including vitamin E (VTE). In plants, the synthesis of VTE compounds, tocopherol and tocotrienol, derives from precursors of the shikimate and methylerythritol phosphate pathways. Quantitative trait loci (QTL) for α-tocopherol content in ripe fruit have previously been determined in an Solanum pennellii tomato introgression line population. In this work, variations of tocopherol isoforms (α, β, γ, and δ) in ripe fruits of these lines were studied. In parallel all tomato genes structurally associated with VTE biosynthesis were identified and mapped. Previously identified VTE QTL on chromosomes 6 and 9 were confirmed whilst novel ones were identified on chromosomes 7 and 8. Integrated analysis at the metabolic, genetic and genomic levels allowed us to propose 16 candidate loci putatively affecting tocopherol content in tomato. A comparative analysis revealed polymorphisms at nucleotide and amino acid levels between Solanum lycopersicum and S. pennellii candidate alleles. Moreover, evolutionary analyses showed the presence of codons evolving under both neutral and positive selection, which may explain the phenotypic differences between species. These data represent an important step in understanding the genetic determinants of VTE natural variation in tomato fruit and as such in the ability to improve the content of this important nutriceutical.  相似文献   

7.
Rapeseed (Brassica napus L.) is one of the major oilseed crops and an important source for tocopherols known as vitamin E in human nutrition. Increasing the tocopherol content and altering the tocopherol composition is a major goal in rapeseed breeding. The genes encoding enzymes from the tocopherol pathway have been cloned from model species. However, only scant data about tocopherol genes from crop species have been available. We have cloned four sequences of a gene family from B. napus with homology to the Arabidopsis thaliana VTE4 gene. The sequences were amplified by PCR with primers derived from the A. thaliana gene. BAC-clones were isolated to analyze the genomic structure of the BnaX.VTE4-loci. In contrast to the A. thaliana gene all B. napus sequences have two additional introns. For functional analysis, the BnaA.VTE4.a1 sequence was transformed into A. thaliana. Seeds from transgenic offspring showed a 50-fold increase of the α-tocopherol fraction which is in accordance with the predicted function of the gene. A marker assay was established and the BnaA.VTE4.a1 sequence was mapped to the end of chromosome A02 of the Tapidor × Ningyou7 genetic map, where also two QTL for α-tocopherol content had been mapped. Thus, the BnaA.VTE4.a1 gene is a promising candidate for these QTL and can be used for marker assisted selection for α-tocopherol content in rapeseed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. The nucleotide sequences data reported in this paper have been submitted to GenBank nucleotide sequence database with the accession numbers EU637012 to EU637015 and FJ435091 to FJ435093.  相似文献   

8.

Background

Tocopherols are important antioxidants in vegetable oils; when present as vitamin E, tocopherols are an essential nutrient for humans and livestock. Rapeseed (Brassica napus L, AACC, 2 n = 38) is one of the most important oil crops and a major source of tocopherols. Although the tocopherol biosynthetic pathway has been well elucidated in the model photosynthetic organisms Arabidopsis thaliana and Synechocystis sp. PCC6803, knowledge about the genetic basis of tocopherol biosynthesis in seeds of rapeseed is scant. This project was carried out to dissect the genetic basis of seed tocopherol content and composition in rapeseed through quantitative trait loci (QTL) detection, genome-wide association analysis, and homologous gene mapping.

Methodology/Principal Findings

We used a segregating Tapidor × Ningyou7 doubled haploid (TNDH) population, its reconstructed F2 (RC-F2) population, and a panel of 142 rapeseed accessions (association panel). Genetic effects mainly contributed to phenotypic variations in tocopherol content and composition; environmental effects were also identified. Thirty-three unique QTL were detected for tocopherol content and composition in TNDH and RC-F2 populations. Of these, seven QTL co-localized with candidate sequences associated with tocopherol biosynthesis through in silico and linkage mapping. Several near-isogenic lines carrying introgressions from the parent with higher tocopherol content showed highly increased tocopherol content compared with the recurrent parent. Genome-wide association analysis was performed with 142 B. napus accessions. Sixty-one loci were significantly associated with tocopherol content and composition, 11 of which were localized within the confidence intervals of tocopherol QTL.

