首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
李宁  李建远 《生物磁学》2011,(20):3975-3977
乳酸脱氢酶C(u)Hc)是目前已知的最早在男性生精细胞中发现的睾丸特异同功酶。LDHC最早通过凝胶电泳技术在人精子及睾丸生精细胞中被发现。免疫组化结果显示LDHC最早出现在早期的粗线期初级精母细胞中,其数量随着减数分裂逐渐增加。成熟精子中LDHC主要定位在精子尾部的主段区域。研究显示,乳酸脱氢酶家族的同功酶在哺乳动物细胞中无所不在,他们受到发育的调控,具有组织细胞的特异性,且功能多样。本文就LDHC的发展史及他们在帮助精子完成受精过程中的作用作一综述。  相似文献   

2.
为了研究睾丸特异性乳酸脱氢酶,即乳酸脱氢酶C4(LDH-C4)基因突变在男性不育发病中的作用,利用LDH-C4特异性底物对100名不明原因男性不育症患者的精子LDH-C4进行活性显色,用变性高效液相色谱(DHPLC)技术对LDH-C4活性低下的患者进行LDHC基因PCR产物的突变筛查,对DHPLC峰形异常的PCR产物进行序列测定.筛选到一组精子LDH-C4活性明显下降的患者,其中1名患者的LDHC基因PCR产物在DHPLC中呈异常洗脱峰.对这一PCR产物进行序列测定,发现患者LDHC基因第5外显子的115位碱基发生了T→A的杂合改变(GenBank登录号GU479375),该突变使LDHC基因的178位密码子由原来的TTG(编码亮氨酸)变为TAG(终止密码子),形成截短的C亚基.T克隆-测序进一步证实了该无义突变的杂合状态.这是在人类LDHC基因上发现的第一个突变,提示LDHC基因突变可能是男性不育发病的原因之一.  相似文献   

3.
氯化镧对雄性小鼠精子质量及睾丸酶活力的影响   总被引:1,自引:0,他引:1  
探讨氯化镧对小鼠精子质量及睾丸细胞酶的影响。40只成年昆明种雄性小鼠随机分成对照组、低(25mg·kg-1)、中(50mg·kg-1)、高(100mg·kg-1)剂量组,腹腔注射1次/4d,饲养35d。测定睾丸和附睾脏器指数,检测并计算精子数量、活精率、活动率和畸形率以及睾丸碱性磷酸酶(AKP)、酸性磷酸酶(ACP)、乳酸脱氢酶(LDH)、一氧化氮合酶(NOS)活力。结果显示,高剂量氯化镧降低了小鼠睾丸AKP活力,抑制了精子数量和质量;中剂量氯化镧能促进NOS活力,使精子数量减少,对精子质量造成损伤。  相似文献   

4.
精子特异性乳酸脱氢酶(lactate dehydrogenase,LDH),又称乳酸脱氢酶C4(lactate dehydrogenase C4,LDH-C4),特异性地存在于哺乳动物发育成熟的睾丸组织中,与精子的生成、代谢、获能等有密切关系. 根据GenBank数据库中人LDH-C4氨基酸序列(P07864),利用PROSITE数据库预测人LDH-C4的功能基序|利用Clustalw2、TreeView1.6.6进行LDH-C4进化树的构建|利用I-TASSER软件预测人LDH-C4的二、三、四级结构以及功能位点. 结果表明:在190~196位有1个LDH活性位点,该位点为脊椎动物各亚型乳酸脱氢酶共有的催化位点,为进化中的1个保守序列|从进化树来看,LDHC和LDHB的亲缘关系比较近|人LDH-C4与小鼠LDH-C4的二级、三级结构具有很高的相似性|LDH-4属乳酸脱氢酶 苹果酸脱氢酶(LDH-MDH)超家族中的LDH-(cd05293)家族的成员,属于NAD依赖性酶,拥有LDH-1家族具备的基本结构特点. 以上结果为研究LDH-C4基因突变对其功能的影响打下基础.  相似文献   

