首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of p70 S6 kinase (p70(S6K)) by growth factors requires multiple signal inputs involving phosphoinositide 3-kinase (PI3K), its effector Akt, and an unidentified kinase that phosphorylates Ser/Thr residues (Ser(411), Ser(418), Ser(424), and Thr(421)) clustered at its autoinhibitory domain. However, the mechanism by which G protein-coupled receptors activate p70(S6K) remains largely uncertain. By using vascular smooth muscle cells in which we have demonstrated Ras/extracellular signal-regulated kinase (ERK) activation through Ca(2+)-dependent, epidermal growth factor (EGF) receptor transactivation by G(q)-coupled angiotensin II (Ang II) receptor, we present a unique cross-talk required for Ser(411) phosphorylation of p70(S6K) by Ang II. Both p70(S6K) Ser(411) and Akt Ser(473) phosphorylation by Ang II appear to involve EGF receptor transactivation and were inhibited by dominant-negative Ras, whereas the phosphorylation of p70(S6K) and ERK but not Akt was sensitive to the MEK inhibitor. By contrast, the phosphorylation of p70(S6K) and Akt but not ERK was sensitive to PI3K inhibitors. Similar inhibitory pattern on these phosphorylation sites by EGF but not insulin was observed. Taken together with the inhibition of Ang II-induced p70(S6K) activation by dominant-negative Ras and the MEK inhibitor, we conclude that Ang II-initiated activation of p70(S6K) requires both ERK cascade and PI3K/Akt cascade that bifurcate at the point of EGF receptor-dependent Ras activation.  相似文献   

2.
3.
Ultraviolet light A (UVA) plays an important role in the etiology of human skin cancer, and UVA-induced signal transduction has a critical role in UVA-induced skin carcinogenesis. The upstream signaling pathways leading to p70(S6K) phosphorylation and activation are not well understood. Here, we observed that UVA induces phosphorylation and activation of p70(S6K). Further, UVA-stimulated p70(S6K) activity and phosphorylation at Thr(389) were blocked by wortmannin, rapamycin, PD98059, SB202190, and dominant negative mutants of phosphatidylinositol (PI) 3-kinase p85 subunit (DNM-Deltap85), ERK2 (DNM-ERK2), p38 kinase (DNM-p38), and JNK1 (DNM-JNK1) and were absent in Jnk1-/- or Jnk2-/- knockout cells. The p70(S6K) phosphorylation at Ser(411) and Thr(421)/Ser(424) was inhibited by rapamycin, PD98059, or DNM-ERK2 but not by wortmannin, SB202190, DNM-Deltap85, or DNM-p38. However, Ser(411), but not Thr(421)/Ser(424) phosphorylation, was suppressed in DNM-JNK1 and abrogated in Jnk1-/- or Jnk2-/- cells. In vitro assays indicated that Ser(411) on immunoprecipitated p70(S6K) proteins is phosphorylated by active JNKs and ERKs, but not p38 kinase, and Thr(421)/Ser(424) is phosphorylated by ERK1, but not ERK2, JNKs, or p38 kinase. Moreover, p70(S6K) co-immunoprecipitated with PI 3-kinase and possibly PDK1. The complex possibly possessed a partial basal level of phosphorylation, but not at MAPK sites, which was available for its activation by MAPKs in vitro. Thus, these results suggest that activation of MAPKs, like PI 3-kinase/mTOR, may be involved in UVA-induced phosphorylation and activation of p70(S6K).  相似文献   

