首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complete gene organizations of the mitochondrial genomes of three pulmonate gastropods, Euhadra herklotsi, Cepaea nemoralis and Albinaria coerulea, permit comparisons of their gene organizations. Euhadra and Cepaea are classified in the same superfamily, Helicoidea, yet they show several differences in the order of tRNA and protein coding genes. Albinaria is distantly related to the other two genera but shares the same gene order in one part of its mitochondrial genome with Euhadra and in another part with Cepaea. Despite their small size (14.1-14.5 kbp), these snail mtDNAs encode 13 protein genes, two rRNA genes and at least 22 tRNA genes. These genomes exhibit several unusual or unique features compared to other published metazoan mitochondrial genomes, including those of other molluscs. Several tRNAs predicted from the DNA sequences possess bizarre structures lacking either the T stem or the D stem, similar to the situation seen in nematode mt-tRNAs. The acceptor stems of many tRNAs show a considerable number of mismatched basepairs, indicating that the RNA editing process recently demonstrated in Euhadra is widespread in the pulmonate gastropods. Strong selection acting on mitochondrial genomes of these animals would have resulted in frequent occurrence of the mismatched basepairs in regions of overlapping genes.  相似文献   

2.
Mitochondrial genomes of onychophorans (velvet worms) present an interesting problem: Some previous studies reported them lacking several transfer RNA (tRNA) genes, whereas others found that all their tRNA genes were present but severely reduced. To resolve this discrepancy, we determined complete mitochondrial DNA (mtDNA) sequences of the onychophorans Oroperipatus sp. and Peripatoides sympatrica as well as cDNA sequences from 14 and 10 of their tRNAs, respectively. We show that tRNA genes in these genomes are indeed highly reduced and encode truncated molecules, which are restored to more conventional structures by extensive tRNA editing. During this editing process, up to 34 nucleotides are added to the tRNA sequences encoded in Oroperipatus sp. mtDNA, rebuilding the aminoacyl acceptor stem, the TΨC arm, and in some extreme cases, the variable arm and even a part of the anticodon stem. The editing is less extreme in P. sympatrica in which at least a part of the TΨC arm is always encoded in mtDNA. When the entire TΨC arm is added de novo in Oroperipatus sp., the sequence of this arm is either identical or similar among different tRNA species, yet the sequences show substantial variation for each tRNA. These observations suggest that the arm is rebuilt, at least in part, by a template-independent mechanism and argue against the alternative possibility that tRNA genes or their parts are imported from the nucleus. By contrast, the 3' end of the aminoacyl acceptor stem is likely restored by a template-dependent mechanism. The extreme tRNA editing reported here has been preserved for >140 My as it was found in both extant families of onychophorans. Furthermore, a similar type of tRNA editing may be present in several other groups of arthropods, which show a high degree of tRNA gene reduction in their mtDNA.  相似文献   

3.
The cloverleaf secondary structure of transfer RNA (tRNA) is highly conserved across all forms of life. Here, we provide sequence data and inferred secondary structures for all tRNA genes from 8 new arachnid mitochondrial genomes, including representatives from 6 orders. These data show remarkable reductions in tRNA gene sequences, indicating that T-arms are missing from many of the 22 tRNAs in the genomes of 4 out of 7 orders of arachnids. Additionally, all opisthothele spiders possess some tRNA genes that lack sequences that could form well-paired aminoacyl acceptor stems. We trace the evolution of T-arm loss onto phylogenies of arachnids and show that a genome-wide propensity to lose sequences that encode canonical cloverleaf structures likely evolved multiple times within arachnids. Mapping of structural characters also shows that certain tRNA genes appear more evolutionarily prone to lose the sequence coding for the T-arm and that once a T-arm is lost, it is not regained. We use tRNA structural data to construct a phylogeny of arachnids and find high bootstrap support for a clade that is not supported in phylogenies that are based on more traditional morphological characters. Together, our data demonstrate variability in structural evolution among different tRNAs as well as evidence for parallel evolution of the loss of sequence coding for tRNA arms within an ancient and diverse group of animals.  相似文献   

