首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bim, a "BH3-only" protein, is expressed de novo following withdrawal of serum survival factors and promotes cell death. We have shown previously that activation of the ERK1/2 pathway promotes phosphorylation of Bim(EL), targeting it for degradation via the proteasome. However, the nature of the kinase responsible for Bim(EL) phosphorylation remained unclear. We now show that Bim(EL) is phosphorylated on at least three sites in response to activation of the ERK1/2 pathway. By using the peptidylprolyl isomerase, Pin1, as a probe for proline-directed phosphorylation, we show that ERK1/2-dependent phosphorylation of Bim(EL) occurs at (S/T)P motifs. ERK1/2 phosphorylates Bim(EL), but not Bim(S) or Bim(L), in vitro, and mutation of Ser(65) to alanine blocks the phosphorylation of Bim(EL) by ERK1/2 in vitro and in vivo and prevents the degradation of the protein following activation of the ERK1/2 pathway. We also find that ERK1/2, but not JNK, can physically associate with GST-Bim(EL), but not GST-Bim(L) or GST-Bim(S), in vitro. ERK1/2 also binds to full-length Bim(EL) in vivo, and we have localized a potential ERK1/2 "docking domain" lying within a 27-amino acid stretch of the Bim(EL) protein. Our findings provide new insights into the post-translational regulation of Bim(EL) and the role of the ERK1/2 pathway in cell survival signaling.  相似文献   

2.
The proapoptotic protein Bim is expressed de novo following withdrawal of serum survival factors. Here, we show that Bim-/- fibroblasts and epithelial cells exhibit reduced cell death following serum withdrawal in comparison with their wild-type counterparts. In viable cells, Bax associates with Bcl-2, Bcl-x(L) and Mcl-1. Upon serum withdrawal, newly expressed Bim(EL) associates with Bcl-x(L) and Mcl-1, coinciding with the dissociation of Bax from these proteins. Survival factors can prevent association of Bim with pro-survival proteins by preventing Bim expression. However, we now show that even preformed Bim(EL)/Mcl-1 and Bim(EL)/Bcl-x(L) complexes can be rapidly dissociated following activation of ERK1/2 by survival factors. The dissociation of Bim from Mcl-1 is specific for Bim(EL) and requires ERK1/2-dependent phosphorylation of Bim(EL) at Ser(65). Finally, ERK1/2-dependent dissociation of Bim(EL) from Mcl-1 and Bcl-x(L) may play a role in regulating Bim(EL) degradation, since mutations in the Bim(EL) BH3 domain that disrupt binding to Mcl-1 cause increased turnover of Bim(EL). These results provide new insights into the role of Bim in cell death and its regulation by the ERK1/2 survival pathway.  相似文献   

3.
The pro-apoptotic BH3-only protein Bim has a major role in hematopoietic homeostasis, particularly in the lymphocyte compartment, where it strongly affects immune function. The three major Bim isoforms (Bim(EL), Bim(L) and Bim(S)) are generated by alternative splicing. Bim(EL), the most abundant isoform, contains a unique sequence that has been reported to be the target of phosphorylation by several MAP kinases. In particular, Erk1/2 has been shown to interact with Bim(EL) through the DEF2 domain of Bim(EL) and specifically phosphorylate this isoform, thereby targeting it for ubiquitination and proteasomal degradation. To examine the physiological importance of this mechanism of regulation and of the alternative splicing of Bim, we have generated several Bim knock-in mouse strains and analyzed their hematopoietic system. Although mutation in the DEF2 domain reduces Bim(EL) degradation in some circumstances, this mutation did not significantly increase Bim's pro-apoptotic activity in vivo nor impact on the homeostasis of the hematopoietic system. We also show that Bim(EL) and Bim(L) are interchangeable, and that Bim(S) is dispensable for the function of Bim. Hence, we conclude that physiological regulation of Bim relies on mechanisms independent of its alternative splicing or the Erk-dependent phosphorylation of Bim(EL).  相似文献   