4.
Cyclooxygenase (COX) enzymes mediate the synthesis of proinflammatory prostaglandin (PG) species from cellular arachidonic acid. COX/PGs have been implicated in skeletal muscle growth/regeneration; however, the mechanisms by which PGs influence skeletal muscle adaptation are poorly understood. The present study aimed to investigate PGF(2α) signaling and its role in skeletal myotube hypertrophy. PGF(2α) or the FP receptor agonist fluprostenol increased C2C12 myotube diameter. This effect was abolished by the FP receptor antagonist AL8810 and mammalian target of rapamycin (mTOR) inhibition. PGF(2α) stimulated time- and dose-dependent increases in the phosphorylation of extracellular receptor kinase (ERK)1/2 (Thr202/Tyr204), p70S6 kinase (p70S6K) (Thr389 and Thr421/Ser424), and eukaryotic initiation factor 4G (eIF4G) (Ser1108) without influencing Akt (Ser473). Pretreatment with the phosphoinositide 3-kinase (PI3K) inhibitor LY294002 and the ERK inhibitor PD98059 blocked F prostanoid receptor signaling responses, whereas rapamycin blocked heightened p70S6K/eIF4G phosphorylation without influencing ERK1/2 phosphorylation. These data suggest that activation of the F prostanoid receptor is coupled to C2C12 myotube growth and intracellular signaling via a PI3K/ERK/mTOR-dependent pathway.  相似文献   

5.
Vanadium is a metal widely distributed in the environment. Although vanadate-containing compounds exert potent toxic effects on a wide variety of biological systems, the mechanisms by which vanadate mediates adverse effects are not well understood. The present study investigated the vanadate-induced phosphorylation of Akt and p70S6K, two kinases known to be vital for cell survival, growth, transformation, and transition of the cell cycle in mammals. Exposure of mouse epidermal JB6 cells to vanadium led to phosphorylation of Akt and p70S6K in a time- and dose-dependent manner. Vanadium exposure also caused translocation of atypical isoforms of PKC (lambda, zeta) from the cytosol to the membrane, but had no effect on PKCalpha translocation, suggesting that the atypical PKCs (aPKC) were specifically involved in vanadium-induced cellular response. Importantly, overexpression of a dominant negative mutant PKClambda blocked Akt phosphorylation at Ser473 and Thr308, whereas it did not inhibit p70S6k phosphorylation at Thr389 and Thr421/Ser424, suggesting that aPKC activation is specifically involved in vanadium-induced activation of Akt, but not in activation of p70S6k. Furthermore, vanadium-induced p70S6k phosphorylation at Thr389 and Thr421/Ser424 and Akt phosphorylation at Thr308 occurred through a PI-3K-dependent pathway because a PI-3K dominant negative mutant inhibited induction as compared with vector control cells. These results indicate that there was a differential role of aPKC in vanadate-induced phosphorylation of Akt and p70S6k, suggesting that signal transduction pathways leading to the activation of Akt and p70S6k were different.  相似文献   

6.
7.
3-Phosphoinositide-dependent kinase-1 (PDK-1) was identified by its ability to phosphorylate and activate protein kinase B (PKB) in vitro [1,2] and can phosphorylate and activate additional protein kinases in the AGC family in vitro [3-6]. Its role in vivo has, however, only begun to be addressed. We used antisense oligonucleotides directed against PDK-1 expression to explore the role of PDK-1 in human glioblastoma cells (U87-MG), which express a mutant PTEN allele. Reduction in PDK-1 levels resulted in inhibition of PKB activity, and a reduction in phosphorylation on Thr308 and Ser473 of PKB. p70 S6 kinase (p70(S6K)) activity was also reduced. Cell proliferation was dramatically inhibited following treatment with PDK-1 antisense oligonucleotides, due to a combination of decreased cell doubling and an increase in apoptosis. This is in contrast to direct inhibition of phosphoinositide 3-OH kinase (PI 3-kinase), which results in G1 arrest with no effect on apoptosis. This study confirms both PKB and p70(S6K) as in vivo substrates for PDK-1. The effect of acute PDK-1 loss on cell proliferation and survival suggests the involvement of PI 3-kinase dependent and independent signaling events, and implicates PDK-1 as a potential therapeutic target for human neoplasms.  相似文献   