Conclusions/Significance

This joint QTL, candidate gene, and association mapping study sheds light on the genetic basis of seed tocopherol biosynthesis in rapeseed. The sequences presented here may be used for marker-assisted selection of oilseed rape lines with superior tocopherol content and composition.  相似文献   

9.
Aluminum (Al) toxicity in acid soils is a major limitation to the production of alfalfa (Medicago sativa subsp. sativa L.) in the USA. Developing Al-tolerant alfalfa cultivars is one approach to overcome this constraint. Accessions of wild diploid alfalfa (M. sativa subsp. coerulea) have been found to be a source of useful genes for Al tolerance. Previously, two genomic regions associated with Al tolerance were identified in this diploid species using restriction fragment length polymorphism (RFLP) markers and single marker analysis. This study was conducted to identify additional Al-tolerance quantitative trait loci (QTLs); to identify simple sequence repeat (SSR) markers that flank the previously identified QTLs; to map candidate genes associated with Al tolerance from other plant species; and to test for co-localization with mapped QTLs. A genetic linkage map was constructed using EST-SSR markers in a population of 130 BC1F1 plants derived from the cross between Al-sensitive and Al-tolerant genotypes. Three putative QTLs on linkage groups LG I, LG II and LG III, explaining 38, 16 and 27% of the phenotypic variation, respectively, were identified. Six candidate gene markers designed from Medicago truncatula ESTs that showed homology to known Al-tolerance genes identified in other plant species were placed on the QTL map. A marker designed from a candidate gene involved in malic acid release mapped near a marginally significant QTL (LOD 2.83) on LG I. The SSR markers flanking these QTLs will be useful for transferring them to cultivated alfalfa via marker-assisted selection and for pyramiding Al tolerance QTLs.  相似文献   

10.
干旱是限制向日葵生长发育的重要因素之一。为探究向日葵苗期抗旱性分子机制,该研究以向日葵K55与K58杂交构建的150个F7重组自交系群体为材料,对其在正常浇水和干旱胁迫两种水分处理条件下的叶片相对电导率、叶绿素含量、叶面积、叶片相对含水量、根长进行表型测定,利用前期建立的SNP、SSR分子标记遗传连锁图谱,通过复合区间作图法对5个抗旱相关的性状进行QTL定位。结果表明:(1)共定位到向日葵QTL位点11个,其中正常浇水条件下5个,干旱胁迫条件下6个,表型贡献率为0.768%~7.547%,且5号连锁群上定位到的QTL位点最多(3个)。(2)QTL置信区间内共筛选到62个与干旱相关的候选基因,包括位于qLA 8 1上的rna23019、rna23004、rna22661、rna22193、rna23294、rna22783和位于qCC 13 1上的rna40140,这些基因可作为后续基因克隆及功能研究的重点候选基因。该研究结果为向日葵抗旱性研究及其遗传改良奠定了基础。  相似文献   

11.
The shoot fly is one of the most destructive insect pests of sorghum at the seedling stage. Deployment of cultivars with improved shoot fly resistance would be facilitated by the use of molecular markers linked to QTL. The objective of this study was to dissect the genetic basis of resistance into QTL, using replicated phenotypic data sets obtained from four test environments, and a 162 microsatellite marker-based linkage map constructed using 168 RILs of the cross 296B (susceptible) × IS18551 (resistant). Considering five component traits and four environments, a total of 29 QTL were detected by multiple QTL mapping (MQM) viz., four each for leaf glossiness and seedling vigor, seven for oviposition, six for deadhearts, two for adaxial trichome density and six for abaxial trichome density. The LOD and R 2 (%) values of QTL ranged from 2.6 to 15.0 and 5.0 to 33%, respectively. For most of the QTL, IS18551 contributed resistance alleles; however, at six QTL, alleles from 296B also contributed to resistance. QTL of the related component traits were co-localized, suggesting pleiotropy or tight linkage of genes. The new morphological marker Trit for trichome type was associated with the major QTL for component traits of resistance. Interestingly, QTL identified in this study correspond to QTL/genes for insect resistance at the syntenic maize genomic regions, suggesting the conservation of insect resistance loci between these crops. For majority of the QTL, possible candidate genes lie within or very near the ascribed confidence intervals in sorghum. Finally, the QTL identified in the study should provide a foundation for marker-assisted selection (MAS) programs for improving shoot fly resistance in sorghum.  相似文献   