5.
精子特异性乳酸脱氢酶(乳酸脱氢酶C4,LDH-C4)是精子能量代谢的关键酶类之一.为了研究前期发现的1个LDH-C4基因突变(L178X)对LDH-C4功能的影响,在已构建的LDH-C4原核表达载体pET-28a(+)-hLDHC的基础上,利用PCR定点诱变技术,制备了L178X突变体的原核表达载体pET-28a(+)-hLDHC/L178X,将其转化大肠杆菌BL21(DE3)plysS,诱导其表达.对该载体进行限制性酶切表明,插入的LDHC基因cDNA约1000bp;序列分析表明,该插入片段读框正确,带L178X突变.SDS-PAGE及免疫印迹显示,携带该载体的菌体可表达分子量约25kD的蛋白质,后者可被兔抗LDH-C4血清特异识别.乳酸脱氢酶(LDH)活性测定及活性染色表明,所表达的产物没有LDH活性.本研究成功进行了LDH-C4的1个突变体的原核表达,为研究LDHC基因突变对LDH-C4功能以及男性生育的影响奠定了基础.  相似文献   

6.
本文测定了连续饲喂棉酚达6周的大鼠和小鼠的生精细胞的LDH-X活性。结果表明,棉酚能够明显地抑制大鼠成熟精子的LDH-X活性;而对睾丸LDH-X活性的抑制,与对照相比,无显著性差异。在小鼠中,未发现棉酚对成熟精子及睾丸生精细胞中的LDH-X活性产生具统计学意义的抑制作用。本文结合精子发生过程及LDH-X的特殊功能,对棉酚抗生育作用的可能机理进行了讨论。  相似文献   

7.
研究镉暴露对小鼠附睾精子和睾丸生精细胞超微结构的变化以及镉对生精细胞凋亡相关基因bcl-2、bax表达水平的影响。采用24只雄性ICR小鼠随机分为4组,每组6只,分别以0.183、0.915、1.83mg/kg氯化镉腹腔注射,每天1次,连续5次,设阴性对照生理盐水组。于第6天透射电镜观察附睾精子超微结构、睾丸生精细胞核和线粒体超微结构的变化,免疫组化方法检测生精细胞Bcl-2、Bax表达水平。透射电镜观察显示,0.183mg/kg组精子超微结构无显著性变化,0.915mg/kg组精子头部两侧膜与头部胞质间隙轻微扩大,线粒体嵴间腔扩大且轻度空泡化,但与对照组相比无统计学意义(P>0.05)。1.83mg/kg组头部两侧膜与胞质间隙扩大,与对照组相比有显著性差异(P<0.05),尾部线粒体嵴间腔扩大且轻度空泡化,与对照组相比有显著性差异(P<0.05)。3种剂量处理组睾丸生精细胞核超微结构异常发生率显著高于对照组(P<0.05),且随着处理浓度的升高异常发生率升高;1.83mg/kg组线粒体肿胀空泡化发生率显著高于对照组(P<0.05)。3种剂量实验组生精细胞Bcl-2表达水平(吸光度)显著低于对照组(P<0.01),0.915mg/kg组Bax表达水平显著高于对照组和0.183、1.83mg/kg组(P<0.01)。3种剂量实验组Bcl-2/Bax吸光度比值显著低于对照组(P<0.01);0.915mg/kg组Bcl-2/Bax比值显著低于1.83mg/kg组(P<0.01)。上述结果提示:高浓度镉诱导附睾精子超微结构改变,高中低浓度镉致睾丸生精细胞超微结构的改变,生精细胞超微结构发生凋亡现象。镉对Bcl-2、Bax表达水平的改变可能是生精细胞凋亡的分子机制之一。  相似文献   

8.
Blanco和Goldberg首先在青春期后的人睾丸组织和精子中发现乳酸脱氢酶同工酶-X(LDH-X),后来相继证明这种同工酶存在于多种哺乳动物和鸟类的成熟睾丸及精子中,以精子中的含量最高,定位于精子中段线粒体基质中的LDH-X占精子总LDH-X活性的41%,可能与精子的代谢有关。LDHX的合成受C基因位点的控制。一般认为,  相似文献   

9.
精子特异性乳酸脱氢酶的免疫学特性及其应用   总被引:9,自引:3,他引:6  
精子特异性乳酸脱氢酶特异地存在于鸟类和哺乳类动物的成熟睾丸和精子中,为精子的运动和存活提供能量,它是一种自身抗原,其天然抗体不与体细胞LDH同工酶发生交叉反应,用LDH-C4免疫小鼠或免疫等能够诱导免疫应答,导致生育率的降低,因此在人类避免和鼠害控制方面将有较好的应用前景。  相似文献   