8.
We have previously shown that endogenous IGF-I regulates human intestinal smooth muscle cell proliferation by activation of phosphatidylinositol 3 (PI3)-kinase- and Erk1/2-dependent pathways that jointly regulate cell cycle progression and cell division. Whereas insulin-like growth factor-I (IGF-I) stimulates PI3-kinase-dependent activation of Akt, expression of a kinase-inactive Akt did not alter IGF-I-stimulated proliferation. In other cell types, Akt-dependent phosphorylation of glycogen synthase kinase-3 beta (GSK-3 beta) inhibits its activity and its ability to stimulate apoptosis. The aim of the present study was to determine whether endogenous IGF-I regulates Akt-dependent GSK-3 beta phosphorylation and activity and whether it regulates apoptosis in human intestinal muscle cells. IGF-I elicited time- and concentration-dependent GSK-3 beta phosphorylation (inactivation) that was measured by Western blot analysis using a phospho-specific GSK-3beta antibody. Endogenous IGF-I stimulated GSK-3 beta phosphorylation and inhibited GSK-3 beta activity (measured by in vitro kinase assay) in these cells. IGF-I-dependent GSK-3 beta phosphorylation and the resulting GSK-3 beta inactivation were mediated by activation of a PI3-kinase-dependent, phosphoinositide-dependent kinase-1 (PDK-1)-dependent, and Akt-dependent mechanism. Deprivation of serum induced beta-catenin phosphorylation, increased in caspase 3 activity, and induced apoptosis of muscle cells, which was inhibited by either IGF-I or a GSK-3 beta inhibitor. Endogenous IGF-I inhibited beta-catenin phosphorylation, caspase 3 activation, and apoptosis induced by serum deprivation. IGF-I-dependent inhibition of apoptosis, similar to GSK-3 beta activity, was mediated by a PI3-kinase-, PDK-1-, and Akt-dependent mechanism. We conclude that endogenous IGF-I exerts two distinct but complementary effects on intestinal smooth muscle cell growth: it stimulates proliferation and inhibits apoptosis. The growth of intestinal smooth muscle cells is regulated jointly by the net effect of these two processes.  相似文献   

9.
3-Phosphoinositide-dependent protein kinase-1 (PDK-1)is a serine/threonine kinase that has been found to phosphorylate and activate several members of the AGC protein kinase family including protein kinase B (Akt), p70 S6 kinase, and protein kinase Czeta. However, the mechanism(s) by which PDK-1 is regulated remains unclear. Here we show that mouse PDK-1 (mPDK-1) undergoes autophosphorylation in vitro on both serine and threonine residues. In addition, we have identified Ser(399) and Thr(516) as the major mPDK-1 autophosphorylation sites in vitro. Furthermore, we have found that these two residues, as well as Ser(244) in the activation loop, are phosphorylated in cells and demonstrated that Ser(244) is a major in vivo phosphorylation site. Abolishment of phosphorylation at Ser(244), but not at Ser(399) or Thr(516), led to a significant decrease of mPDK-1 autophosphorylation and kinase activity in vitro, indicating that autophosphorylation at Ser(399) or Thr(516) is not essential for mPDK-1 autokinase activity. However, overexpression of mPDK-1(T516E), but not of mPDK-1(S244E) or mPDK-1(S399D), in Chinese hamster ovary and HEK293 cells was sufficient to induce Akt phosphorylation at Thr(308) to a level similar to that of insulin stimulation. Furthermore, this increase in phosphorylation was independent of the Pleckstrin homology domain of Akt. Taken together, our results suggest that mPDK-1 undergoes autophosphorylation at multiple sites and that this phosphorylation may be essential for PDK-1 to interact with and phosphorylate its downstream substrates in vivo.  相似文献   