4.
We determined the complete nucleotide sequence of the chloroplast genome of the leptosporangiate fern, Adiantum capillus-veneris L. (Pteridaceae). The circular genome is 150,568 bp, with a large single-copy region (LSC) of 82,282 bp, a small-single copy region (SSC) of 21,392 bp and inverted repeats (IR) of 23,447 bp each. We compared the sequence to other published chloroplast genomes to infer the location of putative genes. When the IR is considered only once, we assigned 118 genes, of which 85 encode proteins, 29 encode tRNAs and 4 encode rRNAs. Four protein-coding genes, all four rRNA genes and six tRNA genes occur in the IR. Most (57) putative protein-coding genes appear to start with an ATG codon, but we also detected five other possible start codons, some of which suggest tRNA editing. We also found 26 apparent stop codons in 18 putative genes, also suggestive of RNA editing. We found all but one of the tRNA genes necessary to encode the complete repertoire required for translation. The missing trnK gene appears to have been disrupted by a large inversion, relative to other published chloroplast genomes. We detected several structural rearrangements that may provide useful information for phylogenetic studies.  相似文献   

5.

Background

Pseudoscorpions are chelicerates and have historically been viewed as being most closely related to solifuges, harvestmen, and scorpions. No mitochondrial genomes of pseudoscorpions have been published, but the mitochondrial genomes of some lineages of Chelicerata possess unusual features, including short rRNA genes and tRNA genes that lack sequence to encode arms of the canonical cloverleaf-shaped tRNA. Additionally, some chelicerates possess an atypical guanine-thymine nucleotide bias on the major coding strand of their mitochondrial genomes.

Results

We sequenced the mitochondrial genomes of two divergent taxa from the chelicerate order Pseudoscorpiones. We find that these genomes possess unusually short tRNA genes that do not encode cloverleaf-shaped tRNA structures. Indeed, in one genome, all 22 tRNA genes lack sequence to encode canonical cloverleaf structures. We also find that the large ribosomal RNA genes are substantially shorter than those of most arthropods. We inferred secondary structures of the LSU rRNAs from both pseudoscorpions, and find that they have lost multiple helices. Based on comparisons with the crystal structure of the bacterial ribosome, two of these helices were likely contact points with tRNA T-arms or D-arms as they pass through the ribosome during protein synthesis. The mitochondrial gene arrangements of both pseudoscorpions differ from the ancestral chelicerate gene arrangement. One genome is rearranged with respect to the location of protein-coding genes, the small rRNA gene, and at least 8 tRNA genes. The other genome contains 6 tRNA genes in novel locations. Most chelicerates with rearranged mitochondrial genes show a genome-wide reversal of the CA nucleotide bias typical for arthropods on their major coding strand, and instead possess a GT bias. Yet despite their extensive rearrangement, these pseudoscorpion mitochondrial genomes possess a CA bias on the major coding strand. Phylogenetic analyses of all 13 mitochondrial protein-coding gene sequences consistently yield trees that place pseudoscorpions as sister to acariform mites.

Conclusion

The well-supported phylogenetic placement of pseudoscorpions as sister to Acariformes differs from some previous analyses based on morphology. However, these two lineages share multiple molecular evolutionary traits, including substantial mitochondrial genome rearrangements, extensive nucleotide substitution, and loss of helices in their inferred tRNA and rRNA structures.  相似文献   

6.
7.
Horseshoe crabs (order Xiphosura) are often referred to as an ancient order of marine chelicerates and have been considered as keystone taxa for the understanding of chelicerate evolution. However, the mitochondrial genome of this order is only available from a single species, Limulus polyphemus. In the present study, we analyzed the complete mitochondrial genomes from two Asian horseshoe crabs, Carcinoscorpius rotundicauda and Tachypleus tridentatus to offer novel data for the evolutionary relationship within Xiphosura and their position in the chelicerate phylogeny. The mitochondrial genomes of C. rotundicauda (15,033 bp) and T. tridentatus (15,006 bp) encode 13 protein-coding genes, two ribosomal RNA (rRNA) genes, and 22 transfer RNA (tRNA) genes. Overall sequences and genome structure of two Asian species were highly similar to that of Limulus polyphemus, though clear differences among three were found in the stem-loop structure of the putative control region. In the phylogenetic analysis with complete mitochondrial genomes of 43 chelicerate species, C. rotundicauda and T. tridentatus were recovered as a monophyly, while L. polyphemus solely formed an independent clade. Xiphosuran species were placed at the basal root of the tree, and major other chelicerate taxa were clustered in a single monophyly, clearly confirming that horseshoe crabs composed an ancestral taxon among chelicerates. By contrast, the phylogenetic tree without the information of Asian horseshoe crabs did not support monophyletic clustering of other chelicerates. In conclusion, our analyses may provide more robust and reliable perspective on the study of evolutionary history for chelicerates than earlier analyses with a single Atlantic species.  相似文献   

