首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microtubule-associated protein tau is an intrinsically disordered, highly soluble protein found primarily in neurons. Under normal conditions, tau regulates the stability of axonal microtubules and intracellular vesicle transport. However, in patients of neurodegeneration such as Alzheimer's disease (AD), tau forms neurofibrillary deposits, which correlates well with the disease progression. Identifying molecular signatures in tau, such as posttranslational modification, truncation, and conformational change has great potential to detect earliest signs of neurodegeneration and develop therapeutic strategies. Here, we show that full-length human tau, including the longest isoform found in the adult brain, can be robustly displayed on the surface of yeast Saccharomyces cerevisiae. Yeast-displayed tau binds to anti-tau antibodies that cover epitopes ranging from the N-terminus to the 4R repeat region. Unlike tau expressed in the yeast cytosol, surface-displayed tau was not phosphorylated at sites found in AD patients (probed by antibodies AT8, AT270, AT180, and PHF-1). However, yeast-displayed tau showed clear binding to paired helical filament (PHF) tau conformation-specific antibodies Alz-50, MC-1, and Tau-2. Although the tau possessed a conformation found in PHFs, oligomerization or aggregation into larger filaments was undetected. Taken together, yeast-displayed tau enables robust measurement of protein interactions and is of particular interest for characterizing conformational change.  相似文献   

2.
Fetal-Type Phosphorylation of the τ in Paired Helical Filaments   总被引:1,自引:0,他引:1  
To determine the phosphorylation sites of the tau in paired helical filaments (PHF), two types of PHF antisera with different specificities were used: One was a conventional anti-PHF, and the other was an antiserum to formic acid-denatured PHF (anti-HFoPHF). Phosphorylated tau-specific antibodies, anti-ptau 1 and anti-ptau 2, were prepared from anti-PHF and anti-HFoPHF, respectively. We found that both anti-ptau 1 and anti-ptau 2 labeled fetal or juvenile tau but not adult tau. The anti-ptau 1- and anti-ptau 2-recognition sites were immunochemically localized to the fragment Asp313 to Ile328 in the most COOH-terminal portion of tau. Furthermore, Ser315 was determined as the anti-ptau 2 recognition site. The sequence surrounding Ser315 was not found in the canonical sequences phosphorylated with known kinases.  相似文献   

3.
Immunocytochemical and peptide sequencing studies indicate that the regulatory protein ubiquitin (Ub) is incorporated into the paired helical filaments (PHF) of Alzheimer disease. In this study, we showed that some antibodies raised to PHF recognize epitopes of Ub. Analysis of the Ub sequences recognized by the antibodies raised to PHF, along with the known specificity of several monoclonal antibodies raised to artificial Ub conjugates, indicates the immunochemical representation of Ub residues 34-76 in PHF. The Ub epitopes recognized by antibodies raised to PHF are distinct from those recognized by antibodies raised to artificial Ub conjugates in two respects. First, antibodies that are raised to PHF and that recognize Ub react with PHF equally, whether denatured or not, whereas those raised to artificial Ub conjugates show greater reaction after denaturation. Second, mapping of the epitopes recognized by two monoclonal antibodies to PHF onto Ub indicates a distinction in the Ub residues recognized, compared with monoclonal antibodies raised to artificial Ub conjugates. The proximity of their epitopes to the site of conjugation, as well as their affinity for PHF polypeptides, suggests that the PHF antibodies that recognize Ub may be directed specifically to Ub epitopes defined by the protein conjugated to Ub.  相似文献   

