首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
Abstract: Post-embryonic development is controlled by two types of meristems: apical and lateral. There has been considerable progress recently in understanding the function of root and shoot apical meristems at the molecular level. Knowledge of analogous processes in the lateral, or secondary, meristems, i.e. the vascular cambium or cork cambium, is, however, rudimentary. This is despite the fact that much of the diversity in the plant kingdom is based on the differential functions of these meristems, emphasizing the importance of lateral meristems in the development of different plant forms. The vascular cambium is particularly important for woody plants, but it also plays an important role during the development of various herbaceous species, such as Arabidopsis thaliana. In this review, we focus on the two basic functions of cambial activity: cell proliferation and pattern formation.  相似文献   

2.
3.
4.
Vascular tissue differentiation is essential to enable plant growth and follows well-structured and complex developmental patterns. Based on recent data obtained from Arabidopsis and Populus, advances in the understanding of the molecular basis of vascular system development are reviewed. As identified by forward and/or reverse genetics, several gene families have been shown to be involved in the proliferation and identity of vascular tissues and in vascular bundle patterning. Although the functioning of primary meristems, for example the shoot apical meristem (SAM), is well documented in the literature, the genetic network that regulates (pro)cambium is still largely not deciphered. However, recent genome-wide expression analyses have identified candidate genes for secondary vascular tissue development. Of particular interest, several genes known to regulate the SAM have also been found to be expressed in the vascular cambium, highlighting possible overlapping regulatory mechanisms between these two meristems.  相似文献   

5.
The radial growth of plant stem is based on the development of cribro-vascular cambium tissues. It affects the transport efficiency of water, mineral nutrients and photoassimilates and, ultimately, also plant height. The rate of cambial cell divisions for the assembly of new xylem and phloem tissue primordia and the rate of differentiation of the primordia into mature tissues determine the amount of biomass produced and, in the case of woody species, the wood quality. These complex physiological processes proceed at a rate which depends on several factors, acting at various levels: growth regulators, resource availability and environmental factors. Several hormonal signals and, more recently, further regulatory molecules, have been shown to be involved in the induction and maintenance of cambium and the formation of secondary vascular tissues. The control of xylem cell patterning is of particular interest, because it determines the diameter of xylem vessels, which is central to the efficiency of water and nutrient transport from roots to leaves through the stem and may strongly influence the growth in height of the tree. Increasing scientific evidence have proved the role of other hormones in cambial cell activities and the study of the hormonal signals and their crosstalking in cambial cells may foster our understanding of the dynamics of xylogenesis and of the mechanism of vessel size control along the stem. In this article, the role of the hormonal signals involved in the control of cambium and xylem development in trees and their crosstalking are reviewed.  相似文献   

6.
7.
In a 9-year-old pine girdled during the winter cambial activity was observed below the girdle in the next spring. This indicates that cambial activity was initiated without auxin produced in the spring by buds. The auxin produced in apical shoots successively flows down the stem, where as a result of periodic restriction in transport it remains over the winter till the next year. This auxin of apical origin but locally stored over the winter in the stem is responsible for the activation of cambium before the new flow of auxin produced in the apical meristems arrives. Calculations based on seasonal changes in auxin levels can explain both, earlier spring activation of cambium in the crown and the temporary cambial divisions below the girdle, without assumption of direct auxin synthesis in the lateral meristems.  相似文献   

8.
9.
Lateral meristems (pericycle, procambium and cambium, phellogen) are positioned in parallel to the lateral surface of the organ, where they are present, and produce concentric layers of undifferentiated cells. Primary lateral meristems, procambium and pericycle, arise during embryogenesis; secondary lateral meristems, cambium and phellogen, — during post embryonic development. Pericycle is most pluripotent plant meristem, as it may give rise to a variety of other types of meristems: lateral meristems (cambium, phellogen), apical meristems of lateral roots, and also shoot meristems during plant in vitro regeneration. Procambium and cambium developing from it give rise to the vascular tissues of the stems and roots, ensuring their thickening. The review considers the genetic control of lateral meristem development and the role of phytohormones in the control of their activities.  相似文献   