4.
MAP kinase ERK maintains specificity by binding to docking sites such as the DEF domain or D domain. It was previously shown that appending peptides derived from D domains to a substrate peptide increased apparent efficiency of peptide phosphorylation while preserving its apparent specificity for ERK. Here we determine the effect of the DEF motif on efficiency and specificity of peptide phosphorylation by ERK. The DEF motif modulated the apparent affinity of the peptide for ERK while the substrate motif dominated the apparent catalytic rate. Attachment of the DEF sequence improved apparent phosphorylation efficiency by 60-fold. Addition of peptides possessing both the DEF and D motif to a substrate sequence did not yield additive effects on the KM of the substrate for ERK. Further, the DEF motif diminished the apparent specificity for ERK and increased the apparent efficiencies of phosphorylation of the substrate peptide by p38α kinase and JNK1.  相似文献   

5.
Bim, the Bcl-2 interacting mediator of cell death, is a member of the BH3-only family of pro-apoptotic proteins. Recent studies have demonstrated that the apoptotic activity of Bim can be regulated through a post-translational mechanism whereby ERK phosphorylation serves as a signal for Bim ubiquitination and proteasomal degradation. In this report, we investigated the signaling pathways leading to Bim phosphorylation in Ba/F3 cells, an interleukin-3 (IL-3)-dependent B-cell line. IL-3 stimulation induced phosphorylation of Bim(EL), one of the predominant isoforms of Bim expressed in cells, at multiple sites, as evidenced by the formation of at least three to four bands by Western blotting that were sensitive to phosphatase digestion. The appearance of multiple, phosphorylated species of Bim(EL) correlated with Akt, and not ERK, activation. The PI3K inhibitor, LY294002, blocked IL-3-stimulated Akt activity and partially blocked Bim(EL) phosphorylation. In vitro kinase assays showed that recombinant Akt could directly phosphorylate a GST-Bim(EL) fusion protein and identified the Akt phosphorylation site in the Bim(EL) domain as Ser(87). Further, we demonstrated that cytokine stimulation promotes Bim(EL) binding to 14-3-3 proteins. Finally, we show that mutation of Ser(87) dramatically increases the apoptotic potency of Bim(EL). We propose that Ser(87) of Bim(EL) is an important regulatory site that is targeted by Akt to attenuate the pro-apoptotic function of Bim(EL), thereby promoting cell survival.  相似文献   

6.
Extracellular signal-regulated kinase-1 and -2 (ERK1/2) proteins regulate a variety of cellular functions, including cell proliferation and differentiation, by interacting with and phosphorylating substrate proteins. Two docking sites, common docking (CD/ED) domain and F-site recruitment site (FRS), on ERK proteins have been identified. Specific interactions with the CD/ED domain and the FRS occur with substrates containing a docking site for ERK and JNK, LXL (DEJL) motif (D-domain) and a docking site for ERK, FXF (DEF) motif (F-site), respectively. However, the relative contributions of the ERK docking sites in mediating substrate interactions that allow efficient phosphate transfer are largely unknown. In these studies, we provide a quantitative analysis of ERK2 interactions with substrates using surface plasmon resonance to measure real time protein-protein interactions. ERK2 interacted with ELK-1 (DEF and DEJL motifs), RSK-1 (DEJL motif), and c-Fos (DEF motif) with K(D) values of 0.25, 0.15, and 0.97 μM, respectively. CD/ED domain mutations inhibited interactions with ELK-1 and RSK-1 by 6-fold but had no effect on interactions with c-Fos. Select mutations in FRS residues differentially inhibited ELK-1 or c-Fos interactions with ERK2 but had little effect on RSK-1 interactions. Mutations in both the ED and FRS docking sites completely inhibited ELK-1 interactions but had no effect on interactions with stathmin, an ERK substrate whose docking site is unknown. The phosphorylation status of ERK2 did not affect interactions with RSK-1 or c-Fos but did inhibit interactions with ELK-1 and stathmin. These studies provide a quantitative evaluation of specific docking domains involved in mediating interactions between ERK2 and protein substrates and define the contributions of these interactions to phosphate transfer.  相似文献   