4.
One of the hallmarks of Alzheimer's disease is the abnormal state of the microtubule-associated protein tau in neurons. It is both highly phosphorylated and aggregated into paired helical filaments, and it is commonly assumed that the hyperphosphorylation of tau causes its detachment from microtubules and promotes its assembly into PHFs. We have studied the relationship between the phosphorylation of tau by several kinases (MARK, PKA, MAPK, GSK3) and its assembly into PHFs. The proline-directed kinases MAPK and GSK3 are known to phosphorylate most Ser-Pro or Thr-Pro motifs in the regions flanking the repeat domain of tau: they induce the reaction with several antibodies diagnostic of Alzheimer PHFs, but this type of phosphorylation has only a weak effect on tau-microtubule interactions and on PHF assembly. By contrast, MARK and PKA phosphorylate several sites within the repeats (notably the KXGS motifs including Ser262, Ser324, and Ser356, plus Ser320); in addition PKA phosphorylates some sites in the flanking domains, notably Ser214. This type of phosphorylation strongly reduces tau's affinity for microtubules, and at the same time inhibits tau's assembly into PHFs. Thus, contrary to expectations, the phosphorylation that detaches tau from microtubules does not prime it for PHF assembly, but rather inhibits it. Likewise, although the phosphorylation sites on Ser-Pro or Thr-Pro motifs are the most prominent ones on Alzheimer PHFs (by antibody labeling), they are only weakly inhibitory to PHF assembly. This implies that the hyperphosphorylation of tau in Alzheimer's disease is not directly responsible for the pathological aggregation into PHFs; on the contrary, phosphorylation protects tau against aggregation.  相似文献   

5.
The use of antibodies to treat neurodegenerative diseases has undergone rapid development in the past decade. To date, immunotherapeutic approaches to Alzheimer’s disease have mostly targeted amyloid beta as it is a secreted protein that can be found in plasma and CSF and is consequently accessible to circulating antibodies. Few recent publications have suggested the utility of treatment of tau pathology with monoclonal antibodies to tau. Our laboratory has begun a systematic study of different classes of tau monoclonal antibodies using mutant P301L mice. Three or seven months old mutant tau mice were inoculated weekly with tau monoclonal antibodies at a dose of 10 mg/Kg, until seven or ten months of age were reached respectively. Our data strongly support the notion that in P301L animals treated with MC1, a conformational monoclonal antibody specific for PHF-tau, the rate of development of tau pathology is effectively reduced, while injecting DA31, a high affinity tau sequence antibody, does not exert such benefit. MC1 appears superior to DA31 in overall effects, suggesting that specificity is more important than affinity in therapeutic applications. Unfortunately the survival rate of the P301L treated mice was not improved when immunizing either with MC1 or PHF1, a high affinity phospho-tau antibody previously reported to be efficacious in reducing pathological tau. These data demonstrate that passive immunotherapy in mutant tau models may be efficacious in reducing the development of tau pathology, but a great deal of work remains to be done to carefully select the tau epitopes to target.  相似文献   

6.
In Alzheimer's disease, the most characteristic neuropathological changes are the formation of neurofibrillary tangles (NFT) and neuritic plaques (NP) characterized by the presence of bundles of paired helical filaments (PHF) that accumulate in the degenerating neurites and neuronal cell bodies. Although the protein composition of the PHF is ill-defined, a number of microtubule-associated proteins have been implicated in these lesions. Here we report results with an antiserum monospecific for the microtubule-associated protein MAP 2 which does not cross-react with any other microtubular protein. Immunostaining with this antibody of sections from an Alzheimer's brain show a strong reactivity with NFT but no reactivity at the level of the NP. On the other hand, immunostaining of Alzheimer's brain sections with another antibody specific for the microtubule-associated protein tau shows strong staining of PHF on both NFT and NP. These findings confirm the presence of the tau proteins in the PHF and strongly suggest that MAP 2 may not be a main structural component of the PHF. Labelling of NFT with the anti-MAP 2 antiserum suggests a non-specific binding of MAP 2 to the PHF during the process of NFT formation.  相似文献   

