首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The met-1-1 mutation in Coprinus lagopus is known to be suppressed by five recessive non-allelic suppressor genes (sup-1 to sup-5). Two of these genes complement normally in heterozygotes but the other three fail to complement each other in any combination. Four of the suppressor genes, sup-1, sup-2, sup-3 and sup-5, were tested for ability to suppress met-1-2 a second met-1 mutation. Non-identity of the two met-1 alleles was first confirmed by demonstrating intragenic recombination. The complementing suppressors, sup-1 and sup-2, proved to be allele unspecific and suppressed both met-1 mutations. The non-complementing suppressors, sup-3 and sup-5, were allele specific and could only suppress the met-1-1 mutation. This is interpreted to mean that sup-1 and sup-2 act indirectly to circumvent the metabolic lesion caused by any met-1 mutation whereas sup-3 and sup-5 are missense informational suppressors involving modified tRNA species which specifically mistranslate the met-1-1 mutant codon.  相似文献   

2.
We have characterized recessive and dominant omnipotent suppressor mutations obtained by conversion of the leu2-1 UAA mutation and the met8-UAG mutation in a ψ+ strain of Saccharomyces cerevisiae. The suppressors that act recessively upon these markers fell into two complementation groups; the sup47 and sup36 suppressors show linkage to the tyr1 locus and the aro1 locus, respectively. Of the suppressors acting dominantly upon both markers, those linked to the tyr1 locus are alleles of the SUP46 ribosomal mutation. The sup47 suppressors differ from the SUP46 suppressors not only in their suppressor activities in heterozygous diploids but also in their map positions relative to the tyr1 locus and their effects on the S11 ribosomal protein. The remaining dominant suppressors are not alleles of sup36 as judged by linkage analysis. The recessive suppressors and the dominant suppressors also differ in their effects on cell growth.  相似文献   

3.
Summary The acu-1 locus in Coprinus is the structural gene for acetyl-CoA synthetase. Five suppressor gene mutations, which suppress the acu-1,34 missense allele, were induced by mutagen treatment. All five suppressors were shown to have properties expected for tRNA structural gene mutations: they are recessive, they show a gene dosage effect in any doubly heterozygous combination of two sup + mutations and they are allele specific in action.Crosses between suppressed mutants established that at least four suppressor loci were represented. Doubly suppressed mutants derived from these crosses were used to show that the gene dosage effect is maintained when two sup + mutations are in cis as well as trans combinations in the two nuclei of the basidiomycete dikaryon.Extracts of the unsuppressed acu-1.34 mutant contained less than 2% of wild type acetyl-CoA synthetase activity whereas extracts of four of the five suppressor strains showed activities ranging from 28 to 37% of wild type. Only a slight increase in activity was detected in the fifth suppressor strain but this was associated with a temperature sensitive sup + phenotype. All five sup + mutations restored the ability of the acu-1.34 mutant to induce isocitrate lyase, an enzyme which, under the conditions of growth used, can only be induced when acetyl-CoA synthetase activity is present. Thus all five suppressors act to restore normal acu-1 protein function.  相似文献   

4.
Petter Portin 《Genetics》1975,81(1):121-133
The mutations of the Abruptex locus in Drosophila melanogaster fall into three categories. There are recessive lethal alleles and viable alleles. The latter can be divided into suppressors and nonsuppressors of Notch mutations. The recessive lethals are lethal in heterozygous combination with Notch. As a rule the recessive lethals are lethal also in heterozygous combination with the viable alleles. Heterozygous combinations of certain viable alleles are also lethal. In such heterozygotes, one heteroallele is a suppressor of Notch and the other is a nonsuppressor. Other heterozygous combinations of viable alleles are viable and have an Abruptex phenotype. The insertion of the wild allele of the Abruptex locus as an extra dose (carried by a duplication) into the chromosomal complement of the fly fully restores the viability of the otherwise lethal heterozygotes if two viable alleles are involved. The extra wild allele also restores the viability of heterozygotes in which a lethal and a suppressor allele are present. If, however, a lethal and a nonsuppressor are involved, the wild allele only partly restores the viability, and the effect of the wild allele is weakest if two lethal alleles are involved. It seems likely that of the viable alleles the suppressors of Notch are hypermorphic and the nonsuppressors are hypomorphic. The lethal alleles share properties of both types, and are possibly antimorphic mutations. It is suggested that the locus is responsible for a single function which, however, consists of two components. The hypermorphic mutations are defects of the one component and the hypomorphic mutations of the other. In heterozygotes their cumulative action leads to decreased viability. The lethal alleles are supposed to be defects of the function as a whole. The function controlled by the locus might be a regulative function.  相似文献   

