首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
The Suppressor of UnderReplication (SuUR) gene controls the DNA underreplication in intercalary and pericentric heterochromatin of Drosophila melanogaster salivary gland polytene chromosomes. In the present work, we investigate the functional importance of different regions of the SUUR protein by expressing truncations of the protein in an UAS–GAL4 system. We find that SUUR has at least two separate chromosome-binding regions that are able to recognize intercalary and pericentric heterochromatin specifically. The C-terminal part controls DNA underreplication in intercalary heterochromatin and partially in pericentric heterochromatin regions. The C-terminal half of SUUR suppresses endoreplication when ectopically expressed in the salivary gland. Ectopic expression of the N-terminal fragments of SUUR depletes endogenous SUUR from polytene chromosomes, causes the SuUR phenotype and induces specific swellings in heterochromatin.  相似文献   

3.
We studied the influence of the Suppressor of Underreplication (SuUR) gene expression on the intercalary heterochromatin (IH) regions of Drosophila melanogaster polytene chromosomes. We observed a strong positive correlation between increased SuUR expression, underreplication extent, amount of DNA truncation, and formation of ectopic contacts in IH regions. SuUR overexpression from heat shock-driven transgene results in the formation of partial chromosomal aberrations whose breakpoints map exclusively to the regions of intercalary and pericentric heterochromatin. It is important to note that all these effects are seen only if SuUR overexpression is induced during early stages of chromosome polytenization. Therefore, we developed the idea that ectopic pairing results from the joining of free DNA ends, which are formed as a consequence of underreplication.  相似文献   

4.
The Suppressor of Underreplication ( SuUR) gene contributes to the regulation of DNA replication in regions of intercalary heterochromatin in salivary gland polytene chromosomes. In the SuUR mutant these regions complete replication earlier than in wild type and, as a consequence, undergo full polytenization. Here we describe the effects of ectopic expression of SuUR using the GAL4-UAS system. We demonstrate that ectopically expressed SuUR exerts qualitatively distinct influences on polyploid and diploid tissues. Ectopic expression of SuUR inhibits DNA replication in polytene salivary gland nuclei, and reduces the degree of amplification of chorion protein genes that occurs in the follicle cell lineage. Effects caused by ectopic SuUR in diploid tissues vary considerably; there is no obvious effect on eye formation, but apoptosis is observed in the wing disc, and wing shape is distorted. The effect of ectopic SuUR expression is enhanced by mutations in the genes E2F and mus209 ( PCNA). Differential responses of polyploid and diploid cells to ectopic SuUR may reflect differences in the mechanisms underlying mitotic cell cycles and endocycles.Communicated by G. P. Georgiev  相似文献   

5.
6.
The morphological characteristics of intercalary heterochromatin (IH) are compared with those of other types of silenced chromatin in the Drosophila melanogaster genome: pericentric heterochromatin (PH) and regions subject to position effect variegation (PEV). We conclude that IH regions in polytene chromosomes are binding sites of silencing complexes such as PcG complexes and of SuUR protein. Binding of these proteins results in the appearance of condensed chromatin and late replication of DNA, which in turn may result in DNA underreplication. IH and PH as well as regions subject to PEV have in common the condensed chromatin appearance, the localization of specific proteins, late replication, underreplication in polytene chromosomes, and ectopic pairing.  相似文献   

7.
Intercalary heterochromatin consists of extended chromosomal domains which are interspersed throughout the euchromatin and contain silent genetic material. These domains comprise either clusters of functionally unrelated genes or tandem gene duplications and possibly stretches of noncoding sequences. Strong repression of genetic activity means that intercalary heterochromatin displays properties that are normally attributable to classic pericentric heterochromatin: high compaction, late replication and underreplication in polytene chromosomes, and the presence of heterochromatin-specific proteins. Late replication and underreplication occurs when the suppressor of underreplication protein is present in intercalary heterochromatic regions. Intercalary heterochromatin underreplication in polytene chromosomes results in free double-stranded ends of DNA molecules; ligation of these free ends is the most likely mechanism for ectopic pairing between intercalary heterochromatic and pericentric heterochromatic regions. No support has been found for the view that the frequency of chromosome aberrations is elevated in intercalary heterochromatin.  相似文献   

8.
Different genomic regions replicate at a different fixed time during the S phase. Late-replicating sequences are often underreplicated in the Drosophila salivary-gland polytene chromosomes. The SuUR gene, whose mutation changes the replication time of late-replicating regions in salivary-gland cells, has been identified in Drosophila melanogaster. The SUUR protein lacks homologs by a BLAST search, and only moderate similarity is observed between its N-terminal part and chromatin-remodeling proteins of the SWI2/SNF2 family. The gene and the protein were analyzed in insects. Orthologs of the SuUR gene were found in all annotated Drosophila species. The number of amino acid substitutions in the SUUR protein proved to be extremely high, corresponding to that of fast-evolving genes. Orthologs with low homology were found in mosquitoes Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. No orthologs of the SuUR gene were detected beyond Diptera.  相似文献   

9.
Studies of the position effect resulting from chromosome rearrangements in Drosophila melanogaster have shown that replication distortions in polytene chromosomes correlate with heritable gene silencing in mitotic cells. Earlier studies mostly focused on the effects of euchromatin-heterochromatin rearrangements on replication and silencing of euchromatic regions adjacent to the heterochromatin breakpoint. This review is based on published original data and considers the effect of rearrangements on heterochromatin: heterochromatin blocks that are normally underrepresented or underreplicated in polytene chromosomes are restored. Euchromatin proved to affect heterochromatin, preventing its underreplication. The effect is opposite to the known inactivation effect, which extends from heterochromatin to euchromatin. The trans-action of heterochromatin blocks on replication of heterochromatin placed within euchromatin is discussed. Distortions of heterochromatin replication in polytene chromosomes are considered to be an important characteristic associated with the functional role of the corresponding genome regions.  相似文献   