7.
Microtubule-associated protein tau from bovine brain reacted on immunoblots and on enzyme-linked immunosorbent assay with a monoclonal antibody, Alz 50, which has previously been found to bind to an Alzheimer disease-specific antigen. The apparent affinity of binding of Alz 50 to tau was 2.1 X 10(-9) M on competitive enzyme-linked immunosorbent assay, and it was in the same range as for Tau-1 (0.5 X 10(-9) M), an antibody raised against purified bovine tau proteins. Immunoblotting of trypsin-digested tau revealed differences between Alz 50 and Tau-1 binding sites. The binding of both antibodies to tau was not affected by prior treatment with phosphatase, indicating that the cross-reactivity of Alz 50 with tau is due to the presence of phosphate-independent epitope. This epitope then differs from phosphate-dependent tau epitopes often shared with other cytoskeletal proteins. Alz 50 and Tau-1 binding sites were present in all isoelectric (pI 6-8) and molecular weight variants of tau. In contrast, phosphate-dependent epitopes recognized by another tau-reactive antibody (NP14) were found mostly in acidic tau variants. Similarly to tau proteins from bovine brain, tau-enriched preparations from normal human brain contained Alz 50 and Tau-1 reactive sites in all isoelectric (pI 6.5-8.5) and molecular weight variants. Our observation of Alz 50 cross-reactivity with tau suggests a relationship between tau and the novel protein identified recently in Alzheimer brains.  相似文献   

8.
We investigated whether a peptide fragment from the C-terminus of beta-amyloid protein precursor is associated with Alzheimer paired helical filaments (PHFs). Antiserum BR188, to the last 20 amino acids of the precursor, did not cross-react with tau protein, known to be in PHFs. It did react with all five pronase-treated PHF preparations assayed by ELISA and immunogold-labelled the same PHF fibrils that a PHF-specific tau antibody labelled. Neither antibody labelled beta/A4 fibrils. These results suggest that a fragment from the C-terminus of beta-amyloid precursor protein copurifies with pronase-treated PHFs and may play a role in their molecular pathogenesis.  相似文献   

9.
Alzheimer disease and related dementia are characterized by the presence of hyperphosphorylated tau aggregated into filaments. The role of tau phosphorylation in the fibrillogenesis has not yet been unraveled. Therefore, it is important to know which phosphatases can dephosphorylate tau protein in vivo. The effect of recombinant purified calcineurin (CN(PP2B)) and several calcineurin mutants on tau phosphorylation was studied in two neuronal like cell lines PC12 and SH-SY5Y. The modulation of tau phosphorylation at Ser199/Ser202, Ser396/Ser404, Ser262/Ser356, and Thr181 sites was examined in these cell lines using the phosphorylation state-dependent antitau antibodies Tau 1, PHF1, 12E8, and AT270. The results have shown that CN directly dephosphorylates all of those sites of tau protein. Recombinant calcineurin introduced into cells that have previously been treated with okadaic acid and cyclosporin A, which are inhibitors of phosphatases (PP1/PP2A and PP2B), has a direct effect on the phosphorylation status on all phosphorylation sites studied. We conclude that calcineurin is (besides PP2A) a important modulator of tau phosphorylation in vivo.  相似文献   

10.
The most characteristic cellular change in Alzheimer's disease is the accumulation of aberrant filaments, the paired helical filaments (PHF), in the affected neurons. There is growing evidence from a number of laboratories that dementia correlates better with the accumulation of PHF than of the extracellular amyloid, the second major lesion of Alzheimer's disease. PHF are both morphologically and biochemically unlike any of the normal neurofibrils. The major polypeptides in isolated PHF are microtubule-associated protein tau. Tau in PHF is phosphorylated differently from tau in microtubules. This abnormal phosphorylation of tau in PHF occurs at several sites. The accumulation of abnormally phosphorylated tau in the affected neurons in Alzheimer's disease brain precedes both the formation and the ubiquitination of the neurofibrillary tangles. In Alzheimer's disease brain, tubulin is assembly competent, but the in vitro assembly of microtubules is not observed. In vitro, the phosphate groups in PHF are less accessible than those of tau to alkaline phosphatase. The in vitro dephosphorylated PHF polypeptides stimulate microtubule assembly from bovine tubulin. It is hypothesized that a defect in the protein phosphorylation/dephosphorylation system is one of the earliest events in the cytoskeletal pathology in Alzheimer's disease. Production of nonfunctional tau by its phosphorylation and its polymerization into PHF most probably contributes to a microtubule assembly defect, and consequently, to a compromise in both axoplasmic flow and neuronal function. Index Entries: Alzheimer's disease; mechanisms of neuronal degeneration; neurofibrillary changes; paired helical filaments: biochemistry; microtubule-associated protein tau; abnormal phosphorylation; ubiquitination; microtubule assembly; axoplasmic flow; protein phosphorylation/dephosphorylation.  相似文献   

