首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 534 毫秒
1.
李博  李强 《生物磁学》2011,(20):3942-3945
目的:本文利用表面肌电(sEMG)信号来研究多种手指组合动作的识别问题。方法:在对采集的四个通道sEMG信号进行降噪预处理的基础上,采用移动加窗处理方法来提取关于手指运动状态的信号活动段,再分析各个信号活动段的小波系数统计特征,进而利用多类支持向量机(SVM分类算法来实现手指组合动作的识别。结果:动作识别率最高达到100%。结论:所采用方法能够有效地识别多种手势动作,并为后续基于肌电信号的实时人机接口系统的研究奠定了理论基础。  相似文献   

2.
目的:本文以设计的表面肌电(sEMG)信号采集系统为基础,探讨sEMG信号中的降噪处理问题。方法:结合sEMG信号的噪声影响情况,首先利用带通滤波器消除肌电信号频带外噪声,再通过频谱插值法来抑制工频干扰分量,最后使用小波分析方法来削弱肌电信号频带内噪声。结果:通过对检测sEMG信号的降噪处理,信号噪声得到明显抑制。结论:所设计采集系统能够获得满意的sEMG信号检测效果,所采用降噪方法能够有效提高sEMG信号的质量。  相似文献   

3.
目的:本文针对表面肌电(sEMG)信号探讨动作电位传导速度(APCV)估计问题。方法:以生理学仿真sEMG信号为基础,采用基于互相关分析的时延估计技术来获取相应的APCV估计值,并利用重采样技术来提高估计的精度。结果:实验表明,针对重采样后的仿真信号,其APCV的估计误差得到了明显降低。结论:所采用方法能够有效获取满意的APCV估计效果。  相似文献   

4.
付聪  李强  李博 《生物磁学》2011,(20):3951-3953
目的:本文以设计的表面~g(sEMG)信号采集系统为基础,探讨sEMG信号中的降噪处理问题。方法:结合sEMG信号的噪声影响情况,首先利用带通滤波器消除肌电信号频带外噪声,再通过频谱插值法来抑制工频干扰分量,最后使用小波分析方法来削弱肌电信号频带内噪声。结果:通过对检测sEMG信号的降噪处理,信号噪声得到明显抑制。结论:所设计采集系统能够获得满意的sEMG信号检测效果,所采用降噪方法能够有效提高sEMG信号的质量。  相似文献   

5.
付聪  练士龙  李强 《生物磁学》2011,(19):3774-3776
目的:本文针对表面肌电(sEMG)信号探讨动作电位传导速度(APCV)估计问题。方法:以生理学仿真sEMG信号为基础,采用基于互相关分析的时延估计技术来获取相应的APCV估计值,并利用重采样技术来提高估计的精度。结果:实验表明。针对重采样后的仿真信号,其APCV的估计误差得到了明显降低。结论:所采用方法能够有效获取满意的APCV估计效果。  相似文献   

6.
目的:针对老人易跌倒和跌倒过后可能产生严重后果这一现实问题,通过将表面肌电信号和加速度融合,进一步优化采用支持向量机分类器下的包含跌倒在内的几种不同动作的分类效果。方法:提出基于表面肌电和加速度信号融合的跌倒识别算法,首先采集股直肌,股内侧肌,胫骨前肌和腓肠肌的表面肌电信号以及位于腰部的三轴加速度信号作为实验数据,然后利用滑动窗口法提取表面肌电和加速度信号的均方根值,最后针对人体日常活动和跌倒的运动特征,构建了支持向量机的分类器。结果:实验数据共计320组数据,包括3种日常活动和向前跌倒,其中160组数据作为训练集,另外160组数据作为测试集。对4种动作进行识别实验,算法的准确度为93.23%、灵敏度为92.4%、特异度为100%,达到了良好的分类效果。结论:基于支持向量机的表面肌电信号和加速度融合的跌倒识别算法分类效果良好,对于老人跌倒防护具有现实意义。  相似文献   

7.
基于定量分析方法的动作表面肌电信号分析   总被引:1,自引:0,他引:1  
介绍了非线性数据处理方法递归图法(recurrence plots,RP)及其定量分析方法(recurrence quantifi-cation analysis,RQA),并利用RP和RQA研究了动作表面肌电信号。研究发现,表面肌电信号在不同动作模式下其所对应的RP图在结构上差异明显,通过计算两通道肌电信号的RQA指标递归率,发现不同动作信号的RQA指标递归率值具有不同的聚类分布。该方法为肌电信号的动作模式分类提供了一种新的思路。  相似文献   

