首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Two acetylornithine δ-transaminases which have different physical and kinetic properties have been isolated from a mutant of E. coli W. Sephadex gel filtration has shown the molecular weight of one transaminase to be approximately 119,000; the second transaminase has a molecular weight of about 61,000. The two transaminases can be separated by ammonium sulfate fractionation. The Km values of the smaller and larger molecular-weight species for Nα-acetylornithine are 3.1 mm and 1.3 mm, respectively. The Km for α-ketoglutarate is 1.1 mm for both enzymes. The presence of arginine in the growth medium represses the synthesis of the 119,000 molecular-weight transaminase and induces the synthesis of the 61,000 molecular-weight species.  相似文献   

2.
3.
Procedures that have been developed for the purification of acetylornithine delta-transaminase from Escherichia coli W also lead to the simultaneous purification of ornithine delta-transaminase. These two enzymatic activities have the same electrophoretic mobility and are identical immunochemically. Studies of inhibition kinetics demonstrate that the two substrates, acetylornithine and ornithine, compete for the same active site of acetylornithine delta-transaminase; thus, the ornithine delta-transaminase activity in E coli is due to acetylornithine delta-transaminase and not to a separate specific ornithine delta-transaminase.  相似文献   

4.
An unspecific carboxylesterase was purified 180-fold from acid-precipitated human liver microsomes. The final preparation was homogeneous on disc electrophoresis and polyacrylamide gel electrophoresis in the presence of 6.25 M urea at pH 3.2. A single symmetrical peak was also found on gel filtration and on velocity sedimentation in the analytical ultracentrifuge, whereas slight heterogeneity was observed on isoelectric focusing.The amino acid composition of the purified enzyme is presented. From the results the partial specific volume (0.745 ml × g?1) and the minimal molecular weight (60,000) could be calculated. Fingerprint maps of tryptic peptides from the carboxymethylated enzyme are shown.The molecular weight as determined by gel filtration, disc electrophoresis, and analytical ultracentrifugation is in the range of 181,000–186,000. For the molecular weight of the subunits a value of 61,500 has been obtained by sodium dodecylsulfate polyacrylamide gel electrophoresis. The equivalent weight of the enzyme has been estimated to be 62,500 from stoichiometry of its reaction with diethyl-p-nitrophenyl-phosphate. Partial cross-linking of the subunits with dimethyl suberimidate and subsequent sodium dodecylsulfate polyacrylamide gel electrophoresis yielded three bands with molecular weights of 60,000, 120,000, and 180,000.From these results it is concluded that human liver esterase is a trimeric protein. It is composed of three subunits of equal size, and there is one active site per subunit.  相似文献   

5.
Two forms of phenylalanine:pyruvate transaminase (EC 2.6.1. aminotransferases, the exact EC number has not been assigned) termed A and B were obtained from the liver supernatant fraction of glucagon-treated rats by DEAE-Sephadex A-50 column chromatography. Each of the two forms was further purified by hydroxylapatite, Sephadex G-100 chromatography, and preparative gel electrophoresis. Both the A and B forms have been purified to homogeneity as judged by analytical and sodium dodecyl sulfate polyacrylamide gel electrophoresis. Moreover, histidine was found to be a competitive inhibitor of phenylalanine with both purified proteins. These findings conclusively support the view that phenylalanine:pyruvate transaminase and histidine:pyruvate transaminase reactions are catalyzed by the same protein. The overall purification was 710-fold for the A form and 1200-fold for the B form. The apparent molecular weight for both A and B are 74,000 ±6000 as determined by gel filtration. Sodium dodecyl sulfate gel electrophoresis revealed that the A form has two identical subunits of molecular weight 42,000, whereas the B form has two nonidentical subunits of molecular weight 42,000 and 44,000. The amino acid composition for the A and B forms of the enzyme are different. The major differences are in glycine, alanine and leucine. The isoelectric point for A was 7.8 and for B was 7.3. However, the A and B forms of the enzyme are of immunological identity. The substrate specificity determined for both the A and B form was phenylalanine >asparagine >alanine >leucine >histidine. The Km for phenylalanine was 7.70 mm for the A form, 6.00 mm for the B form. For histidine, the Km was 13.70 mm for the A form, 12.50 mm for the B form.  相似文献   