11.
The carboxyl third of tau is tightly bound to paired helical filaments   总被引:30,自引:0,他引:30  
J Kondo  T Honda  H Mori  Y Hamada  R Miura  M Ogawara  Y Ihara 《Neuron》1988,1(9):827-834
To obtain definitive evidence that tau is a component of paired helical filaments (PHF) in Alzheimer's disease, we fractionated and sequenced PHF-derived peptides according to a previously described procedure. In the PHF digest, we found four independent tau peptides that were located in the carboxyl third of tau. Subsequent extensive analysis of the PHF digest did not provide any other tau peptides. The conventional PHF antiserum and a new antiserum directed toward formic acid-denatured PHF reacted with the distinct CNBr fragments of tau localized on the carboxy-terminal portion of tau by protein sequencing. From these observations, we conclude that the carboxyl third of tau is tightly bound to PHF.  相似文献   

12.
Inoue M  Hirata A  Tainaka K  Morii T  Konno T 《Biochemistry》2008,47(45):11847-11857
Phosphorylation of a fibrillogenic protein, human tau, is believed to play crucial roles in the pathogenesis of Alzheimer's disease. For elucidating molecular mechanisms of the phosphorylation effect on tau fibrillation, we synthesized a peptide, VQIVY 310K (PHF6) and its phosphorylated derivative (PHF6pY). PHF6 is a partial peptide surrounding a plausible in vivo phosphorylation site Tyr310 and forms amyloid-type fibrils similar to those generated by full-length tau. Fibrillation of PHF6 and PHF6pY were studied by spectroscopic and microscopic methods, and the critical concentration of the fibrillation was determined for comparing the fibril stability. The results showed that the phosphorylation strongly influenced the fibrillation propensity of PHF6 by changing its dependency on pH and ionic strength. On the basis of the observations, we suggested that charged sites on the phosphate group and its electrostatic pairing with the neighboring charged residues were physical origins of the phosphorylation effect. To verify this charge-pairing mechanism, we conducted experiments using a series of PHF6 derivatives with non-native charge distributions. The electrostatic interaction in an intermolecular mode was also demonstrated by the system composed of two different peptide species, which found that fibrillation of nonphosphorylated PHF6 was drastically enhanced when a trace amount of phosphorylated PHF6 molecules coexisted. A simulation analysis utilizing crystal coordinates of the PHF6 fibril was also performed for interpreting the experimental results in a molecular level. The present study using the model peptide system gave us a microscopically insightful view on the roles of tau phosphorylation in amyloid-related diseases.  相似文献   

13.
Paired helical filaments (PHF) are unusual neuronal fibers which accumulate progressively in the brain in Alzheimer's disease (AD). The insolubility of PHF in various kinds of solvents enabled us to obtain highly purified PHF, but prevented the application of conventional analytical methods to identify their components. Here we report that antibodies against purified PHF recognize tau protein, a brain-specific microtubule-associated protein, suggesting that a portion of PHF is tau protein.  相似文献   