10.
11.
12.
13.
Z. G. Scouras 《Genetica》1986,69(2):127-132
Certain regions of the salivary gland polytene chromosomes of Drosophila auraria and its closely related species D. triauraria and D. quadraria, exhibit definite toroidal structures, as evidenced in routinely fixed and stained squash preparations under the light microscope. These toroids are associated with intercalary heterochromatin, as revealed by ectopic pairing and weak points. Similar observations on the giant chromosomes of D. melanogaster are discussed.  相似文献   

14.
The modern concept of intercalary heterochromatin as polytene chromosome regions exhibiting a number of specific characteristics is formulated. DNA constituting these regions is replicated late in the S period; therefore, some strands of polytene chromosomes are underrepresented; i.e., they are underreplicated. Late-replicating regions account for about 7% of the genome; genes are located there in clusters of as many as 40. In general, the gene density in the clusters is substantially lower than in the main part of the genome. Late-replicating regions have an inactivating capacity: genes incorporated into these regions as parts of transposons are inactivated with a higher probability. These regions contain a specific protein SUUR affecting the rate of replication completion.  相似文献   

15.
The Suppressor of Underreplication ( SuUR) gene contributes to the regulation of DNA replication in regions of intercalary heterochromatin in salivary gland polytene chromosomes. In the SuUR mutant these regions complete replication earlier than in wild type and, as a consequence, undergo full polytenization. Here we describe the effects of ectopic expression of SuUR using the GAL4-UAS system. We demonstrate that ectopically expressed SuUR exerts qualitatively distinct influences on polyploid and diploid tissues. Ectopic expression of SuUR inhibits DNA replication in polytene salivary gland nuclei, and reduces the degree of amplification of chorion protein genes that occurs in the follicle cell lineage. Effects caused by ectopic SuUR in diploid tissues vary considerably; there is no obvious effect on eye formation, but apoptosis is observed in the wing disc, and wing shape is distorted. The effect of ectopic SuUR expression is enhanced by mutations in the genes E2F and mus209 ( PCNA). Differential responses of polyploid and diploid cells to ectopic SuUR may reflect differences in the mechanisms underlying mitotic cell cycles and endocycles.  相似文献   

16.
We examined three regions of under-represented euchromatic DNA sequences (histone, Ubx, and 11 A), for their possible correlation with euchromatic constrictions in polytene chromosomes of Drosophila melanogaster. Cloned sequences were hybridized to filters and to chromosomes prepared for light microscopy. Under-represented sequences hybridized to DNA within constrictions and in ectopic fibers. In contrast, adjacent sequences that were fully endoreplicated in the Ubx and 11A regions in polytene cells hybridized to sites just adjacent to their respective constrictions. For one region (Ubx), sequences under-represented in salivary gland cells were fully endoreplicated in fat body cells. For this particular region, the morphology of the polytene chromosomes differs between these two cell types in that the specific constriction is absent at this region in fat body polytene chromosomes, thus strengthening the correlation between under-representation and chromosome constrictions. Although all three sequences are in regions that have been classified by others as intercalary heterochromatin, we detect no common functional or sequence organizational feature for these examples of under-represented DNA. We suggest that the lower efficiencies of the replication origins, or special regions of termination at these sites, are the primary cause of the under-replication, and that this under-replication is sufficient to confer the properties of intercalary heterochromatin.  相似文献   

17.
The DNA base composition determined cytofluorometrically with the dyes CMA and DAPI in individual mitotic chromosomes of Drosophila melanogaster agrees very well with reference data obtained by hybridisation. Measurements in polytene chromosomes showed: (1) The base composition in the chromocenter, in chromosome 4 and bands X 1 and 3R 81 is lower than would be expected if they consisted of satellite DNAs only. (2) In the chromosome arms, bands with deviating base composition were found also where no satellite DNAs have been localized. With two visualisation methods — a photographic technique and image analysis — a complex pattern of base composition heterogeneity in the arms of the polytene chromosomes was established. In part this pattern may reflect the intercalary heterochromatin shown by weak point behaviour, ectopic pairing, and late replication.  相似文献   

18.
The localization of mobile dispersed genes (mdg-1 and mdg-3) was studied by in situ hybridization with the polytene chromosomes of 20 laboratory stocks of Drosophila melanogaster. The average number of sites was 20 for mdg-1 and 12 for mdg-3, but the actual number varied from stock to stock (14–27 for mdg-1 and 5–18 for mdg-3). A total of 182 possible sites have been detected for mdg-1 and 123 sites for mdg-3. In spite of the individual and interstock variation, the distribution over chromosomes was found to be nonrandom for mdg-3 and especially for mdg-1. Frequently occurring sites of mdg-1 hybridization were revealed, most of which coincided with regions of intercalary heterochromatin, especially in chromosome 2.  相似文献   

19.
20.
Summary The technique of chromosome walking was used to isolate approximately 60 kb of DNA from the region containing the complementation group uncoordinated of Drosophila melanogaster, located in that part of the X chromosome which spans the euchromatin-heterochromatin junction. The cloned DNA can be divided into two distinct regions. The first contains sequences that are low copy number or unique and are largely conserved between strains. The second region is characterized by units repeated in tandem arrays and is polymorphic within, and between, strains. Each repetitive unit is separated by a member of an abundant sequence family, part of which is homologous to the ribosomal type 1 insertion sequence of D. melanogaster. The molecular organization of the cloned DNA was compared with that of sequences isolated from regions of intercalary heterochromatin and also with genes which have been characterized from more conventional euchromatic regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号