8.
局部肌肉疲劳的表面肌电信号复杂度和熵变化   总被引:6,自引:0,他引:6  
目的 在于探讨静态和动态疲劳性运动过程中肱二头肌和腰部脊竖肌表面肌电(surface electromyography,sEMG)信号的Lempel-Ziv复杂度和Kolmogorov熵的变化规律。18名男性大学生志愿者被随机分为肱二头肌和腰部脊竖肌运动负荷组,分别完成静态和动态疲劳运动负荷试验。运动负荷期间连续记录sEMG信号,在对运动负荷时间和重复次数进行标准化处理后,截取相应时段的sEMG信号,计算Lempel-Ziv复杂度和Kolmogorov熵,观察它们随肌肉疲劳发展的变化规律。研究结果表明,无论是静态还是动态疲劳运动条件下,被检肌肉sEMG信号的复杂度和熵均随着运动负荷时间呈现明显的单调递减型变化。该变化可能与神经系统渐进性协调众多运动单位同步收缩的‘协同效应”有关。  相似文献   

9.
目的:观察女性受试者在不同坐姿久坐前后腰部肌肉表面肌电(sEMG)信号的变化,探讨不同姿势的久坐对竖脊肌功能状态的影响。方法:32名女性受试者随机分成4组,分别在4种不同的座椅(座椅A、B、C、D)上久坐2 h。记录受试者腰部竖脊肌在久坐前后2次最大随意收缩力量(MVC)测试中的sEMG信号,观察测试过程中的前3 s时频指标及全程频域指标的变化。结果:3 s的时频指标平均肌电振幅(AEMG)、平均功率谱频率(MPF)在不同坐姿久坐前后无显著性差异,其中AEMG在座椅B组中明显大于座椅A组;全程信号的频域指标MPF在久坐后显著减小,但在不同坐姿之间无显著性差异。结论:女性受试者在4种不同坐姿2 h久坐前后腰部竖脊肌的最大活动水平无明显改变;最大持续收缩能力在久坐后下降,但在不同坐姿间并无显著差异。  相似文献   

10.
表面肌电信号(Surface Electromyography,sEMG)是通过相应肌群表面的传感器记录下来的一维时间序列非平稳生物电信号,不但反映了神经肌肉系统活动,对于反映相应动作肢体活动信息同样重要。而模式识别是肌电应用领域的基础和关键。为了在应用基于表面肌电信号模式识别中选取合适算法,本文拟对基于表面肌电信号的人体动作识别算法进行回顾分析,主要包括模糊模式识别算法、线性判别分析算法、人工神经网络算法和支持向量机算法。模糊模式识别能自适应提取模糊规则,对初始化规则不敏感,适合处理s EMG这样具有严格不重复的生物电信号;线性判别分析对数据进行降维,计算简单,但不适合大数据;人工神经网络可以同时描述训练样本输入输出的线性关系和非线性映射关系,可以解决复杂的分类问题,学习能力强;支持向量机处理小样本、非线性的高维数据优势明显,计算速度快。比较各方法的优缺点,为今后处理此类问题模式识别算法选取提供了参考和依据。  相似文献   

11.
Using surface electromyography (sEMG) signal for efficient recognition of hand gestures has attracted increasing attention during the last decade, with most previous work being focused on recognition of upper arm and gross hand movements and some work on the classification of individual finger movements such as finger typing tasks. However, relatively few investigations can be found in the literature for automatic classification of multiple finger movements such as finger number gestures. This paper focuses on the recognition of number gestures based on a 4-channel wireless sEMG system. We investigate the effects of three popular feature types (i.e. Hudgins’ time–domain features (TD), autocorrelation and cross-correlation coefficients (ACCC) and spectral power magnitudes (SPM)) and four popular classification algorithms (i.e. k-nearest neighbor (k-NN), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA) and support vector machine (SVM)) in offline recognition. Motivated by the good performance of SVM, we further propose combining the three features and employing a new classification method, multiple kernel learning SVM (MKL-SVM). Real sEMG results from six subjects show that all combinations, except k-NN or LDA using ACCC features, can achieve above 91% average recognition accuracy, and the highest accuracy is 97.93% achieved by the proposed MKL-SVM method using the three feature combination (3F). Referring to the offline recognition results, we also implement a real-time recognition system. Our results show that all six subjects can achieve a real-time recognition accuracy higher than 90%. The number gestures are therefore promising for practical applications such as human–computer interaction (HCI).  相似文献   

12.
The identification of a number of active muscles during complex actions is the useful information to identify different gestures. Biosignals such as surface electromyogram (sEMG) are a result of the summation of electrical activity of a number of sources. The complexity of the anatomy and actions makes it difficult in identifying the number of active sources from the multiple channel recordings. This paper addresses two applications of independent component analysis (ICA) on sEMG: the first one is to evaluate the use of ICA for the separation of bioelectric signals when the number of active sources may not be known. The second application is to identify complex hand gestures using decomposed sEMG. The theoretical analysis and experimental results demonstrate that the ICA is suitable for the separation of myoelectric signals. The results identify the usage of ICA for identifying complex gestures.  相似文献   

13.
The identification of a number of active muscles during complex actions is the useful information to identify different gestures. Biosignals such as surface electromyogram (sEMG) are a result of the summation of electrical activity of a number of sources. The complexity of the anatomy and actions makes it difficult in identifying the number of active sources from the multiple channel recordings. This paper addresses two applications of independent component analysis (ICA) on sEMG: the first one is to evaluate the use of ICA for the separation of bioelectric signals when the number of active sources may not be known. The second application is to identify complex hand gestures using decomposed sEMG. The theoretical analysis and experimental results demonstrate that the ICA is suitable for the separation of myoelectric signals. The results identify the usage of ICA for identifying complex gestures.  相似文献   

14.