5.
S. K. Dutcher  W. Gibbons    W. B. Inwood 《Genetics》1988,120(4):965-976
A mutation at the PF10 locus of the unicellular green alga Chlamydomonas reinhardtii leads to abnormal cell motility. The asymmetric form of the ciliary beat stroke characteristic of wild-type flagella is modified by this mutation to a nearly symmetric beat. We report here that this abnormal motility is a conditional phenotype that depends on light intensity. In the absence of light or under low light intensities, the motility is more severely impaired than at higher light intensities. By UV mutagenesis we obtained 11 intragenic and 70 extragenic strains that show reversion of the pf10 motility phenotype observed in low light. The intragenic events reverted the motility phenotype of the pf10 mutation completely. The extragenic events define at least seven suppressor loci; these map to linkage groups IV, VII, IX, XI, XII and XVII. Suppressor mutations at two of the seven loci (LIS1 and LIS2) require light for their suppressor activity. Forty-eight of the 70 extragenic suppressors were examined in heterozygous diploid cells; 47 of these mutants were recessive to the wild-type allele and one mutant (bop5-1) was dominant to the wild-type allele. Complementation analysis of the 47 recessive mutants showed unusual patterns. Most mutants within a recombinationally defined group failed to complement one another, although there were pairs that showed intra-allelic complementation. Additionally, some of the mutants at each recombinationally defined locus failed to complement mutants at other loci. They define dominant enhancers of one another.  相似文献   

6.
Summary A spontaneous mutant was isolated that harbors a weak suppressing activity towards a UAG mutation, together with an inability to grow at 43° C in rich medium. The mutation is shown to be associated with an increased misreading of UAG at certain codon contexts and UAA. UGA, missense or frameshift mutations do not appear to be misread to a similar extent. The mutation gives an increased efficiency to several amber tRNA suppressors with-out increasing their ambiguity towards UAA. The ochre suppressors SuB and Su5 are stimulated in their reading of both UAG and UAA with preference for UAG. An opal suppressor is not affected. The effect of the mutation on the efficiency of amber and ochre suppressors is dependent on the codon context of the nonsense codon.The mutated gene (uar) has been mapped and found to be recessive both with respect to suppressor-enhancing ability as well as for temperature sensitivity. The phenotype is partly suppressed by the ochre suppressor SuC. It is suggested that uar codes for a protein, which is involved in translational termination at UAG and UAA stop codons.  相似文献   

7.
Summary Genetic analyses have been made to detect recessive suppressor mutations in eight prototrophic strains derived by treating an arginine dependent strain with hydroxylamine. The results indicate that one strain possesses a recessive suppressor, su-1, which maps outside the arg-2 locus and is capable of suppressing auxotrophy conferred by the arg-2 mutation. This suppressor is incapable of suppressing auxotrophy conferred by eight other loci. Prototrophy in the remaining seven strains resulted from either intragenic suppression, reversion, or from a suppressor mutation that is closely linked to the arg-2 locus. The results of heterokaryotic allelic tests with the seven strains indicate that the mutation to prototrophy is recessive.  相似文献   

8.
Male mice were X-irradiated with 3.0 + 3.0 Gy or 5.1 + 5.1 Gy (fractionation interval 24 h). The offspring were screened for dominant cataract and recessive specific locus mutations. In the 3.0 + 3.0-Gy spermatogonial treatment group, 3 dominant cataract mutations were confirmed in 15 551 offspring examined and 29 specific locus mutations were recovered in 18 139 offspring. In the post-spermatogonial treatment group, 1 dominant cataract mutation was obtained in 1120 offspring and 1 recessive specific locus mutation was recovered in 1127 offspring. The induced mutation rate per locus, per gamete, per Gy calculated for recessive specific locus mutations is 2.0 X 10(-5) in post-spermatogonial stages and 3.7 X 10(-5) in spermatogonia. For dominant cataract mutations, assuming 30 loci, the induced mutation rate is 5.0 X 10(-6) in the post-spermatogonial stages and 1.1 X 10(-6) in spermatogonia. In the 5.1 + 5.1-Gy spermatogonial treatment group, 3 dominant cataract mutations were obtained in 11 205 offspring, whereas in 13 201 offspring 27 recessive specific locus mutations were detected in the spermatogonial group. In the post-spermatogonial treatment group no dominant cataract mutation was observed in 425 offspring and 2 recessive specific locus mutations were detected in 445 offspring. The induced mutation rate per locus, gamete and Gy in spermatogonia for recessive specific locus mutations is 2.8 X 10(-5) and for dominant cataract mutations 0.9 X 10(-6). In post-spermatogonial stages, the mutation rate for recessive specific locus alleles is 6.2 X 10(-5). In the concurrent untreated control group, in 11 036 offspring no dominant cataract mutation and in 23 518 offspring no recessive specific locus mutation was observed. Litter size and the number of carriers at weaning have been determined in the confirmation crosses of the obtained dominant cataract mutants as indicators of viability and penetrance effects. Two mutants had a statistically significantly reduced litter size and one mutant had a statistically significantly reduced penetrance.  相似文献   