10.
棕色田鼠睾丸及附睾胚后发育的形态学变化   总被引:2,自引:1,他引:1  
通过组织学方法,对产后1 d、10 d、25 d、45 d、60 d及70 d的棕色田鼠Lasiopodomys mandarinus睾丸和附睾发育进行了观察,以探讨其精子发生特点.结果 发现,1 d棕色田鼠的生殖细胞主要是生殖母细胞和前精原细胞;10 d出现大量精原细胞,睾丸间质细胞明显;25 d出现精子细胞;45 d有少量精子出现;60 d和70 d具有各级生精细胞,睾丸生精小管和附睾内出现大量成熟精子.睾丸生精小管管径和生精上皮厚度随日龄增加,于60 d达到最大;附睾管腔直径和附睾上皮厚度也于60 d达到最大.这些结果表明,棕色田鼠在生后45 d左右进入青春期,60 d左右达到性成熟,精子的产生及成熟与附睾的发育同步.  相似文献   

11.
Lactate dehydrogenase C and energy metabolism in mouse sperm   总被引:1,自引:0,他引:1  
We demonstrated previously that disruption of the germ cell-specific lactate dehydrogenase C gene (Ldhc) led to male infertility due to defects in sperm function, including a rapid decline in sperm ATP levels, a decrease in progressive motility, and a failure to develop hyperactivated motility. We hypothesized that lack of LDHC disrupts glycolysis by feedback inhibition, either by causing a defect in renewal of the NAD(+) cofactor essential for activity of glyceraldehyde 3-phosphate dehydrogenase, sperm (GAPDHS), or an accumulation of pyruvate. To test these hypotheses, nuclear magnetic resonance analysis was used to follow the utilization of labeled substrates in real time. We found that in sperm lacking LDHC, glucose consumption was disrupted, but the NAD:NADH ratio and pyruvate levels were unchanged, and pyruvate was rapidly metabolized to lactate. Moreover, the metabolic disorder induced by treatment with the lactate dehydrogenase (LDH) inhibitor sodium oxamate was different from that caused by lack of LDHC. This supported our earlier conclusion that LDHA, an LDH isozyme present in the principal piece of the flagellum, is responsible for the residual LDH activity in sperm lacking LDHC, but suggested that LDHC has an additional role in the maintenance of energy metabolism in sperm. By coimmunoprecipitation coupled with mass spectrometry, we identified 27 proteins associated with LDHC. A majority of these proteins are implicated in ATP synthesis, utilization, transport, and/or sequestration. This led us to hypothesize that in addition to its role in glycolysis, LDHC is part of a complex involved in ATP homeostasis that is disrupted in sperm lacking LDHC.  相似文献   

12.
From the data presented in this report, the human LDHC gene locus is assigned to chromosome 11. Three genes determine lactate dehydrogenase (LDH) in man. LDHA and LDHB are expressed in most somatic tissues, while expression of LDHC is confined to the germinal epithelium of the testes. A human LDHC cDNA clone was used as a probe to analyze genomic DNA from rodent/human somatic cell hybrids. The pattern of bands with LDHC hybridization is easily distinguished from the pattern detected by LDHA hybridization, and the LDHC probe is specific for testis mRNA. The structural gene LDHA has been previously assigned to human chromosome 11, while LDHB maps to chromosome 12. Studies of pigeon LDH have shown tight linkage between LDHB and LDHC leading to the expectation that these genes would be syntenic in man. However, the data presented in this paper show conclusively that LDHC is syntenic with LDHA on human chromosome 11. The terminology for LDH genes LDHA, LDHB, and LDHC is equivalent to Ldh1, Ldh2, and Ldh3, respectively.  相似文献   

