首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to determine the effects of 28 days of hindlimb unloading (HU) on the mature female rat skeleton. In vivo proximal tibia bone mineral density and geometry of HU and cage control (CC) rats were measured with peripheral quantitative computed tomography (pQCT) on days 0 and 28. Postmortem pQCT, histomorphometry, and mechanical testing were performed on tibiae and femora. After 28 days, HU animals had significantly higher daily food consumption (+39%) and lower serum estradiol levels (-49%, P = 0.079) compared with CC. Proximal tibia bone mineral content and cortical bone area significantly declined over 28 days in HU animals (-4.0 and 4.8%, respectively), whereas total and cancellous bone mineral densities were unchanged. HU animals had lower cortical bone formation rates and mineralizing surface at tibial midshaft, whereas differences in similar properties were not detected in cancellous bone of the distal femur. These results suggest that cortical bone, rather than cancellous bone, is more prominently affected by unloading in skeletally mature retired breeder female rats.  相似文献   

2.
Growth hormone (GH) has profound effects on linear bone growth, bone metabolism and bone mass. The GH receptor is found on the cell surface of osteoblasts and osteoclasts, but not on mature osteocytes. In vitro, GH stimulates proliferation, differentiation and extracellular matrix production in osteoblast-like cell lines. GH also stimulates recruitment and bone resorption activity in osteoclast-like cells. GH promotes autocrine/paracrine insulin-like growth factor 1 (IGF-I) production and endocrine (liver-derived) IGF-I production. Some of the GH-induced effects on bone cells can be blocked by IGF-I antibodies, while others cannot. In animal experiments, GH administration increases bone formation and resorption, and enhances cortical bone mass and mechanical strength. When GH induces linear growth, increased cancellous bone volume is seen, but an unaffected cancellous bone volume is found in the absence of linear growth. Patients with acromegaly have increased bone formation and resorption markers. Bone mass results are conflicting because many acromegalics have hypogonadism, but in acromegalics without hypogonadism, increased bone mineral density (BMD) is seen in predominantly cortical bone, and normal BMD in predominantly cancellous bone. Adult patients with growth hormone deficiency have decreased bone mineral content and BMD. GH therapy rapidly increases bone formation and resorption markers. During the first 6-12 months of therapy, declined or unchanged BMD is found in the femoral neck and lumbar spine. All GH trials with a duration of two years or more show enhanced femoral neck and lumbar spine BMD. In osteoporotic patients, GH treatment quickly increases markers for bone formation and resorption. During the first year of treatment, unchanged or decreased BMD values are found, whereas longer treatment periods report enhanced or unchanged BMD values. However, existing trials comprising relatively few patients and limited treatment periods do not allow final conclusions to be drawn regarding the effects of GH on osteoporosis during long-term treatment.  相似文献   

3.
In growing children, lumbar and femoral areal bone mineral density (aBMD), as measured by dual-energy X-ray absorptiometry (DXA), is influenced by skeletal growth and bone size. Correction of lumbar bone mineral density (BMD) for bone volume (volumetric BMD [vBMD]), by the use of mathematical extrapolations, reduces the confounding effect of bone size, but vBMD remains dependent on age and bone size during growth. Femoral (neck and mid-shaft) vBMD, assessed by DXA, is independent of age prior to puberty, but a slight increase occurs in late puberty and after menarche. Femoral (mid-shaft) cortical bone density and radial cortical and trabecular bone densities, assessed by quantitative computed tomography (QCT), show no peak during childhood or adolescence. Bone strength index, calculated by peripheral QCT, increases with age and correlates with handgrip strength, bone cross-sectional area and cortical area. Puberty is one of the main factors that influences lumbar bone mineral content and aBMD accumulation, but a high incidence of fractures occurs during this period of life, which may be associated with a reduced aBMD.  相似文献   

4.
There are substantial changes in skeletal and mineral metabolism during pregnancy and lactation. The purpose of this study was to determine the changes in intracortical bone remodeling and turnover during lactation in beagle dogs. A femur and rib were obtained from dogs near the end of lactation or soon after weaning and compared with nonlactating controls. Rib cortical bone had much higher bone turnover rates than did femoral diaphyseal cortical bone. The number of single-labeled osteons and the number of resorption spaces were significantly greater during lactation in both the rib and the femur. Additionally, the mineral apposition rate, basic multicellular unit activation frequency, and bone turnover rates were greater in the femoral cortical bone from the lactating dogs than from the controls. These data demonstrate that during lactation, intracortical bone remodeling increases, and this may provide a mechanism for the skeleton to be responsive to the calcium requirements of the mother. In addition, these data may help explain the transient decreases in cortical bone mineral density that are reported to occur during human lactation.  相似文献   