10.
The role of epidermal growth factor receptor (EGFR) tyrosine kinase and its downstream targets in the regulation of the transition from the G0/G1 phase into DNA synthesis in response to ANG II has not been previously investigated in intestinal epithelial IEC-18 cells. ANG II induced a rapid and striking EGFR tyrosine phosphorylation, which was prevented by selective inhibitors of EGFR tyrosine kinase activity (e.g., AG-1478) or by broad-spectrum matrix metalloproteinase (MMP) inhibitor GM-6001. Pretreatment of these cells with either AG-1478 or GM-6001 reduced ANG II-stimulated DNA synthesis by approximately 50%. To elucidate the downstream targets of EGFR, we demonstrated that ANG II stimulated phosphorylation of Akt at Ser473, mTOR at Ser2448, p70S6K1 at Thr389, and S6 ribosomal protein at Ser(235/236). Pretreatment with AG-1478 inhibited Akt, p70S6K1, and S6 ribosomal protein phosphorylation. Inhibition of phosphatidylinositol (PI)3-kinase with LY-294002 or mTOR/p70S6K1 with rapamycin reduced [3H]thymidine incorporation by 50%, i.e., to levels comparable to those achieved by addition of either AG-1478 or GM-6001. Utilizing Akt small-interfering RNA targeted to Akt1 and Akt2, Akt protein knockdown dramatically inhibited p70S6K1 and S6 ribosomal protein phosphorylation. In contrast, AG-1478 or Akt gene silencing exerted no detectable inhibitory effect on ANG II-induced extracellular signal-regulated kinase 1/2 phosphorylation in IEC-18 cells. Taken together, our results demonstrate that EGFR transactivation mediates ANG II-stimulated mitogenesis through the PI3-kinase/Akt/mTOR/p70S6K1 signaling pathway in IEC-18 cells.  相似文献   

11.
Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy and apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3β (GSK3β) and 70kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3β at Ser(9) and, to a lesser extent, Thr(390), the dephosphorylation of p70S6K at Thr(389), and the phosphorylation of p70S6K at Thr(421) and Ser(424). The specific p38 inhibitor SB203080 reduced the p-GSK3β(Ser9) and autophagy through the phosphorylation of p70S6K(Thr389); however, it augmented the levels of p-ERK, p-GSK3β(Thr390), and p-70S6K(Thr421/Ser424) induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken together, our data show that proteasome inhibition regulates p38/GSK(Ser9)/p70S6K(Thr380) and ERK/GSK3β(Thr390)/p70S6K(Thr421/Ser424) kinase signaling, which is involved in cell survival and cell death.  相似文献   

12.
We report here for the first time the detection of the ribosomal p70S6 kinase (p70S6K) in a hematopoietic cell, the neutrophil, and the stimulation of its enzymatic activity by granulocyte macrophage colony-stimulating factor (GM-CSF). GM-CSF modified the Vmax of the enzyme (from 7.2 to 20.5 pmol/min/mg) and induced a time- and dose-dependent phosphorylation on p70S6K residues Thr389 and Thr421/Ser424. The immunosuppressant macrolide rapamycin caused either a decrease in intensity of phospho-Thr389 bands in Western blots, or as a downshift in the relative mobility of phospho-Thr421/Ser424 bands (consistent with the loss of phosphate), but not both simultaneously. The immunosuppressant FK506 failed to inhibit p70S6K activation, but was able to rescue the rapamycin-induced downshift, pointing to a role for the mammalian target of rapamycin (mTOR) kinase. Rapamycin also caused an inhibition (IC50 0.2 nm) of the in vitro enzymatic activity of p70S6K. However, the inhibition of activity was not complete, but only a 40-50%, indicating that neutrophil p70S6K activity has a rapamycin-resistant component. This component was totally inhibited by pre-incubating the cells with the mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor PD-98059 prior to treatment with rapamycin. This indicated that a kinase from the MEK/MAPK pathway also plays a role in p70S6K activation. Thus, GM-CSF causes the dual activation of a rapamycin-resistant, MAPK-related kinase, that targets Thr421/Ser424 S6K phosphorylation, and a rapamycin-sensitive, mTOR-related kinase, that targets Thr389, both of which are needed in cooperation to achieve full activation of neutrophil p70S6K.  相似文献   