12.
The objective of the present research was to map QTLs associated with agronomic traits such as days from sowing to flowering, plant height, yield and leaf-related traits in a population of recombinant inbred lines (RILs) of sunflower (Helianthus annuus). Two field experiments were conducted with well-irrigated and partially irrigated conditions in randomized complete block design with three replications. A map with 304 AFLP and 191 SSR markers with a mean density of 1 marker per 3.7 cM was used to identify QTLs related to the studied traits. The difference among RILs was significant for all studied traits in both conditions. Three to seven QTLs were found for each studied trait in both conditions. The percentage of phenotypic variance (R 2) explained by QTLs ranged from 4 to 49%. Three to six QTLs were found for each yield-related trait in both conditions. The most important QTL for grain yield per plant on linkage group 13 (GYP-P-13-1) under partial-irrigated condition controls 49% of phenotypic variance (R 2). The most important QTL for 1,000-grain weight (TGW-P-11-1) was identified on linkage group 11. Favorable alleles for this QTL come from RHA266. The major QTL for days from sowing to flowering (DSF-P-14-1) were observed on linkage group 14 and explained 38% of the phenotypic variance. The positive alleles for this QTL come from RHA266. The major QTL for HD (HD-P-13-1) was also identified on linkage group 13 and explained 37% of the phenotypic variance. Both parents (PAC2 and RHA266) contributed to QTLs controlling leaf-related traits in both conditions. Common QTL for leaf area at flowering (LAF-P-12-1, LAF-W-12-1) was detected in linkage group 12. The results emphasise the importance of the role of linkage groups 2, 10 and 13 for studied traits. Genomic regions on the linkage groups 9 and 12 are specific for QTLs of leaf-related traits in sunflower.  相似文献   

13.
Genetic factors controlling quantitative inheritance of grain yield and its components have been intensively investigated during recent decades using diverse populations in maize (Zea mays L.). Notwithstanding this, quantitative trait loci (QTL) for kernel row number (KRN) with large and consistent effect have not been identified. In this study, a linkage map of 150 simple sequence repeat (SSR) loci was constructed by using a population of 500 F2 individuals derived from a cross between elite inbreds Ye478 and Dan340. The linkage map spanned a total of 1478 cM with an average interval of 10.0 cM. A total of 397 F2:3 lines were evaluated across seven diverse environments for mapping QTL for KRN. Some QTL for grain yield and its components had previously been confirmed with this population across environments. A total of 13 QTL for KRN were identified, with each QTL explaining from 3.0 to 17.9% of phenotypic variance. The gene action for KRN was mainly additive to partial dominance. A large-effect QTL (qkrn7) with partial dominance effect accounting for 17.9% of the phenotypic variation for KRN was identified on chromosome 7 near marker umc1865 with consistent gene effect across seven diverse environments. This study has laid a foundation for map-based cloning of this major QTL and for developing molecular markers for marker-assisted selection of high KRN.  相似文献   

14.
One hundred and fifty F2–F3 families from a cross between two inbred sunflower lines FU and PAZ2 were used to map quantitative trait loci (QTL) for resistance to white rot (Sclerotinia sclerotiorum) attacks of terminal buds and capitula, and black stem (Phoma macdonaldii). A genetic linkage map of 18 linkage groups with 216 molecular markers spanning 1,937 cM was constructed. Disease resistances were measured in field experiments for S. sclerotiorum and under controlled conditions for P. macdonaldii. For resistance to S. sclerotiorum terminal bud attack, seven QTL were identified, each explaining less than 10% of phenotypic variance. For capitulum attack by this parasite, there were four QTL (each explaining up to 20% of variation) and for P. macdonaldii resistance, four QTL were identified, each having effects of up to 16%. The S. sclerotiorum capitulum resistance QTL were compared with those reported previously and it was concluded that resistance to this disease is governed by a considerable number of QTL, located on almost all the sunflower linkage groups.  相似文献   