9.
A mutation of the ctsA locus of Aspergillus nidulans affects both the radial growth and conidiation of the mould when grown in the presence of citrate. The ctsA locus was allocated to linkage group IV but it recombines freely with inoB2 and pyroA4 (which are also in linkage group IV). It is recessive in heterozygous diploids. A possible role for this gene in maintaining membrane integrity is discussed.The authors are with the Departamento de Genética, FMRP-USP, Av. Bandeirantes, 3900, 14049 Ribeirão Preto, SP., Brazil.  相似文献   

10.
Recessive Lethal Amber Suppressors in Yeast   总被引:1,自引:0,他引:1  
Recessive lethal amber suppressor mutations have been isolated in a diploid strain of Saccharomyces cerevisiae. Diploids carrying these suppressors upon sporulation yield asci with only two live spores, both lacking the suppressor. At least two classes of recessive lethal suppressors exist. Aneuploid strains carrying one wild type and one suppressor locus have been isolated and used in mapping studies; one suppressor maps on chromosome III, the other does not.  相似文献   

11.
We have isolated a dominant suppressor of rna mutation (SRN1) that relieves the temperature-sensitive inhibition of mRNA synthesis of ribosomal protein genes in the yeast Saccharomyces cerevisiae. The suppressor was selected for its ability to alleviate simultaneously the temperature-sensitive growth phenotypes of rna2 and rna6. Several independently isolated suppressors appeared to be recessive lethal mutations. One suppressor, SRN1, was recovered as viable in haploid strains. SRN1 can suppress rna2, rna3, rna4, rna5, rna6, and rna8 singly or in pairs, although some combinations of rna mutations are less well suppressed than others. The suppressor allows strains with rna mutations to grow at 34 degrees C but is unable to suppress at 37 degrees C; however, SRN1 does not, by itself, prevent growth at 37 degrees C. In addition, SRN1 suppresses the rna1 mutation which affects general mRNA levels and also leads to the accumulation of precursor tRNA for those tRNAs that have intervening sequences. SRN1 can suppress the rna1 mutation as well as the rna1 rna2 double mutation at 34 degrees C. The suppressor does not affect the temperature-sensitive growth of two unrelated temperature-sensitive mutations, cdc4 and cdc7.  相似文献   

12.
Summary The biochemical basis of suppression of a temperature-sensitive alanyl-tRNA synthetase (alaS) mutation by mutational alterations of the ribosome has been investigated. Measurement of the polyU-dependent polyphenylalanine synthesis showed that ribosomes from the suppressor strains are less active than ribosomes from the unsuppressed aminoacyl-tRNA synthetase mutant. In this system no increased translational ambiguity could be detected for the suppressor ribosomes. This fact and also the findings that the ram-1 mutation is not able to suppress the aminoacyl-tRNA synthetase mutation and that presence of the suppressor allele is not accompanied by a measureably improved alanyl-tRNA synthetase activity argue against the possibility that suppression might be due to increased translational misreading rates of the alanyl-tRNA synthetase mRNA.It has been further found that partial suppression of temperature sensitive growth of the alaS mutation can be achieved by independent ribosomal mutations leading to reduced growth rates because of a mutation to antibiotic resistance. Addition of low concentrations of a variety of antibiotics acting at the ribosomal level can also partially revert the temperature-sensitive phenotype of the alaS mutant. Although the possibility cannot be excluded that suppression is due to the stabilisation or activation of the mutant enzyme by some indirect effect of the suppressor ribosomal mutations, the following working hypothesis is favoured at the moment: It is assumed that limitation of the aminoacyl-tRNA synthetase activity in a certain range of the restrictive temperature causes growth inhibition by the premature termination of polypeptide synthesis at the ribosome or by the unbalanced synthesis of the individual cellular proteins under this condition. The mechanism of suppression by ribosomal mutations is proposed to consist of the release of this growth inhibition by the reduction of the rate of polypeptide synthesis, which would keep amino acid incorporation from exceeding the slow charging of tRNA and thus exhausting the pool of charged tRNA. In the suppressor strains, therefore, growth at the semi-restrictive temperature is no longer limited by the aminoacylation of tRNA but by the translational process at the mutated ribosome. This influence of the ribosomal mutation on the speed of translation could be directly or indirectly coupled with an effect on translational fidelity resulting in the prevention of the binding of uncharged or non-cognate charged tRNA or in the tighter binding of peptidyl-tRNA when cognate aminoacyl-tRNA is limiting.  相似文献   