8.
To explore the mitochondrial genes of the Cruciferae family, the mitochondrial genome of Raphanus sativus (sat) was sequenced and annotated. The circular mitochondrial genome of sat is 239,723 bp and includes 33 protein-coding genes, three rRNA genes and 17 tRNA genes. The mitochondrial genome also contains a pair of large repeat sequences 5.9 kb in length, which may mediate genome reorga-nization into two sub-genomic circles, with predicted sizes of 124.8 kb and 115.0 kb, respectively. Furthermore, gene evolution of mitochondrial genomes within the Cruciferae family was analyzed using sat mitochondrial type (mitotype), together with six other re-ported mitotypes. The cruciferous mitochondrial genomes have maintained almost the same set of functional genes. Compared with Cycas taitungensis (a representative gymnosperm), the mitochondrial genomes of the Cruciferae have lost nine protein-coding genes and seven mitochondrial-like tRNA genes, but acquired six chloroplast-like tRNAs. Among the Cruciferae, to maintain the same set of genes that are necessary for mitochondrial function, the exons of the genes have changed at the lowest rates, as indicated by the numbers of single nucleotide polymorphisms. The open reading frames (ORFs) of unknown function in the cruciferous genomes are not conserved. Evolutionary events, such as mutations, genome reorganizations and sequence insertions or deletions (indels), have resulted in the non- conserved ORFs in the cruciferous mitochondrial genomes, which is becoming significantly different among mitotypes. This work represents the first phylogenic explanation of the evolution of genes of known function in the Cruciferae family. It revealed significant variation in ORFs and the causes of such variation.  相似文献   

9.
The complete nucleotide sequence of the mitochondrial genome was determined for a harpacticoid copepod, Tigriopus japonicus (Crustacea), using an approach that employs a long polymerase chain reaction technique and primer walking. Although the genome (14,628 bp) contained the same set of 37 genes (2 ribosomal RNA, 22 transfer RNA, and 13 protein-coding genes) as found in other metazoan animals, none of the previously reported gene orders were comparable to that of T. japonicus. Furthermore, all genes were encoded on one strand, unlike the mitochondrial genomes of most metazoan animals. Size reductions were notable for tRNA and rRNA genes, resulting in one of the smallest mitochondrial genomes in the arthropod lineage. Although it appears that such large-scale gene rearrangements have occurred in the ancestral species of T. japonicus, none of the proposed mechanisms parsimoniously account for this eccentric gene arrangement.  相似文献   

10.
小麂线粒体基因组全序列的测定和分析   总被引:5,自引:0,他引:5  
通过建立麂属动物小麂线粒体DNA文库、鸟枪法测序,获得了小麂线粒体基因组全序列并对其基因组成、蛋白质的编码序列、tRNA基因等结构作了详细分析,这也是国内有关哺乳动物线粒体基因组全序列的首次报道。与其他哺乳动物线粒体基因组全序列的比较研究发现:全长为16 354bp的小麂线粒体基因组同样编码13种蛋白质、2种rRNA和22种tRNA,除了用于调控线粒体DNA复制和转录的D-Loop区以外,小麂线粒体基因组各基因长度、位置与其他哺乳动物相似,其编码蛋白质区域和rRNA基因与其他哺乳动物具有很高的同源性。  相似文献   

