首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
耐盐性毒死蜱降解菌HY-1 的产酶培养基及发酵条件优化   总被引:1,自引:0,他引:1  
为了明确生化处理和微生物降解的关系,通过增加耐盐菌的比例可以提高农药废水生化处理效果。从农药厂废水中分离到1株耐盐性毒死蜱降解菌——蜡状芽孢杆菌(Bacillus cereus HY-1),以从该菌中提取到的降解酶比活力为指标,进行产酶培养基和发酵条件的优化研究。通过单一因素试验和正交试验,对细菌HY-1的产酸培养基和发酵条件进行了优化。运用SPSS软件进行结果分析,所获优化培养基配方为:葡萄糖6.0 g/L,胰蛋白胨2.2 g/L,K2HPO4 2.0 g/L,KH2PO4 0.2 g/L,MgSO4.7H2O 0.1 g/L,NaCl 0.1 g/L和微量元素溶液2 mL/L。得到菌株发酵培养的最佳优化条件为:种子液培养时间为16 h,发酵培养时间为18 h,接种量为1%(V/V),发酵培养基初始pH值为7.0。氯化钠浓度为0?30 g/L时降解酶比活力不受影响,这是已报道的耐盐性最强的一株毒死蜱降解菌。  相似文献   

2.
氰戊菊酯降解菌FDB的分离鉴定及其生长特性   总被引:7,自引:0,他引:7  
从长期受农药污染的农田土壤中分离筛选到一株降解氰戊菊酯杀虫剂的细菌菌株FDB。经形态和生理生化特征鉴定以及对16SrDNA序列进行同源性比较,将该菌株鉴定为铜绿假单胞菌Pseudomonas aeruginosa。FDB能以氰戊菊酯杀虫剂为唯一碳源生长,在30°C培养5d对100mg/L氰戊菊酯异构体的降解率分别达到69.06%(SR+RS)和64.32%(SS+RR)。FDB的最适生长条件为:温度35°C,初始pH值7.0,250mL摇瓶装液量75mL。采用超声波方法破碎菌体细胞,得到粗酶液。胞内和胞外粗酶液对氰戊菊酯异构体的降解试验表明,FDB的氰戊菊酯降解酶属于胞内蛋白组分。  相似文献   

3.
一株吡虫啉杀虫剂降解菌BB-1的分离鉴定   总被引:1,自引:0,他引:1  
目的:从福建安溪茶园土壤分离能降解吡虫啉杀虫剂的细菌菌株,对其进行分类鉴定.方法:采用室内培养试验方法,通过富集驯化、平板划线分离得到1株优势细菌BB-1,采用形态、生理生化特征和16S rDNA序列分析对菌株BB-1进行鉴定.结果:菌株BB-1 与多株苍白杆菌(Ochrobactrum)的亲缘关系最近,该菌株鉴定为苍白杆菌属(Ochrobactrum sp.).BB-1在吡虫啉浓度为400mg/L的LB培养基中培养0h~5h为生长延迟期,4h~20h为对数生长期,20h~42h为稳定期,42h以后为衰亡期.菌株BB-1对多种抗生素敏感,可耐受的NaCl浓度超过10%.结论:BB-1能降解吡虫啉杀虫剂,分类上应属于Ochrobactrum sp..  相似文献   

4.
石油降解菌在各种有害环境因素作用下会进入活的非可培养(viable but non-culturable, VBNC)状态,从而影响其生长及石油降解率。为了研究有害环境因素对石油降解菌生长及石油降解率的影响,采用分光光度法、荧光染色-激光共聚焦显微镜观测H2O2胁迫下苍白杆菌(Ochrobactrum sp.)JP1细胞的生长及VBNC状态形成情况。结果表明,不同浓度H2O2对其生长有一定抑制作用,当培养液中H2O2浓度为75.0 mmol/L时,可有效抑制苍白杆菌JP1生长,处理12 h后苍白杆菌JP1进入VBNC状态。VBNC状态的苍白杆菌JP1细胞缩小变成球体,周质间隙增大;在适宜条件下,VBNC状态苍白杆菌JP1能够复苏为可培养状态,添加丙酮酸钠能够促进VBNC状态细菌细胞的复苏。复苏后的苍白杆菌RJP1具有良好的环境适应性和石油降解能力,为石油污染生物修复的菌种筛选及应用提供了新的策略。  相似文献   