14.
Abstract: Paired helical filaments (PHFs), a characteristic neuropathologic finding in Alzheimer's disease brain, are abnormal fibrillary forms of hyperphosphorylated tau (PHF-tau), which have been shown to be highly resistant to calpain digestion. Either excessive phosphorylation or fibrillary arrangement of tau proteins in PHFs may play a role in proteolytic resistance by limiting access to calpain recognition/digestion sites. To determine the contribution of the fibrillary conformation, isolated PHFs were subjected to treatment with either formic acid or guanidine. Both procedures effectively abolished the fibrillary structure of PHF but preserved PHF-tau immunoreactivity using a panel of antibodies that recognize nonphosphorylated and phosphorylated epitopes. These treatments also significantly increased the sensitivity of PHF-tau polypeptides to calpain proteolysis as shown by significant decreases in the half-life ( t 1/2) from the infinite with native PHF to 44 min and 4.4 min in formic acid- or guanidine-treated samples, respectively. In contrast, the sensitivity of normal fetal tau (3.4 min) was either decreased (5.9 min) or unaffected (3.6 min) by similar treatment. Our results indicate that after guanidine treatment, the sensitivity of PHF to calpain resembles that of fetal tau. These results strongly suggest that the fibrillary structure of PHF-tau, rather than hyperphosphorylation, is the major factor responsible for the resistance of abnormal filaments to calpain-mediated proteolysis.  相似文献   

15.
A panel of monoclonal antibodies to neurofilaments have been investigated with regard to the location of their respective epitopes on neurofilament polypeptides and their ability to label the neurofibrillary tangles and paired helical filaments (PHF) which are characteristic of Alzheimer's disease. All of the neurofilament monoclonal antibodies that label tangles and PHF are directed against epitopes in the side arm domains of the two larger neurofilament polypeptides, NF-H and NF-M, and do not recognise the alpha-helical rod domains of these proteins. Immuno-electron microscopy demonstrates that the neurofilament antibodies label the constituent PHF per se and do not simply stain neurofilaments that might be admixed with PHF. These neurofilament epitopes are differentially retained by PHF, following isolation. Thus, antibody labelling of PHF is not simply due to the presence of normal neurofilament polypeptides. We propose that in tangle-bearing neurons, neurofilaments are degraded by proteases and that it is fragments of the side arms which contribute to the composition of PHF.  相似文献   

16.
In Alzheimer’s disease (AD), an extensive accumulation of extracellular amyloid plaques and intraneuronal tau tangles, along with neuronal loss, is evident in distinct brain regions. Staging of tau pathology by postmortem analysis of AD subjects suggests a sequence of initiation and subsequent spread of neurofibrillary tau tangles along defined brain anatomical pathways. Further, the severity of cognitive deficits correlates with the degree and extent of tau pathology. In this study, we demonstrate that phospho-tau (p-tau) antibodies, PHF6 and PHF13, can prevent the induction of tau pathology in primary neuron cultures. The impact of passive immunotherapy on the formation and spread of tau pathology, as well as functional deficits, was subsequently evaluated with these antibodies in two distinct transgenic mouse tauopathy models. The rTg4510 transgenic mouse is characterized by inducible over-expression of P301L mutant tau, and exhibits robust age-dependent brain tau pathology. Systemic treatment with PHF6 and PHF13 from 3 to 6 months of age led to a significant decline in brain and CSF p-tau levels. In a second model, injection of preformed tau fibrils (PFFs) comprised of recombinant tau protein encompassing the microtubule-repeat domains into the cortex and hippocampus of young P301S mutant tau over-expressing mice (PS19) led to robust tau pathology on the ipsilateral side with evidence of spread to distant sites, including the contralateral hippocampus and bilateral entorhinal cortex 4 weeks post-injection. Systemic treatment with PHF13 led to a significant decline in the spread of tau pathology in this model. The reduction in tau species after p-tau antibody treatment was associated with an improvement in novel-object recognition memory test in both models. These studies provide evidence supporting the use of tau immunotherapy as a potential treatment option for AD and other tauopathies.  相似文献   