5.
The purpose of the present study was to compare the effects of alendronate and alfacalcidol on cancellous and cortical bone mass and bone mechanical properties in ovariectomized rats. Twenty-six female Sprague-Dawley rats, 7 months of age, were randomized by the stratified weight method into four groups: the sham-operated control (Sham) group and the three ovariectomy (OVX) groups, namely, OVX + vehicle, OVX + alendronate (2.5 mg/kg, p.o., daily), and OVX + alfacalcidol (0.5 mug/kg, p.o., daily). At the end of the 8-week experimental period, bone histomorphometric analyses of cancellous bone at the proximal tibial metaphysis and cortical bone at the tibial diaphysis were performed, and the mechanical properties of the femoral distal metaphysis and femoral diaphysis were evaluated. OVX decreased cancellous bone volume per total tissue volume (BV/TV), and the maximum load of the femoral distal metaphysis, as a result of increases in serum osteocalcin (OC) levels, and also the number of osteoclasts (N.Oc), osteoclast surface (OcS) and bone formation rate (BFR) per bone surface (BS), and BFR/BV, without any effect on cortical area (Ct Ar), or maximum load of the femoral diaphysis. Alendronate prevented this decrease in cancellous BV/TV by suppressing increases in N.Oc/BS, OcS/BS, BFR/BS, and BFR/BV, without any apparent effect on Ct Ar, or maximum load of the femoral distal metaphysis and femoral diaphysis. On the other hand, alfacalcidol increased cancellous BV/TV, Ct Ar, and the maximum load of the femoral distal metaphysis and femoral diaphysis, by mildly decreasing trabecular BFR/BV, maintaining trabecular mineral apposition rate and osteoblast surface per BS, increasing periosteal and endocortical BFR/BS, and preventing an increase in endocortical eroded surface per BS. The present study clearly showed the differential skeletal effects of alendronate and alfacalcidol in ovariectomized rats. Alendronate prevented OVX-induced cancellous bone loss by suppressing bone turnover, while alfacalcidol improved cancellous and cortical bone mass and bone strength by suppressing bone resorption and maintaining or even increasing bone formation.  相似文献   

6.
The baculum is an extraskeletal bone located in the penis of a few species in several orders of mammals such as carnivores, insectivores, rodents, bats and primates. This study aims to describe the structure, architecture and mechanical properties of the canine baculum. To this end canine bacula from castrated and uncastrated dogs were collected and examined by light microscopy, micro-computed tomography (microCT) scanning, histological staining, and mechanical testing. Their mineral density and mechanical properties were compared with those of a typical skeletal bone (the radius) in the same dog. Furthermore, a numerical model of a representative baculum was created and its mechanical performance analyzed using the finite element method, in order to try to elucidate its function. Examination of light microscopy images of transverse sections shows that the baculum consists of a typical sandwich structure, with two cortical plates separated, and joined, by loose cancellous bone. MicroCT scans reveal that the mineral density is lower in the baculum than in the radius, both in castrated as well as in uncastrated dogs, resulting in much lower stiffness. Castration was found to decrease the mineral density in both the baculum and the radius. The most likely function of the baculum of the dog is to stiffen the penis to assist intromission, and its much lower mineral density compared to that of the radius may be a mechanism designed to decrease the stiffness somewhat, and thus reduce the risk of fracture during copulation.  相似文献   

7.
The relationship between femoral neck superior and inferior cortical thickness in primates is related to locomotor behavior. This relationship has been employed to infer bipedalism in fossil hominins, although bipeds share the same pattern of generalized quadrupeds, where the superior cortex is thinner than the inferior one. In contrast, knuckle‐walkers and specialized suspensory taxa display a more homogeneous distribution of cortical bone. These different patterns, probably related to the range of movement at the hip joint and concomitant differences in the load stresses at the femoral neck, are very promising for making locomotor inferences in extinct primates. To evaluate the utility of this feature in the fossil record, we relied on computed tomography applied to the femur of the Late Miocene hominoid Hispanopithecus laietanus as a test‐case study. Both an orthograde body plan and orang‐like suspensory adaptations had been previously documented for this taxon on different anatomical grounds, leading to the hypothesis that this fossil ape should display a modern ape‐like distribution of femoral neck cortical thickness. This is confirmed by the results of this study, leading to the conclusion that Hispanopithecus represents the oldest evidence of a homogeneous cortical bone distribution in the hominoid fossil record. Our results therefore strengthen the utility of femoral neck cortical thickness for making paleobiological inferences on the locomotor repertoire of fossil primates. This feature would be particularly useful for assessing the degree of orthograde arboreal locomotor behaviors vs. terrestrial bipedalism in putative early hominins. Am J PhyAnthropol 2012. © Wiley Periodicals, Inc.  相似文献   