Background  

Surface electromyography (sEMG) signals have been used in numerous studies for the classification of hand gestures and movements and successfully implemented in the position control of different prosthetic hands for amputees. sEMG could also potentially be used for controlling wearable devices which could assist persons with reduced muscle mass, such as those suffering from sarcopenia. While using sEMG for position control, estimation of the intended torque of the user could also provide sufficient information for an effective force control of the hand prosthesis or assistive device. This paper presents the use of pattern recognition to estimate the torque applied by a human wrist and its real-time implementation to control a novel two degree of freedom wrist exoskeleton prototype (WEP), which was specifically developed for this work.  相似文献   

15.
The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG) is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1) the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2) the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1) it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2) hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported.  相似文献   

16.
When developing a humanoid myo-control hand,not only the mechanical structure should be considered to afford a highdexterity,but also the myoelectric (electromyography,EMG) control capability should be taken into account to fully accomplishthe actuation tasks.This paper presents a novel humanoid robotic myocontrol hand (AR hand Ⅲ) which adopted an underac-tuated mechanism and a forearm myocontrol EMG method.The AR hand Ⅲ has five fingers and 15 joints,and actuated by threeembedded motors.Underactuation can be found within each finger and between the rest three fingers (the middle finger,the ringfinger and the little finger) when the hand is grasping objects.For the EMG control,two specific methods are proposed:thethree-fingered hand gesture configuration of the AR hand Ⅲ and a pattern classification method of EMG signals based on astatistical learning algorithm-Support Vector Machine (SVM).Eighteen active hand gestures of a testee are recognized ef-fectively,which can be directly mapped into the motions of AR hand Ⅲ.An on-line EMG control scheme is established basedon two different decision functions:one is for the discrimination between the idle and active modes,the other is for the recog-nition of the active modes.As a result,the AR hand Ⅲ can swiftly follow the gesture instructions of the testee with a time delayless than 100 ms.  相似文献   

17.
Gupta  R.  Agarwal  R. 《Neurophysiology》2019,51(3):191-208
Neurophysiology - Surface EMG (sEMG) signals along with pattern recognition algorithms demonstrate a significant potential to identify and predict human motor activity. We propose a single-channel...  相似文献   

18.
The purpose of this study is to examine whether or not the application of independent component analysis (ICA) is useful for separation of motor unit action potential trains (MUAPTs) from the multi-channel surface EMG (sEMG) signals. In this study, the eight-channel sEMG signals were recorded from tibialis anterior muscles during isometric dorsi-flexions at 5%, 10%, 15% and 20% maximal voluntary contraction. Recording MUAP waveforms with little time delay mounted between the channels were obtained by vertical sEMG channel arrangements to muscle fibers. The independent components estimated by FastICA were compared with the sEMG signals and the principal components calculated by principal component analysis (PCA). From our results, it was shown that FastICA could separate groups of similar MUAP waveforms of the sEMG signals separated into each independent component while PCA could not sufficiently separate the groups into the principal components. A greater reduction of interferences between different MUAP waveforms was demonstrated by the use of FastICA. Therefore, it is suggested that FastICA could provide much better discrimination of the properties of MUAPTs for sEMG signal decomposition, i.e. waveforms, discharge intervals, etc., than not only PCA but also the original sEMG signals.  相似文献   

19.
The purpose of this paper was to evaluate the effects of the longitudinal single differential (LSD), the longitudinal double differential (LDD) and the normal double differential (NDD) spatial filters, the electrode shape, the inter-electrode distance (IED) on non-Gaussianity and non-linearity levels of simulated surface EMG (sEMG) signals when the maximum voluntary contraction (MVC) varied from 10% to 100% by a step of 10%. The effects of recruitment range thresholds (RR), the firing rate (FR) strategy and the peak firing rate (PFR) of motor units were also considered.A cylindrical multilayer model of the volume conductor and a model of motor unit (MU) recruitment and firing rate were used to simulate sEMG signals in a pool of 120 MUs for 5 s. Firstly, the stationarity of sEMG signals was tested by the runs, the reverse arrangements (RA) and the modified reverse arrangements (MRA) tests. Then the non-Gaussianity was characterised with bicoherence and kurtosis, and non-linearity levels was evaluated with linearity test.The kurtosis analysis showed that the sEMG signals detected by the LSD filter were the most Gaussian and those detected by the NDD filter were the least Gaussian. In addition, the sEMG signals detected by the LSD filter were the most linear. For a given filter, the sEMG signals detected by using rectangular electrodes were more Gaussian and more linear than that detected with circular electrodes. Moreover, the sEMG signals are less non-Gaussian and more linear with reverse onion-skin firing rate strategy than those with onion-skin strategy. The levels of sEMG signal Gaussianity and linearity increased with the increase of the IED, RR and PFR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号