15.
Sunflower (Helianthus annuus L.) seed oil with high palmitic acid content has enhanced thermo-oxidative stability, which makes it well suited to high-temperature uses. CAS-5 is a sunflower mutant line that accumulates over 25 % palmitic acid in its seed oil, compared to 5–8 % in conventional cultivars. The objective of this study was to investigate the molecular basis of the high-palmitic acid trait in CAS-5 through both candidate gene and QTL mapping approaches. An F2 population derived from the cross between CAS-5 and the conventional line HA-89 was developed. A 3-ketoacyl-ACP synthase II (KASII) locus on a telomeric region of linkage group (LG) 9 of the sunflower genetic map was found to co-segregate with palmitic acid content in this population. The KASII locus explained the vast majority of the phenotypic variation (98 %) of the trait. Two minor QTL affecting palmitic acid content were also found on the lower half of LG 9 and on LG 17. Additionally, QTL associated with other major fatty acids (stearic, oleic, and linoleic acid) were identified on LG 1, 6, and 10. This result may reflect untapped genetic variation that could exist among sunflower cultivars for genes determining fatty acid composition. In addition to demonstrating the major role of a KASII locus in the accumulation of high levels of palmitic acid in CAS-5 seeds, this study stressed the importance of characterizing genes with minor effects on fatty acid profile in order to establish optimal breeding strategies for modifying fatty acid composition in sunflower seed oil.  相似文献   

16.
A previous study in wheat (Triticum aestivum L.) identified two candidate genes controlling a quantitative trait locus (QTL) for high-molecular-weight glutenin subunit (HMW-GS) GluBx. These candidates were Glu-B1-1, the structural gene coding for Glu1Bx, and the B homoeologous gene coding for SPA (spa-B), a seed storage protein activator. The goal of this study was to identify the best candidate gene for this QTL. Single nucleotide polymorphisms (SNPs) are an abundant source of DNA polymorphisms that have been successfully used to identify loci associated with particular phenotypes. As no linkage disequilibrium was detected between Glu-B1-1 and spa-B, we performed an association study to identify the individual gene responsible for the QTL. Six SNPs, three located in Glu-B1-1 and three in spa-B, were genotyped by mass spectrometry in a collection of 113 bread wheat lines. These lines were also evaluated for protein content as well as the total quantity of HMW-GSs and of each HMW-GS in seed samples from two harvest years. Significant associations were detected only between Glu-B1-1 polymorphism and most of the traits evaluated. Spa-B was unambiguously discarded as a candidate. To our knowledge, this is the first report on an association study that was successfully used to discriminate between two candidate genes.  相似文献   

17.
In eastern Australia and California, USA, one of the major lethal fungal diseases of lucerne (Medicago sativa) is Stagonospora root and crown rot, caused by Stagonospora meliloti. Quantitative trait loci (QTL) involved in resistance and susceptibility to S. meliloti were identified in an autotetraploid lucerne backcross population of 145 individuals. Using regression analysis and interval mapping, we detected one region each on linkage groups 2, 6 and 7 that were consistently associated with disease reaction to S. meliloti in two separate experiments. The largest QTL on linkage group 7, which is associated with resistance to S. meliloti, contributed up to 17% of the phenotypic variation. The QTL located on linkage group 2, which is potentially a resistance allele in repulsion to the markers for susceptibility to S. meliloti, contributed up to 8% of the phenotypic variation. The QTL located on linkage group 6, which is associated with susceptibility to S. meliloti, contributed up to 16% of the phenotypic variation. A further two unlinked markers contributed 5 and 8% of the phenotypic variation, and were detected in only one experiment. A total of 517 simple sequence repeat (SSR) markers from Medicago truncatula were screened on the parents of the mapping population. Only 27 (6%) SSR markers were polymorphic and could be incorporated into the autotetraploid map of M. sativa. This allowed alignment of our M. sativa linkage map with published M. truncatula maps. The markers linked to the QTL we have reported will be useful for marker assisted selection for partial resistance to S. meliloti in lucerne.  相似文献   

18.
为了解铁皮石斛(Dendrobium officinale)植物甾醇的生物合成途径,利用Illumina HiSeq 4000高通量测序技术对茎和叶进行转录组测序,比较植物甾醇生物合成关键酶基因的表达。结果表明,共获得43 085条Unigenes,其中24 459条在Nr、Swiss-prot、KOG和KEGG数据库获得注释,7 333条获得共同注释。KEGG代谢途径分析表明,铁皮石斛植物甾醇生物合成分为3个阶段,共有50个Unigenes (30种酶)参与。表达分析表明,DXR和HMED的表达量明显高于MK和MVD;成熟期茎、叶SMT1的表达量比生长期高,SMT2则生长期高于成熟期;同一时期,SMT1和SMT2在叶的表达量都比茎高。这为铁皮石斛植物甾醇的开发利用和调控植物甾醇生物合成研究提供了科学依据。  相似文献   