10.
McHale NA  Koning RE 《The Plant cell》2004,16(7):1730-1740
Leaf initiation in the peripheral zone of the shoot apical meristem involves a transition to determinate cell fate, but indeterminacy is maintained in the vascular cambium, a tissue critical to the continuous growth of vascular tissue in leaves and stems. We show that the orientation of cambial growth is regulated by microRNA (miRNA)-directed cleavage of mRNA from the Nicotiana sylvestris ortholog of PHAVOLUTA (NsPHAV). Loss of miRNA regulation in semidominant phv1 mutants misdirects lateral growth of leaf midveins and stem vasculature away from the shoot, disrupting vascular connections in stem nodes. The phv1 mutation also expands the central zone in vegetative and inflorescence meristems, implicating miRNA and NsPHAV in regulation of meristem structure. In flowers, phv1 causes reiteration of carpel initiation, a phenocopy for loss of CARPEL FACTORY/DICER LIKE1, indicating that miRNA is critical to the termination of indeterminacy in floral meristems. Results point to a common role for miRNA in spatial and temporal restriction of HD-ZIPIII mediated indeterminacy in apical and vascular meristems.  相似文献   

11.
12.
The developmental anatomy of the vascular cambium and periderm ofBotrypus virginianus was studied, and its bearing on the systematic position of Ophioglossacease is discussed. The cambial zone including cambium is initiated in a procambial ring of the stem before primary vascular tissue is well differentiated. The presumed cambium is composed of fusiform and ray initials. The cambium is extremely unequally bifacial, producing secondary xylem centripetally, and quite a small number of parenchymatous cells but no secondary phloem centrifugally. The cambial activity persists long, although it is very low in the mature part of the stem. It seems that the circumferential increase of the cambium is accommodated by an increase in the number of cambial initials. Secondary xylem is nonstoried and composed of tracheids with circular-bordered pits with evenly thick pit membranes, and uniseriate or partly biseriate radial rays. It makes up the bulk of the stem xylem. Periderm is formed almost entirely around the stem, simultaneous with its increment due to the secondary xylem. The combination of these anatomical features of secondary tissue supports the idea that Ophioglossaceae are living progymnosperms.  相似文献   

13.
On rooting the poplar stem cutting, the growth processes are coordinated so as to ensure optimum development of the new, vegetatively acquired individual. At first, adventitious roots develop on the cutting from latent root primordia. A part of them is short-lived, but in the meantime other, the so-called wound adventitious roots initiate from the callus on the lower cut surface of the cutting, which complement the permanent root system. In this way, conditions are prepared for a rapid growth and development of the stem, which forms from the upper bud on the cutting. The action of apical meristems providing the elongation of the stem and root, is followed by the action of vascular cambium. By the radial growth of organs controlled by cambium, the capacity of substance transport increases relatively to progressing development of the new plant. In the buried stem cutting cambium is the first to start functioning. Its reactivation is slow, discontinuous, and at the beginning it depends on local stimulating sources of the cutting itself. It was observed for the first time that, in addition to expanding buds, activated root primordia are also such sources of stimuli. The overall induction of cambial activity in the cutting occurs only in the period of rapid growth and development of the new stem, which thus becomes the main source of factors controlling the cambial activity of the cutting. In comparison with the growth of stem and cutting, the radial growth of adventitious roots is limited and there are considerable differences in the thickness of radial increments between individual roots.  相似文献   

14.
15.
Indeterminate growth and the production of new organs in plants require a constant supply of new cells. The majority of these cells are produced in mitotic regions called meristems. For primary or tip growth of the roots and shoots, the meristems are located in the apices. These apical meristems have been shown to function as developmentally regulated and environmentally responsive stem cell niches. The principle requirements to maintain a functioning meristem in a dynamic system are a balance of cell division and differentiation and the regulation of the planes of cell division and expansion. Woody plants also have secondary indeterminate mitotic regions towards the exterior of roots, stems and branches that produce the cells for continued growth in girth. The chief secondary meristem is the vascular cambium (VC). As its name implies, cells produced in the VC contribute to the growth in girth via the production of secondary vascular elements. Although we know a considerable amount about the cellular and molecular basis of the apical meristems, our knowledge of the cellular basis and molecular functioning of the VC has been rudimentary. This is now changing as a growing body of research shows that the primary and secondary meristems share some common fundamental regulatory mechanisms. In this review, we outline recent research that is leading to a better understanding of the molecular forces that shape the cellular structure and function of the VC.  相似文献   