13.
Phosphatidylinositil-3 kinase (PI3K) is a heterodimer of catalytic and regulatory subunits. It is involved in various signaling pathways and key functions of the cells. The present study investigated the role of PI3K in vanadate-induced alteration in cell cycle regulation in C141 mouse epidermal cells. Vanadate caused a time- and dose-dependent increase in PI3K activity and phosphorylation of p70 S6 kinase (p70S6K) at Thr421/Ser424 and Thr389 sites. The phosphorylation at these sites was inhibited by PI3K inhibitor, LY294002, and p70S6K mutation. Vanadate promoted S phase entry and this promotion was inhibited by LY294002 and rapmycin, a p70S6K inhibitor. Vanadate-induced enhancement in S phase entry was also inhibited in transfection with dominant negative p70S6K mutant cells. The results obtained show that vanadate is able to increase PI3K activity through phosphorylation. PI3K activated p70S6K, which phosphated protein S6, and promoted S phase entry.  相似文献   

14.
p70 S6 kinase (p70S6K) is an important regulator of cell proliferation. Its activation by growth factor requires phosphorylation by various inputs on multiple sites. Data accumulated thus far support a model whereby p70S6K activation requires sequential phosphorylations at proline-directed residues in the putative autoinhibitory pseudosubstrate domain, as well as threonine 389. Threonine 229, a site in the catalytic loop is phosphorylated by phosphoinositide-dependent kinase 1 (PDK-1). Experimental evidence suggests that p70S6K activation requires a phosphoinositide 3-kinase (PI3-K)-dependent signal(s). However, the intermediates between PI3-K and p70S6K remain unclear. Here, we have identified PI3-K-regulated atypical protein kinase C (PKC) isoform PKCzeta as an upstream regulator of p70S6K. In coexpression experiments, we found that a kinase-inactive PKCzeta mutant antagonized activation of p70S6K by epidermal growth factor, PDK-1, and activated Cdc42 and PI3-K. While overexpression of a constitutively active PKCzeta mutant (myristoylated PKCzeta [myr-PKCzeta]) only modestly activated p70S6K, this mutant cooperated with PDK-1 activation of p70S6K. PDK-1-induced activation of a C-terminal truncation mutant of p70S6K was also enhanced by myr-PKCzeta. Moreover, we have found that p70S6K can associate with both PDK-1 and PKCzeta in vivo in a growth factor-independent manner, while PDK-1 and PKCzeta can also associate with each other, suggesting the existence of a multimeric PI3-K signalling complex. This work provides evidence for a link between a phorbol ester-insensitive PKC isoform and p70S6K. The existence of a PI3-K-dependent signalling complex may enable efficient activation of p70S6K in cells.  相似文献   

15.
The mechanisms by which insulin-like growth factor I (IGF-I) and insulin regulate eukaryotic initiation factor (eIF)4F formation were examined in the ovine fetus. Insulin infusion increased phosphorylation of eIF4E-binding protein (4E-BP1) in muscle and liver. IGF-I infusion did not alter 4E-BP1 phosphorylation in liver. In muscle, IGF-I increased 4E-BP1 phosphorylation by 27%; the percentage in the gamma-form in the IGF-I group was significantly lower than that in the insulin group. In liver, only IGF-I increased eIF4G. Both IGF-I and insulin increased eIF4E. eIF4G binding in muscle, but only insulin decreased the amount of 4E-BP1 associated with eIF4E. In liver, only IGF-I increased eIF4E. eIF4G binding. Insulin increased the phosphorylation of p70 S6 kinase (p70(S6k)) in both muscle and liver and protein kinase B (PKB/Akt) in muscle, two indicative signal proteins in the phosphatidylinositol (PI) 3-kinase pathway. IGF-I increased PKB/Akt phosphorylation in muscle but had no effect on p70(S6k) phosphorylation in muscle or liver. We conclude that insulin and IGF-I modulate eIF4F formation; however, the two hormones have different regulatory mechanisms. Insulin increases phosphorylation of 4E-BP1 and eIF4E. eIF4G binding in muscle, whereas IGF-I regulates eIF4F formation by increasing total eIF4G. Insulin, but not IGF-I, decreased 4E-BP1 content associated with eIF4E. Insulin regulates translation initiation via the PI 3-kinase-p70(S6k) pathway, whereas IGF-I does so mainly via mechanisms independent of the PI 3-kinase-p70(S6k) pathway.  相似文献   