11.
Handa H 《Nucleic acids research》2003,31(20):5907-5916
The entire mitochondrial genome of rapeseed (Brassica napus L.) was sequenced and compared with that of Arabidopsis thaliana. The 221 853 bp genome contains 34 protein-coding genes, three rRNA genes and 17 tRNA genes. This gene content is almost identical to that of Arabidopsis. However the rps14 gene, which is a pseudo-gene in Arabidopsis, is intact in rapeseed. On the other hand, five tRNA genes are missing in rapeseed compared to Arabidopsis, although the set of mitochondrially encoded tRNA species is identical in the two Cruciferae. RNA editing events were systematically investigated on the basis of the sequence of the rapeseed mitochondrial genome. A total of 427 C to U conversions were identified in ORFs, which is nearly identical to the number in Arabidopsis (441 sites). The gene sequences and intron structures are mostly conserved (more than 99% similarity for protein-coding regions); however, only 358 editing sites (83% of total editings) are shared by rapeseed and Arabidopsis. Non-coding regions are mostly divergent between the two plants. One-third (about 78.7 kb) and two-thirds (about 223.8 kb) of the rapeseed and Arabidopsis mitochondrial genomes, respectively, cannot be aligned with each other and most of these regions do not show any homology to sequences registered in the DNA databases. The results of the comparative analysis between the rapeseed and Arabidopsis mitochondrial genomes suggest that higher plant mitochondria are extremely conservative with respect to coding sequences and somewhat conservative with respect to RNA editing, but that non-coding parts of plant mitochondrial DNA are extraordinarily dynamic with respect to structural changes, sequence acquisition and/or sequence loss.  相似文献   

12.
缅甸陆龟线粒体全基因组的测序及分析   总被引:4,自引:0,他引:4  
张颖  聂刘旺  宋娇莲 《动物学报》2007,53(1):151-158
本文参照近缘物种的线粒体基因组序列,设计17对特异引物,采用LD-PCR、PCR及测序技术获得了我国广西产缅甸陆龟的线粒体全基因组序列,分析了其基因组特点和各基因的定位。结果表明:缅甸陆龟线粒体基因组全长为16813bp,碱基组成为35.30%A、26.47%T、12.09%G、26.14%C,包括13个蛋白质编码基因、2个rRNA基因、22个tRNA基因和1个非编码基因控制区(D-Loop区)。缅甸陆龟线粒体基因组各基因长度、位置与典型的脊椎动物相似,其编码蛋白质区域和rRNA基因与其它脊椎动物具有很高的同源性,显示龟类线粒体基因组在进化上十分保守。将缅甸陆龟的线粒体基因组序列提交到GenBank,获得的检索号为DQ656607。本文还结合GenBank中已发表的其它16种龟鳖类动物的线粒体基因组序列,探讨龟鳖类动物不同科间的系统进化关系。  相似文献   

13.
Analyses of mitochondrial DNA sequences from three species of Habronattus jumping spiders (Chelicerata: Arachnida: Araneae) reveal unusual inferred tRNA secondary structures and gene arrangements, providing new information on tRNA evolution within chelicerate arthropods. Sequences from the protein-coding genes NADH dehydrogenase subunit 1 (ND1), cytochrome oxidase subunit I (COI), and subunit II (COII) were obtained, along with tRNA, tRNA, and large-subunit ribosomal RNA (16S) sequences; these revealed several peculiar features. First, inferred secondary structures of tRNA and, likely, tRNA, lack the TPsiC arm and the variable arm and therefore do not form standard cloverleaf structures. In place of these arms is a 5-6-nt T arm-variable loop (TV) replacement loop such as that originally described from nematode mitochondrial tRNAs. Intraspecific variation occurs in the acceptor stem sequences in both tRNAs. Second, while the proposed secondary structure of the 3' end of 16S is similar to that reported for insects, the sequence at the 5' end is extremely divergent, and the entire gene is truncated about 300 nt with respect to Drosophila yakuba. Third, initiation codons appear to consist of ATY (ATT and ATC) and TTG for ND1 and COII, respectively. Finally, Habronattus shares the same ND1-tRNA-16S gene arrangement as insects and crustaceans, thus illustrating variation in a tRNA gene arrangement previously proposed as a character distinguishing chelicerates from insects and crustaceans.  相似文献   

14.
15.
白纹佛蝗线粒体全基因组序列   总被引:1,自引:0,他引:1  
通过长PCR扩增线粒体全基因组进行保守引物步移法结合克隆测序技术,对白纹佛蝗mtDNA 全序列进行了测定和分析.结果表明:白纹佛蝗线粒体基因组全长15 657 bp,包含13 个蛋白编码基因、22个tRNA 基因和2 个rRNA 基因以及1个非编码的控制区域,它们的长度分别是11 202 bp,1 486 bp,2 156 bp 和 728 bp.37个基因的位置与飞蝗的一致,有9对基因间存在41 bp重叠,重叠碱基数在 1~8 bp之间;基因间隔序列共计21处 126 bp,间隔长度从 1~20 bp不等,最大的基因间隔是20 bp,是在tRNALys 和 ATP8 基因之间.还对lrRNA和srRNA二级结构进行了预测,同时也对tRNA反密码子臂的碱基对类型以及不同链上蛋白编码基因的A/T,C/G组成偏向性进行了详细的讨论.  相似文献   