16.
Although monocotyledons lack a vascular cambium of the type found in dicotyledons and conifers, lateral meristems still play an important role in the establishment of their growth habits. The presence near the shoot apex of a primary thickening meristem (PTM), which is probably plesiomorphic in monocotyledons, predisposes evolution into the many pachycaul forms. A PTM occurs in virtually all monocotyledons, whereas the secondary thickening meristem (STM), which is morphologically similar, is limited to a few genera of Liliiflorae. these records are reviewed in a systematic context. To a greater or lesser extent in different taxa, the PTM is responsible for primary stem thickening, adventitious root production, and formation of linkages between stem, root and leaf vasculature. The STM largely contributes to the body of the stem. The sometimes obscure distinction between the two meristems, and their relationship with other stem meristems are discussed. For systematic purposes stem thickening in monocotyledons is separated into two characters: diffuse growth (as in palms), and growth by means of lateral meristems. The three states of the second character are represented by the first three of Mangin’s (1882) four categories (two herbaceous, the third arborescent): (1) The lateral meristem is limited in extent, and ceases activity after root formation. (2) It remains active for a limited period after cessation of root formation, contributing to the plant body. (3) It remains active throughout the life of the plant, contributing the bulk of the plant body.  相似文献   

17.
Mature stems of Sesuvium sesuvioides (Fenzl) Verdc. were found to be composed of successive rings of xylem alternating with phloem. Repeated periclinal divisions in the parenchyma outside the primary phloem gave rise to conjunctive tissue and the lateral meristem that differentiate into the vascular cambium on its inner side. After the formation of the vascular cambium, the lateral meristem external to it became indistinct as long as the cambium was functional. As the cambium ceased to divide, the lateral meristem again became apparent prior to the initiation of the next cambial ring. The cambium was exclusively composed of fusiform cambial cells with no rays. In the young saplings, the number of cambial cylinders in the axis varied from the apex to the base, indicating formation of several rings within the year. In each successive ring of the lateral meristem, small segments differentiated into the vascular cambium and gave rise to vessels, axial parenchyma, fibres and fibriform vessels towards the inside, and secondary phloem on the outer side. In the old stems, non‐functional phloem of the innermost rings was replaced by a new set of sieve tube elements formed by periclinal divisions in the cambial segments associated with the non‐functional phloem. In some places the cambial segments completely differentiate into derivatives leaving no cambial cells between the xylem and phloem. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 548–555.  相似文献   

18.
Plants generate various tissues and organs via a strictly regulated developmental program. The plant vasculature is a complex tissue system consisting of xylem and phloem tissues with a layer of cambial cells in between. Multiple regulatory steps are involved in vascular development. Although molecular and genetic studies have uncovered a variety of key factors controlling vascular development, studies of the actual functions of these factors have been limited due to the inaccessibility of the plant vasculature. Thus, to obtain a different perspective, culture systems have been widely used to analyze the sequential processes that occur during vascular development. A tissue culture system known as VISUAL, in which molecular genetic analysis can easily be performed, was recently established in Arabidopsis thaliana. This reconstitutive approach to vascular development enables this process to be investigated quickly and easily. In this review, I summarize our recent knowledge of the regulatory mechanisms underlying vascular development and provide future perspectives on vascular analyses that can be performed using VISUAL.  相似文献   

19.
The indeterminate nature of plant growth and development depends on the stem cell system found in meristems. The Arabidopsis thaliana vascular meristem includes procambium and cambium. In these tissues, cell–cell signaling, mediated by a ligand-receptor pair made of the TDIF (for tracheary element differentiation inhibitory factor) peptide and the TDR/PXY (for TDIF RECEPTOR/ PHLOEM INTERCALATED WITH XYLEM) membrane protein kinase, promotes proliferation of procambial cells and suppresses their xylem differentiation. Here, we report that a WUSCHEL-related HOMEOBOX gene, WOX4, is a key target of the TDIF signaling pathway. WOX4 is expressed preferentially in the procambium and cambium, and its expression level was upregulated upon application of TDIF in a TDR-dependent manner. Genetic analyses showed that WOX4 is required for promoting the proliferation of procambial/cambial stem cells but not for repressing their commitment to xylem differentiation in response to the TDIF signal. Thus, at least two intracellular signaling pathways that diverge after TDIF recognition by TDR might regulate independently the behavior of vascular stem cells. Detailed observations in loss-of-function mutants revealed that TDIF-TDR-WOX4 signaling plays a crucial role in the maintenance of the vascular meristem organization during secondary growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号