8.
In this study the relationships of bone mineral density (BMD) and bone structure parameters calculated from 2D microtomography images to bone strength were investigated. Femurs from 21 male Sprague Dawley rats were subjected to dual-energy X-ray absorptiometry, computerized microtomography (CmicroT) and either three-point cantilever bending (femoral shaft) or two-point bending compression (femoral neck). Gastrectomy was performed on 12 animals and 9 were sham operated. From the tomograms bone structure analysis was performed using a software routine based on grey level run-length method. Correlations of BMD and bone structure parameters to mechanical parameters were investigated as were differences between the gastrectomized and the control samples. The reductions of BMD between the groups were 21 and 27% in the femoral neck and shaft, respectively. For the shaft, the correlations of BMD to all mechanical parameters were significant and BMD was a consistent predictor of bone strength for cortical bone. However, in the femoral neck where cancellous bone predominates, BMD was weakly correlated only to deflection. A significant correlation between trabecular thickness and neck bone strength was found. Hence, compared to trabecular thickness, BMD was of limited value in predicting bone strength in the femoral neck.  相似文献   

9.
The thickness of the inferior and superior cortices of the femoral neck was measured on X-rays of 181 strepsirhine primate femora representing 24 species. Neck length, neck depth and neck-shaft angle were also measured. The strength of the femoral neck in frontal bending was estimated by modeling the neck as a hollow cylinder, with neck depth as the outer diameter and cortical thickness representing the superior and inferior shell dimensions. Results indicate that the inferior cortex is always thicker than the superior cortex. The ratio of superior to inferior cortical thickness is highly variable but distinguishes two of the three locomotor groups in the sample. Vertical clingers and leapers have higher ratios (i.e., a more even distribution of cortical bone) than quadrupeds. The slow climbers tend to have the lowest ratios, although they do not differ significantly from the leapers and quadrupeds. These results do not confirm prior theoretical expectations and reported data for anthropoid primates that link greater asymmetry of the cortical shell to more stereotypical hip excursions. The ratio of superior to inferior cortical thickness is unrelated to body mass, femoral neck length, and neck-shaft angle, calling into question whether the short neck of strepsirhine primates acts as a cantilever beam in bending. On the other hand, the estimated section moduli are highly correlated with body mass and neck length, a correlation that is driven primarily by body mass. In conclusion, we believe that an alternative interpretation to the cantilever beam model is needed to explain the asymmetry in bone distribution in the femoral neck, at least in strepsirhine primates (e.g., a thicker inferior cortex is required to reinforce the strongly curved inferior surface). As in prior studies of cross-sectional geometry of long bones, we found slightly positive allometry of cortical dimensions with body mass.  相似文献   

10.
Finite element stress analyses were conducted of the canine femoral head before and after implantation of various surface replacement-type components. The femoral head was replaced by four implant geometries; (a) shell, (b) shell with peg, (c) shell with rod, and (d) a new epiphyseal replacement design. All implants were modelled to simulate bony ingrowth along the underside of the shell and along the surfaces of the peg and rod. The results indicated that in the normal femur the forces are transferred from the articular surface through the femoral head cancellous bone to the inferior cortical shell of the femoral neck. After shell-type surface replacement, forces were transferred more distally at the rim of the shell and at the end of the peg or rod, thereby reducing the stresses in the proximal head cancellous bone. Computer simulation of bone remodelling due to proximal bone stress reduction was shown to accentuate the abnormality of the stress fields. Surface replacement with a lower modulus material created a less abnormal redistribution of bone stresses. The new epiphyseal replacement design resulted in stress distributions similar to those in the normal femoral head and minimal shear stresses at the implant/bone interface. These findings suggest that the epiphyseal replacement concept may provide better initial mechanical integrity and create a more benign milieu for adaptive bone remodelling than conventional, shell-type surface replacement components.  相似文献   

