首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
《MABS-AUSTIN》2013,5(2):493-501
High-throughput sequencing of the antibody repertoire is enabling a thorough analysis of B cell diversity and clonal selection, which may improve the novel antibody discovery process. Theoretically, an adequate bioinformatic analysis could allow identification of candidate antigen-specific antibodies, requiring their recombinant production for experimental validation of their specificity. Gene synthesis is commonly used for the generation of recombinant antibodies identified in silico. Novel strategies that bypass gene synthesis could offer more accessible antibody identification and validation alternatives. We developed a hybridization-based recovery strategy that targets the complementarity-determining region 3 (CDRH3) for the enrichment of cDNA of candidate antigen-specific antibody sequences. Ten clonal groups of interest were identified through bioinformatic analysis of the heavy chain antibody repertoire of mice immunized with hen egg white lysozyme (HEL). cDNA from eight of the targeted clonal groups was recovered efficiently, leading to the generation of recombinant antibodies. One representative heavy chain sequence from each clonal group recovered was paired with previously reported anti-HEL light chains to generate full antibodies, later tested for HEL-binding capacity. The recovery process proposed represents a simple and scalable molecular strategy that could enhance antibody identification and specificity assessment, enabling a more cost-efficient generation of recombinant antibodies.  相似文献   

2.
3.
4.
5.
6.
We describe a proteomics approach that identifies antigen-specific antibody sequences directly from circulating polyclonal antibodies in the serum of an immunized animal. The approach involves affinity purification of antibodies with high specific activity and then analyzing digested antibody fractions by nano-flow liquid chromatography coupled to tandem mass spectrometry. High-confidence peptide spectral matches of antibody variable regions are obtained by searching a reference database created by next-generation DNA sequencing of the B-cell immunoglobulin repertoire of the immunized animal. Finally, heavy and light chain sequences are paired and expressed as recombinant monoclonal antibodies. Using this technology, we isolated monoclonal antibodies for five antigens from the sera of immunized rabbits and mice. The antigen-specific activities of the monoclonal antibodies recapitulate or surpass those of the original affinity-purified polyclonal antibodies. This technology may aid the discovery and development of vaccines and antibody therapeutics, and help us gain a deeper understanding of the humoral response.  相似文献   

7.
Emerging technologies for the design and generation of human antibodies require improved approaches enabling their screening, characterization and validation. Currently, strategies based on ELISA or western blot are used to that aim. However, the ever increasing number of novel antibodies generated would benefit from the development of new high-throughput (HT) platforms facilitating rapid antibody identification and characterization. Herein, we describe a protein chip bearing recombinant phage particles and based on a large phage antibody library. In this paper we have set forth a novel implementation which provides a powerful and simple methodology enabling the identification of single-chain variable fragments (scFv). As a proof-of-principle of this method, we tested it with recombinant antigen (human recombinant interleukin 8). Additionally, we developed a novel bioinformatics tool that serves to compare this novel strategy with traditional methods. The method described here, together with associated informatics tools, is robust, relatively fast and represents a step-forward in protocols including phage library screenings.  相似文献   

8.
The human antibody response has special significance in the ongoing efforts to develop a protective HIV vaccine. The observation that a subset of HIV infected individuals, who do not develop AIDS, have a broadly neutralizing antibody response has drawn attention to deciphering the nature of this response. It is hoped that an understanding of these protective antibodies, developed over time in response to the ongoing accumulation of mutations in the infecting virus, will facilitate the development of a vaccine that can elicit a similar response. This strategy will be greatly aided by the identification of broadly neutralizing monoclonal HIV antibodies from infected individuals. Several methods have been utilized to isolate and characterize individual antibodies from the human repertoire and each of these methods has been applied to the generation of broadly neutralizing HIV antibodies, albeit with differing rates of success. This review describes several of these methods including human hybridoma; EBV transformation; nonimmortalized B cell culture; clonal sorting; and combinatorial display. Key considerations used in the comparison of different methods includes: efficiency of interrogation of an individual’s entire repertoire; assay formats that can be used to screen for antibodies of interest (i.e., binding versus biological assays); and the ability to recover native antibody heavy and light chain pairs.Key words: HIV, antibody, neutralizing, B cell, repertoire  相似文献   