6.
A purification procedure for diol dehydrase (dl-1,2-propanediol hydro-lyase, EC 4.2.1.28) of Klebsiella pneumoniae (Aerobacter aerogenes) ATCC 8724 has been developed which gives the highest specific activity for this enzyme obtained so far. The purified enzyme is homogeneous by the criteria of ultracentrifugation (s20,w = 8.9 S) and disc gel electrophoresis in the presence of substrate. The molecular weight of approximately 230,000 was obtained by gel filtration and ultracentrifugal sedimentation equilibrium. The enzyme is composed of components F and S whose molecular weights were determined to be approximately 26,000 and 200,000, respectively, by gel filtration. The incubation of both components F and S with the substrate leads to complete reassociation of the components. Disc gel electrophoresis in the presence of sodium dodecyl sulfate and terminal amino acid analyses indicate that component S consists of at least four nonidentical subunits. The reversible association and heterogeneity of the subunits were also demonstrated with the crude enzyme by immunoelectrophoresis.  相似文献   

7.
Creatine amidinohydrolase (EC 3.5.3.3, creatinase) of Pseudomonas putida var. naraensis C-83 was purified by column chromatography on sarcosine-hexamethylenediamine-Sepharose and Sephadex G-200 and then crystallized in the presence of ammonium sulfate. The purified preparation appeared homogeneous on disc gel electrophoresis and ultracentrifugal analysis. It was most active at pH 8 and showed a Km value of 1.33 mm for creatine. Estimation of the molecular weight by the meniscus depletion method yielded a value of 94,000. A value of 47,000 was obtained, however, by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, suggesting that the enzyme is composed of two subunits. Inhibition experiments suggested that a sulfhydryl group is closely related to the creatinase activity.  相似文献   

8.
Ornithine transcarbamylase (EC 2.1.3.3) was purified to homogeneity from rat liver. The basis of the method is the chromatography of a high-speed supernatant fraction of a homogenized rat liver on an affinity column consisting of the transition-state analog of ornithine transcarbamylase, δ-N-(phosphonacetyl)-l-ornithine, immobilized on epoxy-activated Sepharose 6B through the α-amino group. The enzyme was eluted from the column using a gradient of the substrate, carbamyl phosphate, and further purified by gel filtration. The enzyme elutes with a constant specific activity of 250 to 260 μmol min?1 mg?1 at pH 8.5, 37°C, and is free of contaminating proteins on sodium dodecyl sulfate gel electrophoresis. Determination of the molecular weight of the purified enzyme by centrifugation (98,000) and by gel electrophoresis in the presence of sodium dodecyl sulfate (35,300) indicates that the enzyme from rat liver is a trimer. The enzyme exhibits conventional Michaelis-Menten kinetics at pH 7.4 and in this respect differs from the enzyme prepared by other methods.  相似文献   

9.
G Kapke  L Davis 《Biochemistry》1975,14(19):4273-4276
L-Serine-threonine dehydratase (EC 4.2.1.16) from sheep liver has been obtained as a highly purified preparation as shown by ultracentrifuge studies and analytical disc gel electrophoresis. The dehydratase has a molecular weight of 98,000 +/- 10,000 and is composed of two nonidentical subunits with molecular weights of 41,000 and 47,000. The 41,000 subunit is covalently linked to the carbonyl reagent-sensitive coenzyme which has been identified as alpha-ketobutyric acid.  相似文献   

10.
Some kinetic properties of two new species of transaminase found in extracts of a β-lysine-utilizing Pseudomonas are reported. Transaminase A catalyzes transamination between 6-N-acetyl-l-β-lysine (3-amino-6-acetamidohexanoate) and α-ketoglutarate to form 3-keto-6-acetamidohexanoate and glutamate. Transaminase B catalyzes a reaction between 4-aminobutyrate and pyruvate to form succinic semialdehyde and alanine. The formation of both transaminases is induced by growth of the bacteria on l-β-lysine, although transaminase B is also produced in the absence of this substrate. Transaminase A requires pyridoxal phosphate for activity. The β-keto acid formed from acetyl-β-lysine by transaminase A has been purified and characterized by decarboxylation, conversion to a formazan, reduction to a stable β-hydroxy acid, and conversion of the latter to its methyl ester. Transaminase B, unlike previously reported transaminases utilizing 4-aminobutyrate, cannot use α-ketoglutarate as an amino group acceptor. This enzyme is not stimulated by addition of pyridoxal phosphate, but is inhibited by hydroxylamine or cyanide. Both transaminases appear to function in the main pathway of β-lysine degradation.  相似文献   