11.
OBJECTIVE--To evaluate the factors that determine bone mineral density at axial and appendicular sites in normal men. DESIGN--Measurement of bone mineral density of the radius by single photon absorptiometry and of the lumbar spine and hip by dual photon absorptiometry to assess their relation with various determinants of bone mineral density. Dietary calcium was assessed from a questionnaire validated against a four day dietary record. SETTING--Local community, Sydney, Australia. PATIENTS--48 Men (aged 21-79, median 44) recruited from the local community including 35 male cotwins of twin pairs of differing sex recruited from the Australian National Health and Medical Research Council twin registry for epidemiological studies on determinants of bone mineral density. MAIN OUTCOME MEASURES--Bone mineral density of the axial and appendicular skeleton and its relation to age, anthropometric features, dietary calcium intake, and serum sex hormone concentrations. RESULTS--Dietary calcium intake (g/day) was a significant predictor of bone mineral density of axial bones, explaining 24% and 42% of the variance at the lumbar spine and femoral neck respectively. This effect was independent of weight. In contrast with the axial skeleton, bone mineral density at each forearm site was predicted by weight and an index of free testosterone but not by dietary calcium intake. CONCLUSIONS--Dietary calcium intake has a role in the determination or maintenance, or both, of the axial but not the appendicular skeleton in adult men.  相似文献   

12.
At the tissue level, the local material properties of human cancellous bone are heterogeneous due to constant remodelling. Since standard high-resolution computed tomography scanning methods are unable to capture this heterogeneity in detail, local differences in mineralisation are normally not incorporated in computational models. To investigate the effects of heterogeneous mineral distribution on the apparent elastic properties, 40 cancellous bone samples from the human femoral neck were scanned by means of synchrotron radiation microcomputed tomography (SRμCT). SRμCT-based micromechanical finite element models that accounted for mineral heterogeneity were compared with homogeneous models. Evaluation of the apparent stiffness tensor of both model types revealed that homogeneous models led to a minor but significant (p < 0.05) overestimation of the elastic properties of heterogeneous models by 2.18 ± 1.89%. Variation of modelling parameters did not affect the overestimation to a great extent. It was concluded that the heterogeneous mineralisation has only a minor influence on the apparent elastic properties of human cancellous bone.  相似文献   

13.
Gastrointestinal tract conditions are frequently associated with low bone mineral density and increased risk of fractures due to osteoporosis, the latter concerning particularly inflammatory bowel disease (IBD) patients. One of the candidate genes involved in osteoporosis is the transforming growth factor beta-1 (TGFB1) whose polymorphisms may be responsible for the development of this disease. The aim of this study was to analyse the frequency of TGFB1 polymorphic variants and determine the association between the c.29T>C TGFB1 polymorphism, and bone mineral density and fractures in IBD patients. The study subjects included 198 IBD patients [100 suffering from Crohn’s disease (CD) and 98 from ulcerative colitis (UC)] and 41 healthy volunteers as a control group. Densitometric bone measurements were obtained using dual energy X-ray absorptiometry. The TGFB1 genotyping was conducted using restriction fragments length polymorphism. We conducted an analysis of genotype distribution’s concordance with Hardy–Weinberg equilibrium. We found statistically significant differences in lumbar spine (L2–L4) and femoral neck BMD and T-scores between CD, UC and control subgroups. The distribution of TGFB1 polymorphic variants among CD and UC patients was concordant with Hardy–Weinberg equilibrium. There were no statistically significant differences in densitometric parameters (lumbar spine and femoral neck BMD, T-score, and Z-score) between carriers of different TGFB1 polymorphisms among IBD (CD and UC) patients nor among controls. We have found no statistically significant differences in the prevalence of low-energy fractures between groups of different TGFB1 polymorphic variant carriers. The allele dose effect, recessive effect and dominant effect analysis did not show an association between low-energy fractures and the TGFB1 polymorphisms among CD and UC patients. We have not observed an association between the c.29T>C TGFB1 polymorphic variant and the bone mineral density within the cancellous and cortical bones (L2–L4 and femoral neck, respectively), or the occurrence of fractures among the IBD patients and their family members.  相似文献   