19.
Flax (Linum usitatissimum L.) seeds contain nearly 50% oil which is high in linolenic acid (an omega-3 fatty acid). In this study, a genetic linkage map was constructed based on 114 expressed sequence tag-derived simple sequence repeat (SSR) markers in addition to five single nucleotide polymorphism markers, five genes (fad2A, fad2B, fad3A, fad3B and dgat1) and one phenotypic trait (seed coat color), using a doubled haploid (DH) population of 78 individuals generated from a cross between SP2047 (a yellow-seeded Solin™ line with 2–4% linolenic acid) and UGG5-5 (a brown-seeded flax line with 63–66% linolenic acid). This map consists of 24 linkage groups with 113 markers spanning ~833.8 cM. Quantitative trait locus (QTL) analysis detected two major QTLs each for linoleic acid (LIO, QLio.crc-LG7, QLio.crc-LG16), linolenic acid (LIN, QLin.crc-LG7, QLin.crc-LG16) and iodine value (IOD, QIod.crc-LG7, QIod.crc-LG16), and one major QTL for palmitic acid (PAL, QPal.crc-LG9). The mutant allele of fad3A, mapped to the chromosomal segment inherited from the parent SP2047, underlies the QTL on linkage group 7 and was positively associated with high LIO content but negatively associated with LIN and IOD. This fad3A locus accounted for approximately 34, 25 and 29% of the phenotypic variation observed in this DH population for these three traits, respectively. The QTL localized on linkage group 16 explained approximately 20, 25 and 13% of the phenotypic variation for these same traits, respectively. For palmitic acid, QPal.crc-LG9 accounted for ~42% of the phenotypic variation. This first SSR-based linkage map in flax will serve as a resource for mapping additional markers, genes and traits, in map-based cloning and in marker-assisted selection.  相似文献   

20.
Fine mapping of six seed glucosinolate QTL (J2Gsl1, J3Gsl2, J9Gsl3, J16Gsl4, J17Gsl5 and J3Gsl6) (Ramchiary et al. in Theor Appl Genet 116:77–85, 2007a) was undertaken by the candidate gene approach. Based on the DNA sequences from Arabidopsis and Brassica oleracea for the different genes involved in the aliphatic glucosinolate biosynthesis, candidate genes were amplified and sequenced from high to low glucosinolate Brassica juncea lines Varuna and Heera, respectively. Of the 20 paralogues identified, 17 paralogues belonging to six gene families were mapped to 12 of the 18 linkage groups of B. juncea genome. Co-mapping of candidate genes with glucosinolate QTL revealed that the candidate gene BjuA.GSL-ELONG.a mapped to the QTL interval of J2Gsl1, BjuA.GSL-ELONG.c, BjuA.GSL-ELONG.d and BjuA.Myb28.a mapped to the QTL interval of J3Gsl2, BjuA.GSL-ALK.a mapped to the QTL interval of J3Gsl6 and BjuB.Myb28.a mapped to the QTL interval of J17Gsl5. The QTL J9Gsl3 and J16Gsl4 did not correspond to any of the mapped candidate genes. The functionality and contribution of different candidate genes/QTL was assessed by allelic variation study using phenotypic data of 785 BC4DH lines. It was observed that BjuA.Myb28.a and J9Gsl3 contributed significantly to the base level glucosinolate production while J16Gsl4, probably GSL-PRO, BjuA.GSL-ELONG.a and BjuA.GSL-ELONG.c contributed to the C3, C4 and C5 elongation pathways, respectively. Three A genome QTL: J2Gsl1harbouring BjuA.GSL-ELONG.a, J3Gsl2 harbouring both BjuA.GSL-ELONG.c and BjuA.Myb28.a and J9Gsl3, possibly the ‘Bronowski genes’, were identified as most important loci for breeding low glucosinolate B. juncea. We observed two-step genetic control of seed glucosinolate in B. juncea mainly effected by these three A genome QTL. This study, therefore, provides clues to the genetic mechanism of ‘Bronowski genes’ controlling the glucosinolate trait and also provides efficient markers for marker-assisted introgression of low glucosinolate trait in B. juncea. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号