5.
蜡状芽孢杆菌HY-1的生长及对毒死蜱的酶促降解特性   总被引:1,自引:0,他引:1  
为明确毒死蜱降解菌—蜡状芽孢杆菌(Bacillus cereus) HY-1的生长和粗酶液对毒死蜱的降解特性, 采用种子液中定量添加毒死蜱和测定粗酶比活力的方法, 研究了含毒死蜱的种子液培养基中菌株的生长规律和环境因素对粗酶液降解毒死蜱的影响。结果表明: 含毒死蜱的培养液和空白对照相比菌株生长的适应期延长, 对数期、稳定期顺序后延。随着培养液中菌体数量的增长, 培养液的pH也随之升高。粗酶液中可溶性蛋白的含量为2.21 g/L, 测得粗提酶中其米氏常数Km为1.235 6 mmol/L, 最大降解速率Vm  相似文献   

6.
对一株产D-(-)-扁桃酸对映选择性脱氢酶的酿酒酵母菌(Saccharomyces cerevisiae sp.strain by1.1b)发酵产酶条件进行了优化.研究各种碳源、氮源及无机盐对产酶的影响,应用正交试验优化发酵培养基组成,结果为:蛋白胨60 g/L,麦芽糖30 g/L,MgSO4 0.5 g/L,ZnSO4 0.01 g/L,KCl 1.0 g/L.优化后酶产量提高了7.9倍(由2.56 U/mL增至20.21 U/mL).摇瓶培养最佳条件为:装液量40%,发酵pH 6.5,接种量10%,发酵温度30℃.考察了细胞生长及产酶的时间进程,最佳培养时间为25 h.  相似文献   

7.
对一株产D-(-)-扁桃酸对映选择性脱氢酶的酿酒酵母菌(Saccharomyces cerevisiae sp. strain by1.1b)发酵产酶条件进行了优化。研究各种碳源、氮源及无机盐对产酶的影响, 应用正交试验优化发酵培养基组成, 结果为: 蛋白胨 60 g/L, 麦芽糖 30 g/L, MgSO4 0.5 g/L, ZnSO4 0.01 g/L, KCl 1.0 g/L。优化后酶产量提高了7.9倍(由2.56 U/mL增至20.21 U/mL)。摇瓶培养最佳条件为: 装液量40 %, 发酵pH 6.5, 接种量10 %, 发酵温度30 ℃。考察了细胞生长及产酶的时间进程, 最佳培养时间为25 h。  相似文献   

8.
抗草甘膦酵母菌ZM-1的分离鉴定及其生长降解特性   总被引:2,自引:0,他引:2  
以福州市郊区的耕作土壤为研究材料, 利用草甘膦为选择压力, 通过富集、驯化培养, 分离出一株对草甘膦具有高耐受和降解作用的酵母菌菌株ZM-1, 结合生理生化特征及26S rDNA D1/D2区序列分析将其初步鉴定为胶红酵母菌(Rhodotorula mucilaginosa)。菌株ZM-1能以草甘膦为唯一碳、氮源生长, 对草甘膦的最高耐受浓度为50 g/L。在草甘膦初始浓度为1 g/L的无机盐培养基中, 30°C、150 r/min 摇床振荡培养7 d, 草甘膦降解率为85.38%。适合菌株ZM-1生长及降解草甘膦的最佳条件为: 草甘膦初始浓度1 g/L, 接种量4%, 温度30°C, pH 值5.5-6.0, 装料量50 mL/250 mL。菌株ZM-1是一株良好的草甘膦耐受菌, 可用于草甘膦污染环境的生物修复, 也可能成为转基因抗草甘膦作物的一个很好资源。  相似文献   