11.
The enzyme rhodanese (EC 2.8.1.1) appears as a single polypeptide chain protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of this species is approx. 33 000. This contrasts with previous reports that rhodanese behaves on gel filtration chromatography as a rapidly equilibrating monomer-dimer system composed of identical subunits with a molecular weight of 18 500. We have investigated this apparent discrepancy by isolating the enzyme by the two different preparative procedures used in the above investigations. The two crystalline samples were subjected to gel filtration chromatography under a wide variety of conditions and to sodium dodecyl sulfate disc gel electrophoresis. The two preparations yielded rhodanese which behaved identically and no evidence for the monomeric species was obtained under any experimental condition tested. Thin-layer gel chromatography of clarified liver homogenates gave no evidence of rhodanese species other than that present in the purified samples. The variation in molecular weights observed in gel filtration chromatography may be a reflection of the conformational mobility of the enzyme leading to solvent-dependent changes in Stokes radius. If rhodanese is dimeric, special interactions must stabilize it under the conditions tested here.  相似文献   

12.
The trehalase of Chaetomium aureum was purified about 196-fold with a yield of 51% from the culture filtrate by ammonium sulfate fractionation, DEAE-cellulose column chromatography, acetone fractionation, and Sephadex G-100 gel filtration. The enzyme preparation was homogeneous on disc electrophoresis. The enzyme was most active at pH 4.0 and 50°C. The enzyme was stable from pH 4.0 to 9.0 on 12 h incubation at 37°C. The molecular weight of the enzyme was estimated to be 450,000 by gel filtration on a column of Sepharose 6B, and 115,000 by SDS polyacrylamide gel electrophoresis. This indicated that the enzyme might consist of 4 subunits. The isoelectric point of the enzyme was pH 4.0. The enzyme was active specifically on trehalose and not active on the other disaccharides tested.  相似文献   

13.
Phosphodiesterase isolated from suspension cultures of tobacco cells showed high affinity for concanavalin A-Sepharose and gave single superimposed bands of protein and carbohydrates on disc gel electrophoresis, suggesting that it is a glycoprotein. It contains 14% carbohydrate by weight, and has relatively high contents of basic and aromatic amino acids. Its isoelectric point is at pH 8.8, and the molecular weight of its subunits was estimated as 72 000 from a plot of the retardation coefficient on sodium dodecyl sulfate gel electrophoresis versus the molecular weight. The enzyme was catalytically active in an immobilized state on a concanavalin A-Sepharose column.  相似文献   

14.
Highly purified mitochondrial chloroform-released beef heart ATPase had molecular weight 330 000, five bands (α, β, γ, δ, ε) in sodium dodecyl sulfate gel electrophoresis and could restore the oxidative-phosphorylation function of A particles. Maximal inhibition (90%) of the enzyme by N,N′-dicyclohexylcarbodiimide was achieved at a molar ratio of inhibitor to protein of 30 : 1. Chloroform introduced into an aqueous solution of beef heart coupling factor I protected it from cold inactivation.  相似文献   

15.
用Bacillussphaericus63菌为材料,经DNA-Sepharose和CibacronBlueF3GA-Sepharose两步亲和层析,将Bsp63Ⅰ纯化到均一程度。酶比活力达61400U/mg蛋白。用凝胶过滤法测得该酶分子量为113800。该酶样品在SDS-PAGE中呈现为一条蛋白带,并测得其亚基分子量为56800。用DNS-Cl法测得该酶N-末端氨基酸为丙氨酸。上述结果表明该酶分子是由两个相同亚基组成。  相似文献   

16.
Cellulomonas sp. isolated from soil produces a high level of α-mannosidase (α-mannanase) inductively in culture fluid. The enzyme had two different molecular weight forms, and the properties of the high-molecular-weight form were reported previously (Takegawa, K. et al.: Biochim. Biophys. Acta, 991, 431–437, 1989). The low-molecular-weight α-mannosidase was purified to homogeneity by polyacrylamide gel electrophoresis. The molecular weight of the enzyme was over 150,000 by gel filtration. Unlike the high-molecular-weight form, the low-molecular-weight enzyme readily hydrolyzed α-1,2- and α-1,3-linked mannose chains.  相似文献   