7.
Since the signal transduction mechanisms responsible for liver regeneration mediated by the plasminogen/plasmin system remain largely undetermined, we have investigated whether plasmin regulates the pro-apoptotic protein Bim(EL) in primary hepatocytes. Plasmin bound to hepatocytes in part via its lysine binding sites (LBS). Plasmin also triggered phosphorylation of ERK1/2 without cell detachment. The plasmin-induced phosphorylation of ERK1/2 was inhibited by the LBS inhibitor epsilon-aminocaproic acid (EACA), the serine protease inhibitor aprotinin, and the MEK inhibitor PD98059. DFP-inactivated plasmin failed to phosphorylate ERK1/2. Plasmin temporally decreased the starvation-induced expression of Bim(EL) and activation of caspase-3 via the ERK1/2 signaling pathway, resulting in an enhancement of cell survival. The amount of mRNA for Bim increased 1 day after the injection of CCl(4) in livers of plasminogen knockout (Plg-KO) and the wild-type (WT) mice. The increase in Bim(EL) protein persisted for at least 7 days post-injection in livers of Plg-KO mice, whereas WT mice showed an increase in Bim(EL) protein 1 day after the injection. Plg-KO and WT mice showed notable phosphorylation of ERK1/2 7 and 3 days after the injection of CCl(4), respectively. Our data suggest that the plasminogen/plasmin system could decrease Bim(EL) expression via the ERK1/2 signaling pathway during liver regeneration.  相似文献   

8.
The dual-specificity MAPK phosphatase MKP-1/CL100/DUSP1 is an inducible nuclear protein controlled by p44/42 MAPK (ERK1/2) in a negative feedback mechanism to inhibit kinase activity. Here, we report on the molecular basis for a novel positive feedback mechanism to sustain ERK activation by triggering MKP-1 proteolysis. Active ERK2 docking to the DEF motif (FXFP, residues 339-342) of N-terminally truncated MKP-1 in vitro initiated phosphorylation at the Ser(296)/Ser(323) domain, which was not affected by substituting Ala for Ser at Ser(359)/Ser(364). The DEF and Ser(296)/Ser(323) sites were essential for ubiquitin-mediated MKP-1 proteolysis stimulated by MKK1-ERK signaling in H293 cells, whereas the N-terminal domain and Ser(359)/Ser(364) sites were dispensable. ERK activation by serum increased the endogenous level of ubiquitinated phospho-Ser(296) MKP-1 and the degradation of MKP-1. Intriguingly, active ERK-promoted phospho-Ser(296) MKP-1 bound to SCF(Skp2) ubiquitin ligase in vivo and in vitro. Forced expression of Skp2 enhanced MKP-1 polyubiquitination and proteolysis upon ERK activation, whereas depletion of endogenous Skp2 suppressed such events. The kinetics of ERK signaling stimulated by serum correlated with the endogenous MKP-1 degradation rate in a Skp2-dependent manner. Thus, MKP-1 proteolysis can be achieved via ERK and SCF(Skp2) cooperation, thereby sustaining ERK activation.  相似文献   

9.
Mitogen-activated protein kinases (MAPKs) mediate cellular responses to a wide variety of extracellular stimuli. MAPK signal transduction cascades are tightly regulated, and individual MAPKs display exquisite specificity in recognition of their target substrates. All MAPK family members share a common phosphorylation site motif, raising questions as to how substrate specificity is achieved. Here we describe a peptide library screen to identify sequence requirements of the DEF site (docking site for ERK FXF), a docking motif separate from the phosphorylation site. We show that MAPK isoforms recognize DEF sites with unique sequences and identify two key residues on the MAPK that largely dictate sequence specificity. Based on these observations and computational docking studies, we propose a revised model for MAPK interaction with substrates containing DEF sites. Variations in DEF site sequence requirements provide one possible mechanism for encoding complex target specificity among MAPK isoforms.  相似文献   

10.
Bim (Bcl-2-interacting mediator of cell death) is a BH3-only protein (BOP), a pro-apoptotic member of the Bcl-2 protein family. The Bim mRNA undergoes alternate splicing to give rise to the short, long and extra long protein variants (BimS, BimL and BimEL). These proteins have distinct potency in promoting death and distinct modes of regulation conferred by their interaction with other proteins. Quite how Bim and other BOPs promote apoptosis has been the subject of some debate. Bim was isolated by it’s interaction with pro-survival proteins such as Bcl-2 and it has been suggested that this is key to the ability of Bim to induce apoptosis. However, an alternative model argues that some forms of Bim can bind directly to the pro-apoptotic Bax and Bak proteins to initiate apoptosis. A new study may finally put this debate to rest as it provides strong evidence to suggest that Bim and other BOPs act primarily by binding to pro-survival Bcl-2 proteins, thereby releasing Bax or Bak proteins to promote apoptosis. The importance of the interaction between Bim and the pro-survival Bcl-2 proteins is underlined by our demonstration that it is regulated by ERK1/2-dependent phosphorylation of BimEL. ERK1/2-dependent dissociation of BimEL from pro-survival proteins is the first step in a process by which the pro-survival ERK1/2 pathway promotes the destruction of this most abundant Bim splice variant. In this review we outline the significance of these new studies to our understanding of how BOPs such as Bim initiate apoptosis and how this process is regulated by growth factor-dependent signalling pathways.  相似文献   