13.
为了阐明高原低氧对牦牛(Bos mutus)骨骼肌中乳酸脱氢酶(LDH)三种亚基基因(LDHA、LDHB和LDHC)表达的影响,本实验分别选取高海拔(4 200 m)、中海拔(3 200 m)和低海拔(1 900 m)三个海拔位置养殖的临床健康成年雄性牦牛各5头,采用实时荧光定量PCR(qRT-PCR)和蛋白质印迹法检测牦牛骨骼肌中LDH三种亚基基因的m RNA表达和蛋白表达水平。结果表明,随海拔的升高,牦牛骨骼肌中LDHA m RNA的表达逐渐下降;LDHB m RNA先降低后升高,在高海拔组牦牛中表达最高,相对表达量为2.82±0.12,与低海拔组(1.01±0.07)、中海拔组(0.73±0.06)牦牛LDHB mRNA表达量差异显著(P <0.05);LDHC mRNA的表达量随海拔的升高呈下降趋势,且低海拔组(1.10±0.16)、中海拔组(0.86±0.16)、高海拔组(0.69±0.12)组间两两相比均差异显著(P <0.05)。LDHA和LDHC蛋白表达量随海拔的升高呈下降趋势,且LDHA蛋白表达量在低海拔组(1.00±0.00)、中海拔组(0.88±0.0...  相似文献   

14.
Lactate dehydrogenase C4 (LDHC4) is a key enzyme for sperm metabolism. It is distributed specifically in testis and is highly immunogenic. In this study, two DNA vaccines pVAX1-hLDHC and pVAX1-mLDHC were constructed by inserting coding sequences of human and mice LDHC4 into the eukaryotic ex-pression vector pVAX1. The production of LDHC4 specific antibodies was induced in the sera of vac-cinated mice and the reproductive tract secretions of vaccinated female mice through immunization by mucosal surface instillation. Furthermore, the antibody titer increased with the times of immunization. In the mating experiment, the number of newborns of the vaccinated mice reduced significantly and some immunized female mice even lost the ability to bear any offsprings, suggesting that the difference between the immunized and control mice was statistically significant. Sperm agglutination analysis indicated that both the antisera from immunized mice and the reproductive tract secretions of vacci-nated female mice could agglutinate normal sperms. Results of immunohistochemistry showed that the antibodies present in the sera of immunized mice and the reproductive tract secretions of vaccinated female mice could specifically react with LDHC4 antigen, which mainly locates in the cytoplasm, acrosome membrane externa and acrosome capsule of the sperm. Taken together, our results indicated that the constructed contraceptive DNA vaccines did yield immunocontraceptive effects on mice and this would enable clinical trials in near future.  相似文献   

15.
The lactate dehydrogenase (LDH) protein family members characteristically are distributed in tissue- and cell type-specific patterns and serve as the terminal enzyme of glycolysis, catalyzing reversible oxidation reduction between pyruvate and lactate. They are present as tetramers, and one family member, LDHC, is abundant in spermatocytes, spermatids, and sperm, but also is found in modest amounts in oocytes. We disrupted the Ldhc gene to determine whether LDHC is required for spermatogenesis, oogenesis, and/or sperm and egg function. The targeted disruption of Ldhc severely impaired fertility in male Ldhc(-/-) mice but not in female Ldhc(-/-) mice. Testis and sperm morphology and sperm production appeared to be normal. However, total LDH enzymatic activity was considerably lower in Ldhc(-/-) sperm than in wild type sperm, indicating that the LDHC homotetramer (LDH-C(4)) is responsible for most of the LDH activity in sperm. Although initially motile when isolated, there was a more rapid reduction in the level of ATP and in motility in Ldhc(-)(/-) sperm than in wild-type sperm. Moreover, Ldhc(-/-) sperm did not acquire hyperactivated motility, were unable to penetrate the zona pellucida in vitro, and failed to undergo the phosphorylation events characteristic of capacitation. These studies showed that LDHC plays an essential role in maintenance of the processes of glycolysis and ATP production in the flagellum that are required for male fertility and sperm function.  相似文献   