17.
Abstract : Immunoaffinity-purified paired helical filaments (PHFs) from Alzheimer's disease (AD) brain homogenates contain an associated protein kinase activity that is able to induce the phosphorylation of PHF proteins on addition of exogenous MgCl2 and ATP. PHF kinase activity is shown to be present in immunoaffinity-purified PHFs from both sporadic and familial AD, Down's syndrome, and Pick's disease but not from normal brain homogenates. Although initial studies failed to show that the kinase was able to induce the phosphorylation of tau, additional studies presented in this article show that only cyclic AMP-dependent protein kinase-pretreated recombinant tau is a substrate for the PHF kinase activity. Deletional mutagenesis, phosphopeptide mapping, and site-directed mutagenesis have identified the PHF kinase phosphorylation sites as amino acids Thr361 and Ser412 in htau40. In addition, the cyclic AMP-dependent protein kinase phosphorylation sites that direct the PHF kinase have been mapped to amino acids Ser356 and Ser409 in htau40. Additional data demonstrate that these hierarchical phosphorylations in the extreme C terminus of tau allow for the incorporation of recombinant tau into exogenously added AD-derived PHFs, providing evidence that certain unique phosphorylations of tau may play a role in the pathogenesis of neurofibrillary pathology in AD.  相似文献   

18.
In Alzheimer's disease and frontotemporal dementias the microtubule-associated protein tau forms intracellular paired helical filaments (PHFs). The filaments formed in vivo consist mainly of full-length molecules of the six different isoforms present in adult brain. The substructure of the PHF core is still elusive. Here we applied scanning transmission electron microscopy (STEM) and limited proteolysis to probe the mass distribution of PHFs and their surface exposure. Tau filaments assembled from the three repeat domain have a mass per length (MPL) of approximately 60 kDa/nm and filaments from full-length tau (htau40DeltaK280 mutant) have approximately 160 kDa/nm, compared with approximately 130 kDa/nm for PHFs from Alzheimer's brain. Polyanionic cofactors such as heparin accelerate assembly but are not incorporated into PHFs. Limited proteolysis combined with N-terminal sequencing and mass spectrometry of fragments reveals a protease-sensitive N-terminal half and semiresistant PHF core starting in the first repeat and reaching to the C-terminus of tau. Continued proteolysis leads to a fragment starting at the end of the first repeat and ending in the fourth repeat. PHFs from tau isoforms with four repeats revealed an additional cleavage site within the middle of the second repeat. Probing the PHFs with antibodies detecting epitopes either over longer stretches in the C-terminal half of tau or in the fourth repeat revealed that they grow in a polar manner. These data describe the physical parameters of the PHFs and enabled us to build a model of the molecular arrangement within the filamentous structures.  相似文献   

19.
Tau is a microtubule-associated protein found primarily in neurons, and its function is regulated by site-specific phosphorylation. Although it is well established that tau is phosphorylated at both primed and unprimed epitopes by glycogen synthase kinase 3 beta (GSK3 beta), how specific proteins that interact with GSK3 beta regulate tau phosphorylation has not been thoroughly examined. Members of the FRAT (frequently rearranged in advanced T-cell lymphoma) protein family have been shown to interact with GSK3 beta, and FRAT-1 has been shown to modulate the activity of GSK3 beta toward tau and other substrates. However, the effects of FRAT-2 on GSK3 beta activity and tau phosphorylation have not been examined. Therefore in this study the effects of FRAT-2 on GSK3 beta activity and tau phosphorylation were examined. In situ, FRAT-2 significantly increased GSK3 beta-mediated phosphorylation of tau at a primed epitope while not significantly affecting the phosphorylation of unprimed sites. Co-immunoprecipitation studies revealed that association of FRAT-2 with GSK3 beta resulted in a significant increase in phosphorylation of a primed substrate but did not alter phosphorylation of an unprimed substrate. Further, in vitro assays using recombinant proteins directly demonstrated that FRAT-2 enhances GSK3 beta-mediated phosphorylation of a primed substrate to a greater extent than an unprimed substrate. In addition, FRAT-2 is phosphorylated by GSK3 beta. This is the first demonstration of a protein differentially regulating the activity of GSK3 beta toward primed and unprimed epitopes.  相似文献   

20.
A novel type of collagenous fibers has been isolated from human brain and characterized by electron microscopy and optical diffraction. It was found that the morphology of the fibers is similar, but not identical, to that of skin collagen. Also, the collagenous fibers show some similarities with the paracrystals that could be assembled in vitro from purified microtubule-associated protein tau. Immunological analyses indicated the presence of epitopes in these collagenous fibers which react with antibodies against collagen and tau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号