13.
Five previously unmapped frameshift suppressor genes have been located on the yeast genetic map. In addition, we have further characterized the map positions of two suppressors whose approximate locations were determined in an earlier study. These results represent the completion of genetic mapping studies on all 25 of the known frameshift suppressor genes in yeast.—The approximate location of each suppressor gene was initially determined through the use of a set of mapping strains containing 61 signal markers distributed throughout the yeast genome. Standard meiotic linkage was assayed in crosses between strains carrying the suppressors and the mapping strains. Subsequent to these approximate linkage determinations, each suppressor gene was more precisely located in multi-point crosses. The implications of these mapping results for the genomic distribution of frameshift suppressor genes, which include both glycine and proline tRNA genes, are discussed.  相似文献   

14.
Summary A model system for the identification of presumptive overproducing mutations from among visible dominant mutations in D. melanogaster is described. An overproducing mutation is expected if a dominant mutation is readily reverted by gene deletion and if gene deletions suppress the expression of the original dominant mutantion in flies heterozygous for the deletion. The Beadex (1:59.4) mutations are shown to satisfy these requirements, since a Bx dominant mutations is reverted by induced deletion [Df(Bx)/+) is wild type], and is also suppressed in trans by such a deletion [(bx/Df)Bx) is wild type].In addition, all 13 mutations recovered as Bx reversions or suppressors were associated with recessive held up (hdp) mutations allelic inter se, but not allelic to any known hdp gene. One such hdp mutations does not function as an independent dominant suppressor of Bx, is not always associated with Bx deletion, and in the latter situation is readily separable from Bx. We suggest that it functions as a Bx deletion, and may therefore represent the structural gene which is cis-regulated by the overproducing Bx mutations.  相似文献   

15.
Thomas W. Seale 《Genetics》1972,70(3):385-396
Genetic analyses have been made to test the feasibility of using coincident reversions to prototrophy of multiple mutants to select super suppressors (ssu) in Neurospora crassa. Of five double-mutant strains examined, only those mutant combinations in which both members had the properties of nonsense mutations did revert coincidently. Forty-eight genetically purified coincident revertants were crossed to the wild type, and each was shown to contain a suppressor mutation. Five super suppressors were examined more thoroughly. Tetrad and random spore analysis was used to demonstrate that each behaved as a single gene in crosses. Two super suppressors, ssu-1 and ssu-4 were localized respectively on the right and left arm of linkage group 7. Two others, ssu-2 and ssu-3, appear to map on the right arm of linkage group 1. The fifth super suppressor mapped, ssu-7, lies between ad-8 and ylo-1 on linkage group 6. One super suppressor, ssu-1, was interesting because it mapped near the location reported for the suppressor of the missense mutant tryp-3(td201) (Yourno and Suskind 1964a). However, no overlap was found in action spectrum of the two suppressors. Tetrad analysis showed the two suppressors were located about 10 map units apart, the missense suppressor being the more distal to the centromere.  相似文献   

16.
Summary Temperature-sensitive (ts) mutations were isolated within a ribosomal protein gene (rpsL) of Escherichia coli K12. Mutations were mapped by complementation using various transducing phages and plasmids carrying the rpsL gene, having either a normal or a defective promoter for the rpsL operon. One of these mutations, ts118, resulted in a mutant S12 protein which behaved differently from the wild-type S12 on CM-cellulose column chromatography. Suppressors of these ts mutations were isolated and characterized; one was found to be a mutation of a nonribosomal protein gene which was closely linked to the RNAase III gene on the E. coli chromosome. This suppressor, which was recessive to its wild-type allele, was cloned into a transducing phage and mapped finely. A series of cold-sensitive mutations, affecting the assembly of ribosomes at 20°C, was isolated within the purL to nadB region of the E. coli chromosome and one group, named rbaA, mapped at the same locus as the suppressor mutation, showing close linkage to the RNAase III gene.  相似文献   