9.
We have developed a panel of murine monoclonal antibodies that recognize human interferon alpha. One of these mononclonal antibodies binds and neutralizes, with high affinity, all of seven tested recombinant human interferon alphas. This mononclonal antibody also neutralizes the interferon activity present in two independent pools of interferon alphas prepared following stimulation of human peripheral blood leukocytes. The complementary determining regions from this murine mononclonal antibody were transferred to a human IgG2 heavy chain and to a human kappa1 light chain. In addition, six (heavy chain) and two (light chain) amino acids were transferred from the framework regions. This generated a humanized mononclonal antibody that retained the specificity of the mouse parent. The humanized anti-interferon alpha antibody is a candidate therapeutic for those diseases, such as insulin-dependent diabetes, systemic lupus erythematosis, psoriasis and Crohn's disease, which are all characterized by pathological expression of interferon alpha.  相似文献   

10.
The identification of tumor antigens capable of eliciting an immune response in vivo may be an effective method to identify therapeutic cancer targets. We have developed a method to identify such antigens using frozen tumor-draining lymph node samples from breast cancer patients. Immune responses in tumor-draining lymph nodes were identified by immunostaining lymph node sections for B-cell markers (CD20&CD23) and Ki67 which revealed cell proliferation in germinal center zones. Antigen-dependent somatic hypermutation (SH) and clonal expansion (CE) were present in heavy chain variable (VH) domain cDNA clones obtained from these germinal centers, but not from Ki67 negative germinal centers. Recombinant VH single-domain antibodies were used to screen tumor proteins and affinity select potential tumor antigens. Neuroplastin (NPTN) was identified as a candidate breast tumor antigen using proteomic identification of affinity selected tumor proteins with a recombinant VH single chain antibody. NPTN was found to be highly expressed in approximately 20% of invasive breast carcinomas and 50% of breast carcinomas with distal metastasis using a breast cancer tissue array. Additionally, NPTN over-expression in a breast cancer cell line resulted in a significant increase in tumor growth and angiogenesis in vivo which was related to increased VEGF production in the transfected cells. These results validate NPTN as a tumor-associated antigen which could promote breast tumor growth and metastasis if aberrantly expressed. These studies also demonstrate that humoral immune responses in tumor-draining lymph nodes can provide antibody reagents useful in identifying tumor antigens with applications for biomarker screening, diagnostics and therapeutic interventions.  相似文献   

11.
Antibodies are widely exploited as research/diagnostic tools and therapeutics. Despite providing exciting research opportunities, the multitude of available antibodies also offers a bewildering array of choice. Importantly, not all companies comply with the highest standards, and thus many reagents fail basic validation tests. The responsibility for antibodies being fit for purpose rests, surprisingly, with their user. This paper condenses the extensive experience of the European Monoclonal Antibody Network to help researchers identify antibodies specific for their target antigen. A stepwise strategy is provided for prioritising antibodies and making informed decisions regarding further essential validation requirements. Web-based antibody validation guides provide practical approaches for testing antibody activity and specificity. We aim to enable researchers with little or no prior experience of antibody characterization to understand how to determine the suitability of their antibody for its intended purpose, enabling both time and cost effective generation of high quality antibody-based data fit for publication.  相似文献   

12.
To study the contribution of antibody light (L) chains to the diversity and binding properties of immune repertoires, a phage display repertoire was constructed from a single human antibody L chain and a large collection of antibody heavy (H) chains harvested from the blood of two human donors immunized with tetanus toxoid (TT) vaccine. After selection for binding to TT, 129 unique antibodies representing 53 variable immunoglobulin H chain (VH) gene rearrangements were isolated. This panel of anti-TT antibodies restricted to a single variable immunoglobulin L chain (VL) could be organized into 17 groups binding non-competing epitopes on the TT molecule. Comparison of the VH regions in this VL-restricted panel with a previously published repertoire of anti-TT VH regions with cognate VH-VL pairing showed a very similar distribution of VH, DH and JH gene segment utilization and length of the complementarity-determining region 3 of the H chain. Surface plasmon resonance analysis of the single-VL anti-TT repertoire unveiled a range of affinities, with a median monovalent affinity of 2 nM. When the single-VL anti-TT VH repertoire was combined with a collection of naïve VL regions and again selected for binding to TT, many of the VH genes were recovered in combination with a diversity of VL regions. The affinities of a panel of antibodies consisting of a single promiscuous anti-TT VH combined with 15 diverse VL chains were determined and found to be identical to each other and to the original isolate restricted to a single-VL chain. Based on previous estimates of the clonal size of the human anti-TT repertoire, we conclude that up to 25% of human anti-TT-encoding VH regions from an immunized repertoire have promiscuous features. These VH regions readily combine with a single antibody L chain to result in a large panel of anti-TT antibodies that conserve the expected epitope diversity, VH region diversity and affinity of a natural repertoire.  相似文献   