14.
Bone mineral density (BMD) in the femoral neck and lumbar spine was measured for 355 postmenopausal 48- to 56-year-old women and the BMD in five different regions in the mandible for 77. All 355 women were also classified according to the size of the masseter muscle. Both skeletal measures and the BMD of the buccal cortex distally from the foramen mentale were compared with the size of the masseter muscle. This study indicates that functional stress, caused by the masseter muscle, is involved in maintaining bone mineral density in edentulous regions of the mandible. Those individuals who are physically active or are bruxists may lose less mineral, after extractions of teeth, from those regions of the jaw bones where the muscles are attached.  相似文献   

15.
The objective of this study was to evaluate the diagnostic value of bone density changes in lumbar vertebrae and femoral necks in patients with primary osteoporosis (OP) at various ages. Dual-energy X-ray absorptiometry (DXA) scans were performed on patients who had their primary visits between March 2008 and February 2009. The bone mineral density (BMD) of the lumbar vertebrae 1-4 (L1-L4) in anteroposterior projection and the proximal femoral neck in lateral projection were measured. If the BMD values (T score) of any site is -2.5 or less (T ≤?-2.5), the patients were diagnosed as primary OP, and the T scores were statistically analyzed. The 81 patients who had lumbar vertebrae with a T ≤?-2.5 led to a positive rate of 80.1?% in the diagnosis of primary OP; the 47 patients who had femoral neck with a T ≤?-2.5 gave a positive rate of 47.0?%. The patients with type I or type II primary OP were divided into two age groups of ≤70 and ≥71?years old. The comparison of lumbar spine T score values did not show significant statistical difference (P?>?0.05) between the age groups, while the result of the femoral necks revealed significant difference between the two groups (P?相似文献   

16.
目的:探究骨密度与老年髋部骨折股骨近端三维有限元模型密度的关系。方法:选取8 例老年髋部骨折,其中4 例股骨颈骨 折,4 例股骨转子间骨折;左侧肢体3 例,右侧肢体5 例。分别测定腰椎骨密度和双侧髋关节CT 资料,运用Mimics软件和abaqus 软件对健侧股骨近端进行重建和计算出该模型的密度。结果:股骨转子间骨折组腰椎骨密度为(-4.05± 0.24) g/cm2,三维有限元模 型密度为[(1.15± 0.02)× 106],均低于股骨颈骨折组的(-3.15± 0.54) g/cm2,[(1.34± 0.06)× 106],两组比较差异均有统计学意义(均 P<0.05)。腰椎的骨密度与三维有限元模型密度成线性正相关(r=0.881,P=0.004)。结论:骨密度与老年髋部骨折股骨近端三维有限 元模型密度成线性正相关的关系,可为进一步用有限元分析法探讨老年髋部骨折部位与骨密度的关系提供理论依据。  相似文献   

17.
AIM: To evaluate the bone mineral density at lumbar spine and at femoral neck in a group of young adults in whom Graves' disease developed during childhood and adolescence. PATIENTS AND METHODS: We examined 28 patients (5 male, 23 female, age 20.9 +/- 3.3 years) who were 11.8 +/- 2.9 years old at the onset of Graves' disease. They were treated either with methimazole (14 patients) or with methimazole plus l-thyroxine (14 patients). At the time of the investigation, 13 patients were considered cured following antithyroid treatment, 2 were still on antithyroid drugs, 3 were on replacement therapy with l-thyroxine because of hypothyroidism, and 10, treated either surgically or with (131)I, were on replacement therapy. The bone mineral density was measured at the lumbar spine (L2-L4) and at the femoral neck, using dual-energy X-ray absorptiometry. RESULTS: The spinal bone mineral density SD score was -0.28 +/- 1.02, the femoral neck bone mineral density SD score was 0.36 +/- 1.02, and both were not different from zero (NS). We did not find any correlation between the bone mineral density of the femoral neck and that of the lumbar spine and the clinical parameters. CONCLUSION: Graves' disease, beginning in childhood and adolescence, when appropriately treated, does not affect attainment of peak bone mass.  相似文献   