17.
Summary Seven suppressor mutations have been isolated in Aspergillus nidulans by coreversion of alleles in physiologically unrelated genes namely, alX, sB, alcA, putative structural genes for allantoinase, sulphate permease and alcohol dehydrogenase respectively. The suppressors are allele specific, gene unspecific. Those described map in four loci, suaA, B, C, D. suaA and suaB are on linkage group III, suaC and suaD on VII. suaB111, suaD103 and suaD108 are semi-dominant in their suppression of alX4 and sB43. suaA101, suaA105 and suaC109 are recessive and have a pleiotropic effect on morphology. SuaC109 is cold sensitive for growth as is sua115, an unmapped mutation on linkage group III which is similar in morphology to suaC109. The two mutations, SuaA101 and suaA105 have different spectra of suppression and morphologies. suaA105 weakly suppresses alX4 and sB43 whereas suaA101 strongly suppresses these and alcA125. suaD103 and suaD108 have the same spectrum of suppression. The properties of these suppressors are consistent with their being informational suppressors of the nonsense type.  相似文献   

18.
Summary Beginning with a missense suppressor tRNA and a nonsense suppressor tRNA, both in Escherichia coli and each containing an extra nucleotide in the anticodon loop, we generated new suppressors in vivo by spontaneous deletion of specific nucleotides from the anticodon loop. In one experiment, the new suppressor was generated by a double mutational event, base substitution and nucleotide deletion. A novel ochre suppressor is also described. It is very efficient in nonsense suppression but has no ms2i6 modification of the A residue on the 3 side of the anticodon. The results have important implications for tRNA structure-function relationships, tRNA recognition by tRNA-modifying enzymes, mechanisms of deletion mutation, and tRNA evolution.A preliminary report of these results was presented at the EMBO Workshop on Accuracy, Grignon, France, September 1–6, 1981  相似文献   

19.

Background

The Bacillus subtilis genes dnaD and dnaB are essential for the initiation of DNA replication and are required for loading of the replicative helicase at the chromosomal origin of replication oriC. Wild type DnaD and DnaB interact weakly in vitro and this interaction has not been detected in vivo or in yeast two-hybrid assays.

Methodology/Principal Findings

We isolated second site suppressors of the temperature sensitive phenotypes caused by one dnaD mutation and two different dnaB mutations. Five different intragenic suppressors of the dnaD23ts mutation were identified. One intragenic suppressor was a deletion of two amino acids in DnaD. This deletion caused increased and detectable interaction between the mutant DnaD and wild type DnaB in a yeast two-hybrid assay, similar to the increased interaction caused by a missense mutation in dnaB that is an extragenic suppressor of dnaD23ts. We isolated both intragenic and extragenic suppressors of the two dnaBts alleles. Some of the extragenic suppressors were informational suppressors (missense suppressors) in tRNA genes. These suppressor mutations caused a change in the anticodon of an alanine tRNA so that it would recognize the mutant codon (threonine) in dnaB and likely insert the wild type amino acid (alanine).

Conclusions/Significance

The intragenic suppressors should provide insights into structure-function relationships in DnaD and DnaB, and interactions between DnaD and DnaB. The extragenic suppressors in the tRNA genes have important implications regarding the amount of wild type DnaB needed in the cell. Since missense suppressors are typically inefficient, these findings indicate that production of a small amount of wild type DnaB, in combination with the mutant protein, is sufficient to restore some DnaB function.  相似文献   

20.
The sup-11 I locus of C. elegans was defined by rare dominant suppressors of unc-93(e1500) III, a mutation that affects muscle structure. All ten of these dominant suppressors have a recessive "scrawny" phenotype. Two additional classes of sup-11 alleles were identified. One class, null alleles, was obtained by reversion of the dominant suppressor activity. These null alleles are recessive embryonic lethals, indicating that sup-11 is an essential gene. Members of the second class, rare semidominant revertants of the "scrawny" phenotype, are partial suppressors of unc-93(e1500). The genetic properties of the dominant suppressor mutations suggest that they are rare missense mutations that confer a novel activity to the sup-11 protein. We consider some of the ways that sup-11 alleles might suppress unc-93(e1500), including the possibilities that the altered sup-11 proteins restore function to a protein complex or are modified products of a gene that is a member of an unc-93 gene family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号