9.
采用静置开敞式培养法研究了碳源、氮源、盐度、金属离子对Mucoromycotina sp.HS-3菌降解苯胺蓝的影响。结果表明,菌株脱色最适合条件为葡萄糖1 g/L,硫酸铵0.6 g/L,Fe3+0.15 mmol/L,盐度小于50 g/L,在上述各培养条件下,对浓度为100 mg/L不灭菌的苯胺蓝溶液静止培养5 d,脱色率达95%以上。此外,通过降解前后的苯胺蓝溶液对豇豆和枯草芽孢杆菌进行毒性测试发现,降解后的苯胺蓝溶液毒性明显降低。因此,该菌对处理以苯胺蓝为主要成分的印染废水具有较好的应用潜力。  相似文献   

10.
采用富集培养法从工业油污土壤中分离到1株能以石油为惟一碳源而生长的细菌菌株,采用正交设计实验对该菌株的降解条件进行了初步研究。结果表明,最佳降解条件为NH_4Cl 4.0 g/LL,K_2HPO_4 1.5 g/L,pH 8.0,NaCl 15.0 g/L。在最佳条件下,浓度为1 mL/L的原油可在4 d内降解50%以上。  相似文献   

11.
Xanthomonas campestris BB-1L was isolated by enrichment and selection by serial passage in a lactose-minimal medium. When BB-1L was subsequently grown in medium containing only 4% whey and 0.05% yeast extract, the lactose was consumed and broth viscosities greater than 500 cps at a 12 s−1 shear rate were produced. Prolonged maintenance in whey resulted in the loss of the ability of BB-1L to produce viscous broths in whey, indicating a reversion to preferential growth on whey protein, like the parent strain.  相似文献   

12.
As an enzyme of the tricarboxylic acid cycle pathway, citrate synthase participates in the generation of a variety of cellular biosynthetic intermediates and in that of reduced purine nucleotides that are used in energy generation via electron transport-linked phosphorylation reactions. It catalyzes the condensation of oxaloacetate and acetyl coenzyme A to produce citrate plus coenzyme A. In Escherichia coli this enzyme is encoded by the gltA gene. To investigate how gltA expression is regulated, a gltA-lacZ operon fusion was constructed and analyzed following aerobic and anaerobic cell growth on various types of culture media. Under aerobic culture conditions, expression was elevated to a level twofold higher than that reached under anaerobic culture conditions. ArcA functions as a repressor of gltA expression under each set of conditions: in a delta arcA strain, gltA-lacZ expression was elevated to levels two- and eightfold higher than those seen in a wild-type strain under aerobic and anaerobic conditions, respectively. This control is independent of the fnr gene product, an alternative anaerobic gene regulator in E. coli. When the richness or type of carbon compound used for cell growth was varied, gltA-lacZ expression varied by 10- to 14-fold during aerobic and anaerobic growth. This regulation was independent of both the crp and fruR gene products, suggesting that another regulatory element in E. coli is responsible for the observed control. Finally, gltA-lacZ expression was shown to be inversely proportional to the cell growth rate. These findings indicate that the regulation of gltA gene expression is complex in meeting the differential needs of the cell for biosynthesis and energy generation under various cell culture conditions.  相似文献   

13.
The effects of environmental conditions, including temperature, pH and dissolved oxygen, on growth and production of polyvinyl alcohol (PVA)-degrading enzymes of the newly-isolated strain Streptomyces venezuelae GY1 were investigated. The medium composition for strain GY1 was studied first by single factorial design and then optimized using a central composite design. PVA with high saponification is better for growth of, and PVA-degrading enzyme production by S. venezuelae GY1 compared with PVA with low saponification, in contrast with the characteristics of other bacteria producing PVA-degrading enzymes. The optimal temperature and initial pH for production of PVA-degrading enzyme by strain GY1 was 30°C and 7.0, respectively. The optimal medium composition for PVA-degrading enzyme production is: 1.01 g L?1 of PVA1799, 0.307 g L?1 of NaNO3 and 0.512 g L?1 of MgSO4?7H2O.  相似文献   