18.
Volume maintenance of inlay bone grafts in the craniofacial skeleton   总被引:3,自引:0,他引:3  
Although the clinical use of inlay bone grafts is widespread in craniofacial surgery, the dynamics of inlay bone grafting to the craniofacial skeleton have never been well characterized. Previous work demonstrated that volume maintenance of bone grafts in the onlay position is a consequence of their microarchitectural features, rather than their embryological origins. The purpose of this study was to investigate whether the properties determining the volume maintenance of bone grafts in the onlay position in the craniofacial skeleton could be extended to bone grafts in the inlay position. It was hypothesized that volume maintenance of an inlay bone graft could be better explained on the basis of the microarchitectural features of the graft (cortical versus cancellous composition), rather than its embryological origin (membranous versus endochondral), and that the primary determinant of bone graft behavior is the interaction between the microarchitectural features of the bone graft and the local mechanical environment in which the bone graft is placed. Cortical and cancellous bone grafts were harvested from the iliac crest (endochondral origin) of 25 New Zealand white rabbits, and cortical bone was harvested from the mandible (membranous origin) of each rabbit. Four 7-mm trephine holes were made in the cranium of each rabbit, posterior to the coronal suture. Each defect was filled with endochondral cortical bone, endochondral cancellous bone, or membranous cortical bone or was left as an ungrafted control specimen. Animals were killed at 3, 8, or 16 weeks. Crania were subjected to micro-computed tomographic and histological assessments. Micro-computed tomographic analysis demonstrated significant increases in actual bone volume from time 0 to the time of death for all types of grafts. Cortical bone demonstrated significant increases in space-occupying volume at all time points. By 16 weeks, no statistically significant difference in either the actual bone volume or the space-occupying volume according to graft type could be detected. There was no resorption of the inlay bone grafts; in fact, all bone types exhibited increased volume. Cancellous bone demonstrated the greatest capacity to increase actual bone volume. All bone graft types seemed to reach a steady-state bone volume, as if controlled by a local regulator. The regulator is likely the local mechanical environment in which the grafts were placed, as corroborated by the findings that the bone grafts seemed to recapitulate the characteristics of the bone in which they were placed, rather than maintaining their native characteristics.  相似文献   

19.

Objective

Osteoporosis is a complication of rheumatoid arthritis. We examined the risk factors for bone loss in rheumatoid arthritis patients receiving biological disease-modifying anti-rheumatic drugs. Lumbar spine and femoral neck bone mineral density was measured at two time points in 153 patients with rheumatoid arthritis managed with biological disease-modifying anti-rheumatic drugs. We examined patients’ variables to identify risk factors for least significant reduction of bone mineral density.

Results

Least significant reduction of lumbar spine bone mineral density (≤ ? 2.4%) was seen in 13.1% of patients. Least significant reduction of femoral neck bone mineral density (≤ ? 1.9%) was seen in 34.0% of patients. Multiple logistic regression analysis showed that a risk factor for least significant reduction of the lumbar spine was high-dose methylprednisolone use. Multiple regression analysis showed that a risk factor for least significant reduction of the femoral neck was short disease duration. Our findings showed that a risk factor for femoral neck bone mineral density reduction was a short disease duration. These findings suggest that rheumatoid arthritis patients receiving treatment with biological disease-modifying anti-rheumatic drugs may benefit from earlier osteoporosis treatments to prevent femoral neck bone loss.
  相似文献   

20.
This study compared the capabilities of micro-computed tomography (micro-CT) and dental cone-beam computed tomography (CBCT) in assessing trabecular bone parameters and cortical bone strength. Micro-CT and CBCT scans were applied to 28 femurs from 14 rats to obtain independent measurements of the volumetric cancellous bone mineral density (vCanBMD) in the femoral head, volumetric cortical bone mineral density (vCtBMD) in the femoral diaphysis, cross-sectional moment of inertia (CSMI), and bone strength index (BSI) (=CSMI×vCtBMD). Five structural parameters of the trabecular bone of the femoral head were calculated from micro-CT images. A three-point bending test was then conducted to measure the fracture load of each femur. Bivariate linear Pearson analysis was conducted to calculate the correlation coefficients (r values) of the micro-CT, dental CBCT, and three-point bending measurements. The statistical analyses showed a strong correlation between vCanBMD values obtained using micro-CT and dental CBCT (r=0.830). There were strong or moderate correlation between vCanBMD measured using dental CBCT and five parameters of trabecular structure measured using micro-CT. Additionally, the results were satisfactory regardless of whether micro-CT or dental CBCT was used to measure the femoral diaphysis vCtBMD (r=0.733 and 0.680, respectively), CSMI (r=0.756 and 0.726, respectively), or BSI (r=0.846 and 0.847, respectively) to predict fracture loads. This study has yielded a new method for using dental CBCT to evaluate bone parameters and bone strength; however, further studies are necessary to validate the use of dental CBCT on humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号