11.
MAPK phosphorylation of various substrates is mediated by the presence of docking sites, including the D domain and the DEF motif. Depending on the number and sequences of these domains, substrates are phosphorylated by specific subsets of MAPKs. For example, a D domain targets JNK to c-Jun, whereas a DEF motif is required for ERK phosphorylation of c-Fos. JunD, in contrast, contains both D and DEF domains. Here we show that these motifs mediate JunD phosphorylation in response to either ERK or JNK activation. An intact D domain is required for phosphorylation and activation of JunD by both subtypes of MAPK. The DEF motif acts together with the D domain to elicit efficient phosphorylation of JunD in response to the epidermal growth factor (EGF) but has no function on JunD phosphorylation and activation by JNK signaling. Furthermore, we show that conversion of a c-Jun sequence to a canonical DEF domain, as it is present in JunD, elicits c-Jun activation in response to EGF. Our results suggest that evolution of a particular modular system of MAPK targeting sequences has determined a differential response of JunD and c-Jun to ERK activation.  相似文献   

12.
Wiggins CM  Band H  Cook SJ 《Cellular signalling》2007,19(12):2605-2611
BimEL the most abundant Bim splice variant, is subject to ERK1/2-catalysed phosphorylation, which targets it for ubiquitination and proteasome-dependent destruction. In contrast, inactivation of ERK1/2, following withdrawal of survival factors, promotes stabilization of BimEL. It has been proposed that the RING finger protein Cbl binds to BimEL and serves as its E3 ubiquitin ligase. However, this is controversial since most Cbl substrates are tyrosine phosphoproteins and yet BimEL is targeted for destruction by ERK1/2-catalysed serine phosphorylation. Consequently, a role for Cbl could suggest a second pathway for BimEL turnover, regulated by direct tyrosine phosphorylation, or could suggest that BimEL is a coincidence detector, requiring phosphorylation by ERK1/2 and a tyrosine kinase. Here we show that degradation of BimEL does not involve its tyrosine phosphorylation; indeed, BimEL is not a tyrosine phosphoprotein. Furthermore, BimEL fails to interact with Cbl and growth factor-stimulated, ERK1/2-dependent BimEL turnover proceeds normally in Cbl-containing or Cbl−/− fibroblasts. These results indicate that Cbl is not required for ERK1/2-dependent BimEL turnover in fibroblasts and epithelial cells and any role it has in other cell types is likely to be indirect.  相似文献   

13.
Programmed cell death is well established as a key factor in the development of the vertebrate nervous system of which the retina is a unique sensory component. However, it is of utmost importance for the survival of post-mitotic tissues such as the retina that the execution of the cell death program is kept under stringent control once development is complete. This is exemplified by the many retinal dystrophies where aberrant apoptosis results in loss of distinct cell layers in the mature retina and often culminates in blindness. In this study, we report that the extracellular signal-regulated kinase (ERK1/2) pathway plays a key role in the regulation of apoptosis during retinal development. We show that as the retina matures, the emphasis shifts towards survival and ERK1/2 is activated resulting in phosphorylation of the potent BH3-only protein Bim(EL) and a dramatic decline in Bim(EL) expression via proteasomal degradation. We find that activation of ERK1/2 also occurs in response to injury in retinal explants. However, this is a transient response and appears to be overcome by Jun N-terminal kinase activation resulting in induction of Bim(EL) mRNA and photoreceptor apoptosis. Our findings provide new insights into the intracellular pathways responsible for regulating apoptosis during neuronal development and degeneration.  相似文献   