16.
Ser/Thr phosphorylation of insulin receptor substrate IRS-1 regulates insulin signaling, but the relevant phosphorylated residues and their potential functions during insulin-stimulated signal transduction are difficult to resolve. We used a sequence-specific polyclonal antibody directed against phosphorylated Ser(302) to study IRS-1-mediated signaling during insulin and insulin-like growth factor IGF-I stimulation. Insulin or IGF-I stimulated phosphorylation of Ser(302) in various cell backgrounds and in murine muscle. Wortmannin or rapamycin inhibited Ser(302) phosphorylation, and amino acids or glucose stimulated Ser(302) phosphorylation, suggesting a role for the mTOR cascade. The Ser(302) kinase associates with IRS-1 during immunoprecipitation, but its identity is unknown. The NH(2)-terminal c-Jun kinase did not phosphorylate Ser(302). Replacing Ser(302) with alanine significantly reduced insulin-stimulated tyrosine phosphorylation of IRS-1 and p85 binding and reduced insulin-stimulated phosphorylation of p70(S6K), ribosomal S6 protein, and 4E-BP1; however, this mutation had no effect on insulin-stimulated Akt or glycogen synthase kinase 3beta phosphorylation. Replacing Ser(302) with alanine reduced insulin/IGF-I-stimulated DNA synthesis. We conclude that Ser(302) phosphorylation integrates nutrient availability with insulin/IGF-I signaling to promote mitogenesis and cell growth.  相似文献   

17.
We investigated the effect of resistance exercise and feeding on the activation of signaling proteins involved in translation initiation. Nine young men (23.7+/-0.41 yr; BMI=25.5+/-1.0 kg/m2; means+/-SE) were tested twice after they performed a strenuous bout of unilateral resistance exercise, such that their contralateral leg acted as a nonexercised comparator, in either the fasted and fed [1,000 kJ, each 90 min (3 doses): 10 g protein, 41 g carbohydrate, 4 g fat] states. Muscle biopsies were obtained 6 h postexercise from both legs, resulting in four experimental conditions: rest-fasted, rest-fed, exercise-fasted, and exercise-fed. Feeding increased PKB/Akt (Ser473) phosphorylation (P<0.05), while exercise increased the phosphorylation of Akt and the downstream 70 kDa S6 protein kinase (p70S6K1, Thr389) and ribosomal protein S6 (rpS6, Ser235/236, Ser240/244; all P<0.05). The combination of resistance exercise and feeding increased the phosphorylation of p70S6K1 (Thr389) and rpS6 (Ser240/244) above exercise alone (P<0.05). Exercise also reduced phosphorylation of the catalytic epsilon subunit of eukaryotic initiation factor 2B (eIF2Bepsilon, Ser540; P<0.05). Mammalian target of rapamycin (mTOR, Ser2448), glycogen synthase kinase-3beta (GSK-3beta, Ser9), and focal adhesion kinase (FAK, Tyr576/577) phosphorylation were unaffected by either feeding or resistance exercise (all P>0.14). In summary, feeding resulted in phosphorylation of Akt, while resistance exercise stimulated phosphorylation of Akt, p70S6K1, rpS6, and dephosphorylation eIF2Bepsilon with a synergistic effect of feeding and exercise on p70(S6K1) and its downstream target rpS6. We conclude that resistance exercise potentiates the effect of feeding on the phosphorylation and presumably activation of critical proteins involved in the regulation of muscle protein synthesis in young men.  相似文献   