13.
Most antibodies that broadly neutralize HIV-1 are highly somatically mutated in antibody clonal lineages that persist over time. Here, we describe the analysis of human antibodies induced during an HIV-1 vaccine trial (GSK PRO HIV-002) that used the clade B envelope (Env) gp120 of clone W6.1D (gp120W6.1D). Using dual-color antigen-specific sorting, we isolated Env-specific human monoclonal antibodies (MAbs) and studied the clonal persistence of antibodies in the setting of HIV-1 Env vaccination. We found evidence of VH somatic mutation induced by the vaccine but only to a modest level (3.8% ± 0.5%; range 0 to 8.2%). Analysis of 34 HIV-1-reactive MAbs recovered over four immunizations revealed evidence of both sequential recruitment of naïve B cells and restimulation of previously recruited memory B cells. These recombinant antibodies recapitulated the anti-HIV-1 activity of participant serum including pseudovirus neutralization and antibody-dependent cell-mediated cytotoxicity (ADCC). One antibody (3491) demonstrated a change in specificity following somatic mutation with binding of the inferred unmutated ancestor to a linear C2 peptide while the mutated antibody reacted only with a conformational epitope in gp120 Env. Thus, gp120W6.1D was strongly immunogenic but over four immunizations induced levels of affinity maturation below that of broadly neutralizing MAbs. Improved vaccination strategies will be needed to drive persistent stimulation of antibody clonal lineages to induce affinity maturation that results in highly mutated HIV-1 Env-reactive antibodies.  相似文献   

14.
Murine monoclonal antibody 1A4A1 has been shown to recognize a conserved neutralizing epitope of envelope glycoprotein E2 of Venezuelan equine encephalitis virus. It is a potential candidate for development of a second generation antibody for both immunodiagnosis and immunotherapy. In order to minimize the immunogenicity of murine antibodies and to confer human immune effector functions on murine antibodies, a recombinant gene fusion was constructed. It encoded a human IgG1 heavy chain constant region and a single-chain fragment variable antibody of 1A4A1. After expression in bacteria as inclusion bodies, the recombinant antibody was purified and refolded in vitro. The recombinant soluble antibody was demonstrated to retain high antigen-binding affinity to Venezuelan equine encephalitis virus and to possess some human IgG crystallizable fragment domain functions, such as recognition by protein G and human complement C1q binding. On non-reducing and reducing gel electrophoresis analysis of proteolytic fragments of the recombinant antibody, disulfide bond formation was found in the hinge region of the antibody. From these data, it was concluded that the recombinant antibody was capable of antigen recognition, and retained several functional activities. This work forms the basis for characterization of the recombinant antibody as to efficacy in vivo.  相似文献   