14.
The proapoptotic Bcl2 homology domain 3(BH3)-only protein Bim is controlled by stringent post-translational regulation, predominantly through alterations in phosphorylation status. To identify new kinases involved in its regulation, we carried out a yeast two-hybrid screen using a non-spliceable variant of the predominant isoform--Bim(EL)--as the bait and identified the regulatory subunit of cyclic-AMP-dependent protein kinase A--PRKAR1A--as an interacting partner. We also show that protein kinase A (PKA) is a Bim(EL) isoform-specific kinase that promotes its stabilization. Inhibition of PKA or mutation of the PKA phosphorylation site within Bim(EL) resulted in its accelerated proteasome-dependent degradation. These results might have implications for human diseases that are characterized by abnormally increased PKA activity, such as the Carney complex and dilated cardiomyopathy.  相似文献   

15.
Protein interactions between MAP kinases and substrates, activators, and scaffolding proteins are regulated by docking site motifs, one containing basic residues proximal to Leu-X-Leu (DEJL) and a second containing Phe-X-Phe (DEF). Hydrogen exchange mass spectrometry was used to identify regions in MAP kinases protected from solvent by docking motif interactions. Protection by DEJL peptide binding was observed in loops spanning beta7-beta8 and alphaD-alphaE in p38alpha and ERK2. In contrast, protection by DEF binding to ERK2 revealed a distinct hydrophobic pocket for Phe-X-Phe binding formed between the P+1 site, alphaF helix, and the MAP kinase insert. In inactive ERK2, this pocket is occluded by intramolecular interactions with residues in the activation lip. In vitro assays confirm the dependence of Elk1 and nucleoporin binding on ERK2 phosphorylation, and provide a structural basis for preferential involvement of active ERK in substrate binding and nuclear pore protein interactions.  相似文献   

16.
Extracellular signal-regulated kinases (ERKs) play important physiological roles in proliferation, differentiation and gene expression. ERK5 is twice the size of ERK1/2, the amino-terminal half contains the kinase domain that shares the homology with ERK1/2 and TEY activation motif, whereas the carboxy-terminal half is unique. In this study, we examined the cross-talk mechanism between G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases, focusing on ERK1/2 and 5. The pretreatment of rat pheochromocytoma cells (PC12) with pertussis toxin (PTX) specifically enhanced epidermal growth factor (EGF)-induced ERK5 phosphorylation. In addition, lysophosphatidic acid (LPA) attenuated the EGF-induced ERK5 phosphorylation in LPA(1) receptor- and G(i/o)-dependent manners. On the other hand, LPA alone activated ERK1/2 via Gbetagamma subunits and Ras and potentiated EGF-induced ERK1/2 phosphorylation at late time points. These results suggest G(i/o) negatively regulates ERK5, while it positively regulates ERK1/2. LPA did not affect cAMP levels after EGF treatment, and the reagents promoting cAMP production such as forskolin and cholera toxin also attenuated the EGF-induced ERK5 phosphorylation, indicating that the inhibitory effect of LPA on ERK5 inhibition via G(i/o) is not due to inhibition of adenylyl cyclase by Galpha(i/o). However, the inhibitory effect of LPA on ERK5 was abolished in PC12 cells stably overexpressing C-terminus of GPCR kinase2 (GRK2), and overexpression of Gbeta(1) and gamma(2) subunits also suppressed ERK5 phosphorylation by EGF. In response to LPA, Gbetagamma subunits interacted with EGF receptor in a time-dependent manner. These results strongly suggest that LPA negatively regulates the EGF-induced ERK5 phosphorylation through Gbetagamma subunits.  相似文献   

17.
The IgA receptor, Fcar (CD89) consists of 5 sequence segments: 2 segments (S1, S2) forming the potential signal peptide, 2 extracellular EC domains that include the IgA binding site, and the transmembrane and cytoplasmic tail (TM/C) region. Numerous Fcar splice variants have been reported with various combinations of the sequence segments mentioned above. Here, we report a novel splice variant termed variant APD isolated from a healthy volunteer that lacks only the IgA-binding EC1 domain. Despite possessing the complete signal peptide S1+S2, the variant APD is only found in the intracellular space whereas the wild-type variant 1 is efficiently secreted and variant 4 leaks to the extracellular space. Further mutational experiments involving signal peptide replacements, cleavage site modifications, and studies on alternative isoforms demonstrate that despite the completeness of the signal peptide motif, the presence of the EC1 domain is essential for efficient extracellular export.  相似文献   