18.
Insulin-like growth factor-I (IGF-I) regulates muscle differentiation through phosphatidylinositol 3-kinase (PI 3-kinase). Also it was recently reported that PI 3-kinase is involved in the activation of phospholipase C-gamma1 (PLC-gamma1). We investigated whether PLC-gamma1 therefore plays a role in IGF-I-induced muscle differentiation using H9c2 rat cardiac myoblasts as a model. IGF-I was able to activate PLC-gamma1 via both PI 3-kinase-dependent and tyrosine phosphorylation-dependent mechanisms in this model. However, PI 3-kinase appeared to play a more important role than tyrosine phosphorylation in IGF-I activation of PLC-gamma1. In addition, PLC-gamma1 activation was independent of Akt/protein kinase B (Akt/PKB). Importantly, PLC-gamma1 was involved in IGF-I-induced muscle differentiation in parallel with Akt/PKB. Taken together, these results suggest that IGF-I regulation of muscle differentiation is dependent on the activation of PLC-gamma1 and Akt/PKB, both of which are downstream mediators of PI 3-kinase.  相似文献   

19.
Signaling events involving angiotensin IV (ANG IV)-mediated pulmonary artery endothelial cell (PAEC) proliferation were examined. ANG IV significantly increased upstream phosphatidylinositide (PI) 3-kinase (PI3K), PI-dependent kinase-1 (PDK-1), extracellular signal-related kinases (ERK1/2), and protein kinase B-alpha/Akt (PKB-alpha) activities, as well as downstream p70 ribosomal S6 kinase (p70S6K) activities and/or phosphorylation of these proteins. ANG IV also significantly increased 5-bromo-2'-deoxy-uridine incorporation into newly synthesized DNA in a concentration- and time-dependent manner. Pretreatment of cells with wortmannin and LY-294002, inhibitors of PI3K, or rapamycin, an inhibitor of the mammalian target of rapamycin kinase and p70S6K, diminished the ANG IV-mediated activation of PDK-1 and PKB-alpha as well as phosphorylation of p70S6K. Although an inhibitor of mitogen-activated protein kinase kinase, PD-98059, but not rapamycin, blocked ANG IV-induced phosphorylation of ERK1/2, both PD-98059 and rapamycin independently caused partial reduction in ANG IV-mediated cell proliferation. However, simultaneous treatment with PD-98059 and rapamycin resulted in total inhibition of ANG IV-induced cell proliferation. These results demonstrate that ANG IV-induced DNA synthesis is regulated in a coordinated fashion involving multiple signaling modules in PAEC.  相似文献   

20.
The PI3K/Akt/mTOR signaling pathway is critical for cellular growth and survival in skeletal muscle, and is activated in response to growth factors such as insulin-like growth factor-I (IGF-I). We found that in C2C12 myoblasts, deficiency of PI3K p110 catalytic subunits or Akt isoforms had distinct effects on phosphorylation of mTOR and p70S6K. siRNA-mediated knockdown of PI3K p110α, p110β, and simultaneous knockdown of p110α and p110β resulted in increased basal and IGF-I-stimulated phosphorylation of mTOR S2448 and p70S6K T389; however, phosphorylation of S6 was reduced in p110β-deficient cells, possibly due to reductions in total S6 protein. We found that IGF-I-stimulated Akt1 activity was enhanced in Akt2- or Akt3-deficient cells, and that knockdown of individual Akt isoforms increased mTOR/p70S6K activation in an isoform-specific fashion. Conversely, levels of IGF-I-stimulated p70S6K phosphorylation in cells simultaneously deficient in both Akt1 and Akt3 were increased beyond those seen with loss of any single Akt isoform, suggesting an alternate, Akt-independent mechanism that activates mTOR/p70S6K. Our results collectively suggest that mTOR/p70S6K is activated in a PI3K/Akt-dependent manner, but that in the absence of p110α or Akt, alternate pathway(s) may mediate activation of mTOR/p70S6K in C2C12 myoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号