14.
肌酐酰氨基水解酶是酶法分析血清肌酐浓度的关键酶。本实验室从空气中分离到能分解肌酐的菌株K9510,K9511和K9512,其中K9510菌株初步分类鉴定为假单胞菌(Pseudomonas sp.)。菌株产酶条件优化研究结果表明:菌株在底物或底物类化物的诱导下产酶;混合金属离子溶液对菌株产酶有促进作用,菌株产肌酐酰氨基水解酶是适培养基组成为:肌酐9克,酵母提取物1.5g,麦芽汁0.9g,NH4Cl0.5g,定容1L。适量混合金属离子溶液,用0.1mol/L pH5.5磷酸缓冲液配制.。在250mL三角瓶中装50mL培养基,在250r/min的旋转摇床上35度振荡培养33h,在此条件下菌株产酶量可达1.0u/mL发酵液。  相似文献   

15.
A strain of Erwinia aroideae produced an extracellular pectolytic enzyme under growth conditions with pectin or pectic acid as the inducer. This strain also produced a pectin lyase when nalidixic acid is added to a culture medium. The pectolytic enzyme produced under the growth conditions was purified approximately 40-fold from the culture fluid by carboxy- methyl cellulose and Sephadex G-75 gel column chromatographies. The purified enzyme was almost homogeneous on sodium dodecyl sulfate polyacrylamide gel electrophoresis, having a molecular weight of about 36,000 to 38,000. This enzyme, with optimal activity at pH 9.0 to 9.2, produced reaction products which had a strong absorption at 230 nm indicating a lyase type of the reaction. The enzyme activity was markedly stimulated by calcium ion and completely inhibited by cobalt and mercuric ions and by ethylenediaminetetraacetate. Pectic acid or pectin with lower methoxyl content was a good substrate for this enzyme, while no significant activity was observed when pectin with higher methoxyl content was used as a substrate. It was concluded that the enzyme produced under the normal growth conditions is an endo-pectate lyase and differs from the pectin lyase induced by nalidixic acid.  相似文献   

16.
目的:对海洋来源的具有产纤溶酶能力的枯草芽孢杆菌(Bacillus subtilis)LC6-1进行紫外诱变,得到高产且稳定的突变株PW6-3,对该突变株发酵产酶的条件进行优化。方法:采用单因素和正交试验进行发酵培养基组分和培养条件的优化。结果:突变株PW6-3的酶活力为(6 960.21 ± 85.51)U/mL,较原始菌株提高了30.48%。以PW6-3为出发菌株,采用单因素及正交试验的方法对菌株进行发酵培养基组分与培养条件优化,最终得到的最佳培养基组分是:玉米淀粉30 g/L,玉米浆干粉40 g/L,CaCl2 3 g/L;最佳发酵培养条件是:32℃,转速200 r/min,接种量3%,pH 6.5,种龄18 h,发酵培养时间66 h,最终菌株的酶活力稳定在(9 203.63 ± 67.85)U/mL。结论:发酵工艺优化后,菌株PW6-3纤溶酶产量较诱变之前的菌株LC6-1提高72.53%,且发酵工艺成本较低,具有较好的经济效益。  相似文献   

