首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cloning and expression of cDNA encoding mouse tyrosinase.   总被引:30,自引:4,他引:26       下载免费PDF全文
We have isolated a pigment cell-specific cDNA clone from a B16 mouse melanoma cDNA library by differential hybridization. The mRNA of isolated cDNA is highly expressed in B16 melanoma cells and in black mouse (C57BL/6) skin, but is not detectable in mouse neuroblastoma cells nor in K1735 mouse amelanotic melanoma cells. The protein sequence deduced from the nucleotide sequence of the cloned cDNA shows significant similarity to the entire region of Neurospora tyrosinase. To know the identity of cDNA, we transfected K1735 amelanotic melanoma and COS-7 cells with the cDNA carried in a simian virus 40 vector (pKCRH2). We confirmed that the isolated cDNA encodes mouse tyrosinase by immunofluorescence staining of transfected cells using two different anti-T4-tyrosinase monoclonal antibodies. Tyrosinase is composed of 513 amino acids with a molecular weight of 57,872 excluding a hydrophobic signal peptide of 24 amino acids.  相似文献   

3.
We investigated the effects of compounds isolated from a methanolic extract of rose hips on melanin biosynthesis in B16 mouse melanoma cells and the possible mechanisms responsible for the inhibition of melanin biosynthesis. We found that, among the isolated compounds, quercetin was a particularly potent melanogenesis inhibitor. To reveal the mechanism for this inhibition, the effects on tyrosinase of B16 mouse melanoma were measured. Quercetin decreased the intracellular tyrosinase activity as well as the tyrosinase activity in a cell culture-free system. We also examined the cellular level of tyrosinase protein and found that quercetin dose-dependently inhibited tyrosinase protein expression. We consider from these results that the inhibition of melanogenesis by quercetin was due to the inhibition of both tyrosinase activity and of the protein expression.  相似文献   

4.
5.
Skin injuries, congenital lesions, melasma, Addison's disease and many pigment abnormalities prompt us to search for an effective whitening agent. Ideal whitening agent is a natural compound that can inhibit melanogenesis and has no cytotoxic effects. In a previous study, we have developed an optimum method for the production and characterization of ectoine from a halophilic bacterium isolated from a salt environment in Taiwan was identified as Marinococcus sp. In the present study, we screened the whitening properties of the biosynthesized ectoine using mouse and human melanoma cell lines, B16-F0 and A2058. Here, we examined the cell viabilities of melanoma cells after ectoine treatment at various concentrations up to 500 μM. Also, we addressed the melanin synthesis of melanoma cells after treatment with ectoine. The inhibitory effects of ectoine on tyrosinase activity were assessed in both mushroom tyrosinase and cellular tyrosinase. Furthermore, we investigated the type of inhibition of mushroom tyrosinase using Lineweaver–Burk enzyme kinetic. The melanogenesis-related gene expression (tyrosinase, TRP1, TRP2 and MITF) and their protein secretion were determined by the assays of quantitative real-time PCR and western blots, respectively. Our results demonstrated that ectoine is a safe and effective whitening agent, inhibited melanin synthesis, reduced both mushroom tyrosinase and cellular tyrosinase, and had various inhibitory effects on the expressions of melanogenesis-related genes and secretion of proteins in mouse and human melanoma cell lines. Thus, we suggest that ectoine can serve as a useful and safe new agent in cosmetic and clinical applications.  相似文献   

6.
In this study we explored the possible application of MAT-1, which has been established as a monoclonal antibody against human tyrosinase, for detection of mouse tyrosinase. The MAT-1 reacted with B16 mouse melanoma cells, but not with tyrosinase-negative NIH-3T3 mouse fibroblasts. In western blot analysis of the large granule fraction (LGF) of B16 cells, MAT-1 detected a single protein of 80 kDa, whose size was close to that of human tyrosinase detected with MAT-1 in extracts of human melanocytes. Furthermore, the 80 kDa band that was detected with MAT-1 in the LGF of B16 cells was also detected by DOPA reaction. In order to confirm that the protein detected with MAT-1 is tyrosinase, a transient expression assay was carried out. When mouse tyrosinase or mouse tyrosinase-related protein 1, which shares high homology with human tyrosinase, was transiently expressed in tyrosinase-negative K1735 mouse melanoma cells by cDNA transfection, MAT-1 reacted only with the cells expressing mouse tyrosinase. These results indicate that MAT-1 specifically reacts with mouse tyrosinase.  相似文献   

7.
MSG1 is a 27 kDa nuclear protein that is expressed strongly in melanotic B16 melanoma cells but very weakly in amelanotic B16 cells. Transient expression of B16 cells with an expression vector for MSG1 resulted in an increase in levels of the enzyme dopachrome tautomerase but not tyrosinase, as detected by western blotting. Stable transfection of B16 melanoma cells with plasmids containing the full length MSG1 or its deletion mutants, however, generated cell lines that showed an increase in levels of tyrosinase, dopachrome tautomerase and cellular melanin when compared with control transfected cells. Our results suggest that MSG1 plays an important role in melanogenesis, by regulating the levels of the enzymes of the pigmentary system via tyrosinase and dopachrome tautomerase.  相似文献   

8.
MSG1 is a 27 kDa nuclear protein that is expressed strongly in melanotic B16 melanoma cells but very weakly in amelanotic B16 cells. Transient expression of B16 cells with an expression vector for MSG1 resulted in an increase in levels of the enzyme dopachrome tautomerase but not tyrosinase, as detected by western blotting. Stable transfection of B16 melanoma cells with plasmids containing the full length MSG1 or its deletion mutants, however, generated cell lines that showed an increase in levels of tyrosinase, dopachrome tautomerase and cellular melanin when compared with control transfected cells. Our results suggest that MSG1 plays an important role in melanogenesis, by regulating the levels of the enzymes of the pigmentary system via tyrosinase and dopachrome tautomerase.  相似文献   