18.
Inositol 1,4,5-trisphosphate receptors (InsP3R) are the major route of intracellular calcium release in eukaryotic cells and as such are pivotal for stimulation of Ca2+-dependent effectors important for numerous physiological processes. Modulation of this release has important consequences for defining the particular spatio-temporal characteristics of Ca2+ signals. In this study, regulation of Ca2+ release by phosphorylation of type-1 InsP3R (InsP3R-1) by cAMP (PKA)- and cGMP (PKG)-dependent protein kinases was investigated in the two major splice variants of InsP3R-1. InsP3R-1 was expressed in DT-40 cells devoid of endogenous InsP3R. In cells expressing the neuronal, S2+ splice variant of the InsP3R-1, Ca2+ release was markedly enhanced when either PKA or PKG was activated. The sites of phosphorylation were investigated by mutation of serine residues present in two canonical phosphorylation sites present in the protein. Potentiated Ca2+ release was abolished when serine 1755 was mutated to alanine (S1755A) but was unaffected by a similar mutation of serine 1589 (S1589A). These data demonstrate that Ser-1755 is the functionally important residue for phosphoregulation by PKA and PKG in the neuronal variant of the InsP3R-1. Activation of PKA also resulted in potentiated Ca2+ release in cells expressing the non-neuronal, S2- splice variant of the InsP3R-1. However, the PKA-induced potentiation was still evident in S1589A or S1755A InsP3R-1 mutants. The effect was abolished in the double (S1589A/S1755A) mutant, indicating both sites are phosphorylated and contribute to the functional effect. Activation of PKG had no effect on Ca2+ release in cells expressing the S2- variant of InsP3R-1. Collectively, these data indicate that phosphoregulation of InsP3R-1 has dramatic effects on Ca2+ release and defines the molecular sites phosphorylated in the major variants expressed in neuronal and peripheral tissues.  相似文献   

19.
Inhibitors of the oncogenic Ras-MAPK pathway have been intensely pursued as therapeutics. Targeting this pathway, however, presents challenges due to the essential role of MAPK in homeostatic functions. The phosphorylation and activation of MAPK substrates is regulated by protein-protein interactions with MAPK docking sites. Active ERK1/2 (extracellular signal-regulated kinase 1/2)-MAPKs localize to effectors containing DEF (docking site for ERK, (F)/(Y) -X-(F)/(Y) -P)- or D-domain (docking domain) motifs. We have examined the in vivo activity of ERK2 mutants with impaired ability to signal via either docking site. Mutations in the DEF-domain binding pocket prevent activation of DEF-domain-containing effectors but not RSK (90 kDa ribosomal S6 kinase), which contains a D domain. Conversely, mutation of the ERK2 CD domain, which interacts with D domains, prevents RSK activation but not DEF-domain signaling. Uncoupling docking interactions does not compromise ERK2 phosphotransferase activity. ERK2 DEF mutants undergo regulated nuclear translocation but are defective for Elk-1/TCF transactivation and target gene induction. Thus, downstream branches of ERK2 signaling can be selectively inhibited without blocking total pathway activity. Significantly, several protooncogenes contain DEF domains and are regulated by ERK1/2. Therefore, disrupting ERK-DEF domain interactions could be an alternative to inhibiting oncogenic Ras-MAPK signaling.  相似文献   

20.
ERK5 is a member of the mitogen-activated protein kinase (MAPK) family that, after stimulation, is activated selectively by dual phosphorylation in the TEY motif by MAPK kinase 5 (MEK5). ERK5 plays an important role in regulating cell proliferation, survival, differentiation and stress response. Moreover, it is involved in G2/M progression and timely mitotic entry. ERK5 is phosphorylated during mitosis, but the molecular mechanism by which it is regulated during this phase is still unclear. Here we show that although ERK5 is phosphorylated in mitosis, this does not occur on the activation motif (TEY), but at its C-terminal half. We have identified five sites of ERK5 phosphorylation in mitosis, two of them unknown. Furthermore, we demonstrate that ERK5 phosphorylation in mitosis is not MEK5-dependent, but rather, cyclin-dependent kinase (CDK)-dependent. Using a mutagenesis approach, we analysed the importance of the phosphorylated residues in ERK5 function; our evidence show that phosphorylation in mitosis of the residues identified inhibits ERK5 activity and regulates ERK5 shuttling from cytoplasm to the nucleus. These results reveal a previously unreported form of ERK5 regulation by phosphorylation and establish a link between CDK and ERK5 pathways during mitosis, which could be crucial for the correct progression of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号