17.
Physiological regulation of extracellular lipase activity by a newly-isolated, thermotolerant strain of Pseudomonas aeruginosa (strain EF2) was investigated by growing the organism under various conditions in batch, fed-batch and continuous culture. Lipase activity, measured as the rate of olive oil (predominantly triolein) hydrolysis, was weakly induced by general carbon and/or energy limitation, strongly induced by a wide range of fatty acyl esters including triglycerides, Spans and Tweens, and repressed by long-chain fatty acids including oleic acid. The highest lipase activities were observed during the stationary phase of batch cultures grown on Tween 80, and with Tween 80-limited fed-batch and continuous cultures grown at low specific growth rates. The lipase activity of Tween 80-limited continuous cultures was optimized with respect to pH and temperature using response surface analysis; maximum activity occurred during growth at pH 6.5, 35.5 degrees C, at a dilution rate of 0.04 h-1. Under these conditions the culture exhibited a lipase activity of 39 LU (mg cells)-1 and a specific rate of lipase production (qLipase) of 1.56 LU (mg cells)-1 h-1 (1 LU equalled 1 mumol fatty acid released min-1). Esterase activity, measured with p-nitrophenyl acetate as substrate, varied approximately in parallel with lipase activity under all growth conditions, suggesting that a single enzyme may catalyse both activities.  相似文献   

18.
对本实验室分离纯化的玫瑰色微球菌(Micrococcus roseus)M1进行生物学特性研究,包括形态与培养特征的观察,细胞色素的测定,菌体对碳氮源和生长因子的利用,以及该菌株的最适生长条件。通过单因素试验,获得菌株最适生长条件为:培养温度30℃、p H7.5、振荡频率120 r/min、盐度0.5%。采用均匀设计法优化菌株M1的培养基,得到最优培养基(g.L-1):CH3COONa 6;NH4Cl 2.4;Na HCO30.1;Mg SO40.1;维生素溶液12 m L/L;微量元素溶液1 m L/L。在最适生长条件下,接种菌株M1于最优培养基,培养72 h后,菌体和类胡萝卜素的OD值分别达到2.753和4.733,而在基础培养基上的生物量和类胡萝卜素的OD值为1.895和3.258,分别提高了45%和50%。  相似文献   

19.
The unsaturated fatty acid (ufa) requiring ole1 mutant of Saccharomyces cerevisiae appears to produce a defective delta-9 fatty acid desaturase. This enzyme catalyzes double bond formation between carbons 9 and 10 of palmitoyl and stearoyl coenzyme A. A DNA fragment isolated by complementation of an ole1 strain repairs the ufa requirement in mutant cells. Genetic analysis of the cloned DNA fragment indicates that it is allelic to the OLE1 gene. Disruption of a single copy of the wild type gene in a diploid strain produces both wild type and nonreverting ufa-requiring haploid progeny upon sporulation. Membrane lipids of the disrupted haploid strains contain only ufas supplied in the growth medium. The recovery of activity in both wild type and disrupted segregants was examined after removal of ufas from the growth medium. Following ufa deprivation disruptant cells grew normally for about three generations and then at a slower rate for at least 0.6 generations. During that time cellular ufas dropped from 63 to 7.3 mol % of the total fatty acids. No production of the 16:1 and 18:1 products of the desaturase was observed in disruptant cells, whereas desaturation in wild type control cells was evident 2 h after deprivation. These results indicate that 1) the OLE1 gene is essential for production of monounsaturated fatty acids and is probably the structural gene for the delta-9 desaturase enzyme. 2) A large part of membrane ufas present under normal culture conditions are not essential for growth and cell division.  相似文献   

20.
Cellobiase (beta-glucosidase) production was compared for two streptomycetes: Streptomyces flavogriseus, a known producer of cellulase complex, and Streptomyces sp. strain CB-12, a strain isolated for its rapid growth on cellobiose. The optimal conditions for enzyme activity were established in relation to pH, temperature, enzyme stability, and substrate affinity. The production of beta-glucosidase by the two strains depended on the carbon substrate in the medium. Cellobiose was found to repress the biosynthesis of the enzyme in S. flavogriseus and to stimulate its production in strain CB-12. The biosynthesis of the enzyme correlated well with the accumulation of glucose in the culture filtrates. The combined action of the beta-glucosidases produced by the two Streptomyces strains might allow a better utilization of the reaction products which arise during the biodegradation of cellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号