15.
16.
Phage display technology has been utilized for identification of specific binding molecules to an antigenic target thereby enabling the rapid generation and selection of high affinity, fully human antibodies directed towards disease target appropriate for antibody therapy. In the present study, single chain Fv antibody fragment (scFv) to hepatitis A virus (HAV) was selected from phage displayed antibody library constructed from peripheral blood lymphocytes (PBLs) of a vaccinated donor. The variable heavy (V(H)) and light chains (V(L)) were amplified using cDNA as template, assembled into scFv using splicing by overlap extension PCR (SOE PCR) and cloned into phagemid vector as a fusion for display of scFv on bacteriophage. The phage displaying antibody fragments were subjected to three rounds of panning with HAV antigen on solid phase. High affinity antibodies reactive to hepatitis A virus were identified by phage ELISA and cloned into a bacterial expression vector pET20b. The scFv was purified by immobilized metal affinity chromatography (IMAC) on a nickel-nitrilotriacetic acid (NTA) agarose column and characterized. The binding activity and specificity of the scFv was established by its non-reactivity towards other human viral antigens as determined by ELISA and immunoblot analysis. The scFv was further used in the development of an in-house IC-ELISA format in combination with a commercially available mouse monoclonal antibody for the quantification of hepatitis A virus antigen in human vaccine preparations. The adjusted r2 values obtained by subjecting the values obtained by quantification of the NIBSC standards using the commercial and the in-house ELISA kits by regression analysis were 0.99 and 0.95. 39 vaccine samples were subjected to quantification using both the kits. Regressional statistical analysis through the origin of the samples indicated International Unit (IU) values of 0.0416x and 0.0419x, respectively for the commercial and in-house kit respectively.  相似文献   

17.
Type I allergy, an immunodisorder affecting almost 20% of the population worldwide, is based on the production of IgE antibodies against per se harmless allergens. We report the expression of hexahistidine-tagged antibody fragments (Fabs) with specificity for Bet v1, the major birch pollen allergen, in Escherichia coli. The cDNA coding for the heavy chain fragment of a mouse monoclonal anti-Bet v1 antibody, Bip 1, was engineered by PCR to contain a hexahistidine-encoding 3' end. The modified Bip1 heavy chain cDNA was co-expressed in E. coli XL-1 Blue with the Bip 1 light chain cDNA using the combinatorial plasmid pComb3H. His-tagged recombinant (r) Bip 1 Fabs were isolated by nickel affinity chromatography and rBip 1 Fabs without His-tag were purified via affinity to rBet v1. rBip 1 Fabs with and without His-tag bound specifically to rBet v1 and, like Bet v1 -specific human serum IgE and rabbit-anti rBet v1 antibodies, cross-reacted with Bet v1-related allergens in other plant-species (alder, oak, hazelnut). We demonstrate the usefulness of His-tagged rBip 1 Fabs (1) for the identification of pollen samples containing Bet v 1 by particle blotting, (2) forthe detection of Bet v1-specific IgE antibodies in human serum samples by sandwich ELISA and (3) for the quantification of Bet v1 in solution. Based on these examples we suggest to use rBip 1 Fabs for the detection of Bet v1 and Bet v1-related allergens in natural allergen sources for allergy prevention, as well as for the standardization of natural allergen extracts produced for diagnosis and immunotherapy of birch pollen allergy.  相似文献   

18.
We previously developed an in vitro immunization (IVI) protocol of human peripheral blood mononuclear cells (PBMC) for generating antigen-specific human antibodies. In order to clarify whether IVI protocolinduces antigen-specific B cell responses in PBMC, we analyzed family gene usage and sequence of the variable region gene of immunoglobulin heavy chain (VH gene) of the antibody produced from the in vitro immunized PBMC. Sequence homology analyses of VH gene demonstrated that a larger repertoire of B cells can be sensitized with mite-extract than with cholera toxin B subunit and rice allergen. Further, antigen-specific B cells were efficiently expanded by using CpG oligodeoxynucleotide as adjuvant. These results suggest that appropriate combination of sensitizing antigen and adjuvant is primarily important for expansion of antigen-specific B cells in IVI protocol.  相似文献   

19.
目的:基于B细胞表位制备抗肝细胞生成素(HPO)的抗体。方法:根据HPO的空间结构选择了2个候选B细胞表位,展示在T7噬菌体的表面,将提取的重组噬菌体免疫动物,采用ELISA法检测抗血清的效价,通过杂交瘤技术制备针对HPOC端表位的单克隆抗体。结果:2个候选B细胞表位KDGSCD和DGWKDGSC均能诱导抗相应表位多肽的多克隆抗体的产生,免疫6周后血清中抗体效价均达到1∶103,产生的抗体还能够特异识别HPO全蛋白;针对HPOC端表位KDGSCD的单克隆抗体也能识别HPO全蛋白,且具有良好的特异性。结论:基于T7噬菌体展示的B细胞表位可作为免疫原用于制备识别该B细胞表位来源的全蛋白质的抗体。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号