16.
The mitochondrial genome of trypanosomes, unlike that of most other eukaryotes, does not appear to encode any tRNAs. Therefore, mitochondrial tRNAs must be either imported into the organelle or created through a novel mitochondrial process, such as RNA editing. Trypanosomal tRNA(Tyr), whose gene contains an 11-nucleotide intron, is present in both the cytosol and the mitochondrion and is encoded by a single-copy nuclear gene. By site-directed mutagenesis, point mutations were introduced into this tRNA gene, and the mutated gene was reintroduced into the trypanosomal nuclear genome by DNA transfection. Expression of the mutant tRNA led to the accumulation of unspliced tRNA(Tyr) (A. Schneider, K. P. McNally, and N. Agabian, J. Biol. Chem. 268:21868-21874, 1993). Cell fractionation revealed that a significant portion of the unspliced mutant tRNA(Tyr) was recovered in the mitochondrial fraction and was resistant to micrococcal nuclease treatment in the intact organelle. Expression of the nuclear integrated, mutated tRNA gene and recovery of its gene product in the mitochondrial fraction directly demonstrated import. In vitro experiments showed that the unspliced mutant tRNA(Tyr), in contrast to the spliced wild-type form, was no longer a substrate for the cognate aminoacyl synthetase. The presence of uncharged tRNA in the mitochondria demonstrated that aminoacylation was not coupled to import.  相似文献   

17.
The mitochondrial DNA of the chytridiomycete fungus Spizellomyces punctatusen codes only eight tRNAs, although a minimal set of 24-25 tRNAs is normally found in fungi. One of these tRNAs has a CAU anticodon and is structurally related to leucine tRNAs, which would permit the translation of the UAG 'stop' codons that occur in most of its protein genes. The predicted structures of all S. punctatus tRNAs have the common feature of containing one to three mis-pairings in the first three positions of their acceptor stems. Such mis-pairing is expected to impair proper folding and processing of tRNAs from their precursors. Five of these eight RNAs were shown to be edited at the RNA level, in the 5'portion of the molecules. These changes include both pyrimidine to purine and A to G substitutions that restore normal pairing in the acceptor stem. Editing was not found at other positions of the tRNAs, or in the mitochondrial mRNAs of S. punctatus. While tRNA editing has not been observed in other fungi, the editing pattern inS.punctatus is virtually identical to that described in the amoeboid protozoan Acanthamoeba castellanii. If this type of mitochondrial tRNA editing has originated from their common ancestor, one has to assume that it was independently lost in plants, animals and in most fungi. Alternatively, editing might have evolved independently, or the genes coding for the components of the editing machinery were laterally transferred.  相似文献   

18.
C P Rusconi  T R Cech 《The EMBO journal》1996,15(13):3286-3295
The mitochondrial genome of Tetrahymena does not appear to encode enough tRNAs to perform mitochondrial protein synthesis. It has therefore been proposed that nuclear-encoded tRNAs are imported into the mitochondria. T.thermophila has three major glutamine tRNAs: tRNA(Gln)(UUG), tRNA(Gln)(UUA) and tRNA(Gln)(CUA). Each of these tRNAs functions in cytosolic translation. However, due to differences between the Tetrahymena nuclear and mitochondrial genetic codes, only tRNA(Gln)(UUG) has the capacity to function in mitochondrial translation as well. Here we show that approximately 10-20% of the cellular complement of tRNA(Gln)(UUG) is present in mitochondrial RNA fractions, compared with 1% or less for the other two glutamine tRNAs. Furthermore, this glutamine tRNA is encoded only by a family of nuclear genes, the sequences of several of which are presented. Finally, when marked versions of tRNA(Gln)(UUG) and tRNA(Gln)(UUA) flanked by identical sequences are expressed in the macronucleus, only the former undergoes mitochondrial import; thus sequences within tRNA(Gln)(UUG) direct import. Because tRNA(Gln)(UUG) is a constituent of mitochondrial RNA fractions and is encoded only by nuclear genes, and because ectopically expressed tRNA(Gln)(UUG) fractionates with mitochondria like its endogenous counterpart, we conclude that it is an imported tRNA in T.thermophila.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号