16.
The cancer/testis antigen lactate dehydrogenase-C4 (LDHC) is a specific isoenzyme of the LDH family that regulates invasion and metastasis in some malignancies; however, little is known regarding its role in progression of lung adenocarcinoma (LUAD). Thus, we investigated LDHC expression by immunohistochemistry, and analyzed its clinical significance in 88 LUAD specimens. The role and molecular mechanisms subserving LDHC in cellular proliferation, migration, and invasion were explored both in vitro and in vivo. As a result, we found that high LDHC expression was significantly correlated with clinicopathological features of aggressive LUAD and a poor prognosis. Overexpression of LDHC induced LUAD cells to produce lactate and ATP, increased their metastatic and invasive potential—, and accelerated xenograft tumor growth. We further demonstrated that overexpression of LDHC affected the expression of cell proliferation-related proteins (cyclin D1 and c-Myc) and epithelial-mesenchymal transition (EMT)-related proteins (MMP-2, MMP-9, E-cadherin, Vimentin, Twist, Slug, and Snail) both in vitro and in vivo. Finally, excessive activation of LDHC enhanced the phosphorylation levels of AKT and GSK-3β, revealing activation of the PI3K/Akt/GSK-3β oncogenic-signaling pathways. Treatment with a PI3K inhibitor reversed the effects of LDHC overexpression by inhibiting cellular proliferation, migration, and invasion, with diminished levels of p-Akt and p-GSK3β. PI3K inhibition also reversed cell proliferation-related and EMT-related proteins in LDHC-overexpressing A549 cells. In conclusion, LDHC promotes proliferation, migration, invasion, and EMT in LUAD cells via activation of the PI3K/Akt/GSK-3β pathway.  相似文献   

17.
Huang HW  Liu TZ  Lee KH  Tu CF  Lee WC  Shimogiri T  Mannen H  Li SS 《Gene》2000,242(1-2):151-154
Pig testicular lactate dehydrogenase-C (LDHC) cDNA was cloned and sequenced. The deduced sequence of 332 amino acids from pig LDHC shows 73% and 67% identity with that of pig LDHA (muscle) and LDHB (heart) respectively, whereas pig LDHA and LDHB isozymes shows 74% sequence identity. Pig and mouse LDHC cDNAs were subcloned into bacterial expression vector, and the expressed pig LDHC isozyme was shown to be as thermally stable as mouse LDHC isozyme. Pig genomic DNAs from Chinese Meishan, English Yorkshire, Danish Landrace and American Duroc were shown to exhibit polymorphic sites for restriction enzymes EcoRI, BamHI and PstI.  相似文献   

18.
19.
During its passage through the epididymis, the gamete undergoes a process of "maturation" leading to the acquisition of its fertilizing ability. The epididymis displays regional variations in the morphology and metabolic properties of its epithelium which are relevant for the progressive development of mature sperm characteristics. The epididymis has spontaneous peristaltic contractions and receives sympathetic innervation that is modulated by melatonin, a hormone synthesized and released by the pineal gland. Constant lighting disrupts melatonin synthesis and secretion. We have studied the effect of constant light on lactate dehydrogenase (LDH; EC 1.1.1.27) and its isozyme C4 activities and protein content in whole epididymis, epididymal tissue and in spermatozoa from caput and cauda segments. Animals were exposed from birth to an illumination schedule of 14 h light:10 h dark (group L:D). At 60 days of age one group of animals was submitted to constant light over 50 days (group L:L). In order to test the fertilizing ability, the rats of each group were mated with soliciting estrous females. The percentage of pregnancies in females mated with males maintained in L:L was remarkably lower than those in females mated with males maintained in the L:D photoperiod (44% and 88% respectively). Constant light increased protein concentration and LDH activity in caput as well as in cauda of total epididymis. On the contrary, in epididymal tissue, the protein content decreased in both epididymal sections compared with controls. When enzymatic activity was expressed in Units per spermatozoa, constant light induced a significant reduction of total LDH and LDHC4 in caput and cauda spermatozoa while LDH activity of epididymal tissue was not affected. In spite of the decrease in LDH per sperm cell when rats were exposed to constant light, in total epididymis (epididymis tissue plus sperm cells content) and in spermatozoa, values of enzyme activities expressed per weight unit were higher than those of controls. This is explained by the increase in the amount of stored spermatozoa, both in caput and cauda, produced by exposure of animals to constant light. Our results confirm that in rats, chronic exposure to constant light promotes a reduction of fertilizing ability and indicates that continuous lighting reduces the total LDH and LDHC4 activities, possibly due to moderate aging of spermatozoa within the duct by lengthening of the sperm transit through the epididymis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号