9.
10.
11.
12.
13.
Objectives: Poor therapeutic results have been reported for treatment of malignant melanoma; therefore in this study we have investigated inhibitory capacity of ethyl acetate, chloroform (Chl) and methanol extracts from Moricandia arvensis on mouse melanoma (B16‐F0) and human keratinocyte (HaCaT) cell proliferation. Influence of Chl extract on percentage distribution in cell cycle phases and melanogenesis was also studied. Material and methods: Cell viability was determined at various periods using the MTT assay, and flow cytometry was used to analyse effects of Chl extract on progression through the cell cycle and apoptosis. In addition, amounts of melanin and tyrosinase were measured spectrophotometrically at 475 nm. Results: Chl extract exhibited significant anti‐proliferative activity after incubation with the two types of tumour skin cells. Morphological changes in B16‐F0 cells, accompanied by increase of tyrosinase activity, and of melanin synthesis were observed, which are markers of differentiation of malignant melanoma cells. Furthermore, cell cycle analysis revealed that B16‐F0 cells treated with Chl extract were arrested predominantly in G1 phase. Conclusion: Chl extract had the ability to reverse malignant melanoma cells from proliferative to differentiated state, thus providing a new perspective in developing novel strategies for prevention and treatment of malignant melanoma, possibly through consumption of the extract in an appropriate cancer prevention diet. Moreover, there is scope for the extract being introduced into cosmetic products as a natural tanning agent.  相似文献   

14.
15.
16.
17.
18.
Melanogenesis is one of the characteristic functional activities of melanocyte/melanoma and is regulated via mitogen-activated protein kinase (MAPK) and Akt/protein kinase B (PKB) pathways. Placental total lipid fraction (PTLF), prepared from a hydroalcoholic extract of fresh term human placenta contains sphingolipids and was recently shown to stimulate melanogenesis via up-regulation of the key enzyme tyrosinase in B16F10 mouse melanoma cells. How such lipids mediate their effects on pigmentation and tyrosinase expression is a particularly important aspect of melanogenesis. To study the signaling that leads to tyrosinase expression, we have investigated the roles of the MAPK and Akt/PKB pathways in B16F10 melanoma cells in melanogenesis in response to PTLF. Treatment of cells with PTLF led to the time dependent phosphorylation of p38 MAPK. SB203580, a p38 MAPK inhibitor, completely blocked the PTLF-induced melanogenesis by inhibiting promoter activity and subsequent expression of tyrosinase. Phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002 a blocker of the Akt signaling pathway, or an inhibitor of MEK (MAPK/ERK Kinase), PD98059 when included along with PTLF was found to potentiate PTLF-induced phosphorylation of p38 MAPK together with tyrosinase expression and melanogenesis. The results suggest that the activation of p38 MAPK plays a crucial role in PTLF-induced B16F10 melanogenesis by up-regulating tyrosinase expression.  相似文献   

19.
Melanoma is the most serious type of skin cancer, with a highly metastatic phenotype. In this report, we show that signal transducing adaptor protein 2 (STAP-2) is involved in cell migration, proliferation, and melanogenesis as well as chemokine receptor expression and tumorigenesis in B16F10 melanoma cells. This was evident in mice injected with STAP-2 shRNA (shSTAP-2)-expressing B16F10 cells, which infiltrated organs in a completely different pattern from the original cells, showing massive colonization in the liver, kidney, and neck but not in the lung. The most important finding was that STAP-2 expression determined tyrosinase protein content. STAP-2 colocalized with tyrosinase in lysosomes and protected tyrosinase from protein degradation. It is noteworthy that B16F10 cells with knocked down tyrosinase showed similar cell characteristics as shSTAP-2 cells. These results indicated that tyrosinase contributed to some cellular events beyond melanogenesis. Taken together, one possibility is that STAP-2 positively regulates the protein levels of tyrosinase, which determines tumor invasion via controlling chemokine receptor expression.  相似文献   

20.
In response to alpha-melanocyte-stimulating hormone (alpha-MSH) or cAMP-elevating agents (forskolin and isobutylmethylxanthine), mouse B16 melanoma cells underwent differentiation characterized by increased melanin biosynthesis. However, the mechanism(s) underlying the regulation of melanogenesis during differentiation has not yet been clearly understood. Phospholipase D (PLD) has been reported to be involved in differentiation. This enzyme cleaves phosphatidylcholine upon stimulation with stimuli to generate phosphatidic acid. In the current study, the involvement of PLD in the regulation of melanogenesis characteristic of differentiation was examined using mouse B16 melanoma cells. Treatment of B16 cells with alpha-MSH was found to cause marked decreases in the PLD1 activity concurrent with its reduced protein level. Moreover, treatment of exogenous bacterial PLD also inhibited alpha-MSH-induced melanogenesis. To further investigate the role of PLD1 in the regulation of melanogenesis, we examined the effects of overexpression of PLD1 on melanogenesis in B16 melanoma cells. The B16 cells overexpressing PLD were prepared by transfection with the vector containing the cDNA encoding PLD1. The melanin contents in PLD1-overexpressing cells (B16/PLD1) were observed to be lower compared with those in the vector control cells (B16/Vec), concomitant with the decreases in both activity and protein level of tyrosinase, a key regulatory enzyme in melanogenesis. Moreover, overexpression of PLD1 resulted in a marked inhibition of melanogenesis induced by alpha-MSH. The inhibition of melanogenesis was well correlated with the decrease in the tyrosinase activity associated with its expression. These results indicated that PLD1 negatively regulated the melanogenic signaling by modulating the expression of tyrosinase in mouse B16 melanoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号