17.
18.
Galactose 1-phosphate uridylyltransferase (uridine diphosphoglucose: α-d-galactose 1-phosphate uridylyltransferase, EC 2.7.7.12) was isolated from human red cells by DEAE-cellulose and hydroxylapatite chromatography. The enzyme consists. of two similar subunits of molecular weight 44,000 as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular weight of the enzyme was found to be 67,000 by Sephadex G-200 chromatography and 88,000 by ultracentrifugation studies in sucrose density gradients. The specific activity of the purified enzyme was about 40 μmoles per min per mg of protein.  相似文献   

19.
The bacterial ω-transaminase from Chromobacterium violaceum (Cv-ωTA, EC2.6.1.18) catalyses industrially important transamination reactions by use of the coenzyme pyridoxal 5'-phosphate (PLP). Here, we present four crystal structures of Cv-ωTA: two in the apo form, one in the holo form and one in an intermediate state, at resolutions between 1.35 and 2.4 ?. The enzyme is a homodimer with a molecular mass of ~ 100 kDa. Each monomer has an active site at the dimeric interface that involves amino acid residues from both subunits. The apo-Cv-ωTA structure reveals unique 'relaxed' conformations of three critical loops involved in structuring the active site that have not previously been seen in a transaminase. Analysis of the four crystal structures reveals major structural rearrangements involving elements of the large and small domains of both monomers that reorganize the active site in the presence of PLP. The conformational change appears to be triggered by binding of the phosphate group of PLP. Furthermore, one of the apo structures shows a disordered 'roof?' over the PLP-binding site, whereas in the other apo form and the holo form the 'roof' is ordered. Comparison with other known transaminase crystal structures suggests that ordering of the 'roof' structure may be associated with substrate binding in Cv-ωTA and some other transaminases. DATABASE: The atomic coordinates and structure factors for the Chromobacterium violaceumω-transaminase crystal structures can be found in the RCSB Protein Data Bank (http://www.rcsb.org) under the accession codes 4A6U for the holoenzyme, 4A6R for the apo1 form, 4A6T for the apo2 form and 4A72 for the mixed form STRUCTURED DIGITAL ABSTRACT: ? -transaminases and -transaminases bind by dynamic light scattering (View interaction) ? -transaminase and -transaminase bind by x-ray crystallography (View interaction) ? -transaminase and -transaminase bind by x-ray crystallography (View interaction).  相似文献   

20.
Pyrocatechase [catechol:oxygen, 1,2-oxidoreductase (decyclizing), EC 1.13.11.1] from Pseudomonas arvilla C-1 has been reported to contain 2 g atoms of iron/mol of enzyme, based on a molecular weight of 90,000, determined by sedimentation and diffusion constants (Y. Kojima, H. Fujisawa, A. Nakazawa, T. Nakazawa, F. Kanetsuna, H. Taniuchi, M. Nozaki, and O. Hayaishi, 1967, J. Biol. Chem., 242, 3270–3278). The molecular weight was estimated again by sedimentation equilibrium and Sephadex G-200 gel filtration and found to be 63,000 and 60,000, respectively. The enzyme was also found to contain 1 g atom of iron/mol of enzyme, based on a molecular weight of 63,000. The enzyme was dissociated into two bands on polyarcylamide gel electrophoresis in the presence of either sodium dodecyl sulfate or 8 m urea, and was separated into two subunits, α and β, by CM-cellulose chromatography using a buffer solution containing 8 m urea. The molecular weights of the α and β subunits were determined to be 30,000 and 32,000, respectively, by sodium dodecyl sulfate-gel electrophoresis. The NH2-terminal sequences of these subunits determined by Edman degradation were as follows: α subunit, Thr-Val-Asn-Ile-Ser-His-Thr-Ala-Gln-Ile-Gln-Gln-Phe-Phe-Gln-Gln-(X)-(X)-Gly -Phe-Gly; β subunit, Thr-Val-Lys-Ile-Ser-His-Thr-Ala-Asp-Ile-Gln-Ala-Phe-Phe-Asn-Gln-Val-(X)-Gly-Leu-Asx. The COOH-terminal amino acid residues were determined to be alanine for the α subunit and glycine for the β subunit by three different methods: carboxypeptidase digestion, tritium labeling, and hydrazinolysis. These results indicate that the enzyme consists of two nonidentical subunits, α and β.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号