首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 612 毫秒
1.
2.
3.
4.
5.
Genetic evidences indicate that alkaline/neutral invertases are present in plant cell organelles, and they might have a novel physiological function in mitochondria. The present study demonstrates an invertase activity in the mitochondrial matrix of Helianthus tuberosus tubers. The pH optimum, the kinetic parameters and the inhibitor profile of the invertase activity indicated that it belongs to the neutral invertases. In accordance with this topology, transport activities responsible for the mediation of influx/efflux of substrate/products were studied in the inner mitochondrial membrane. The transport of sucrose, glucose and fructose was shown to be bidirectional, saturable and independent of the mitochondrial respiration and membrane potential. Sucrose transport was insensitive to the inhibitors of the proton-sucrose symporters. The different kinetic parameters and inhibitors as well as the absence of cross-inhibition suggest that sucrose, glucose and fructose transport are mediated by separate transporters in the inner mitochondrial membrane. The mitochondrial invertase system composed by an enzyme activity in the matrix and the corresponding sugar transporters might have a role in both osmoregulation and intermediary metabolism.  相似文献   

6.
7.
Alkaline invertase was induced during the initiation of suspension cultures of single cells from leaf explants of sugar beets in Murashige-Skoog liquid medium which contained benzyladenine. This activity was barely detectable in the leaves themselves. In suspension cultures, the presence of both acid and alkaline invertases was detected; alkaline invertase was only present in the cytoplasm of the cultured cells, whereas acid invertase was present in the cytoplasm and cell walls, and was also detected in the culture medium. The cell wall contained at least three types of acid invertase; two of these activities were solubilized by saline (saline-released) and EDTA (EDTA-released), respectively, and the third remained tightly associated with the cell wall. Saline-released and EDTA-released invertases from the cell wall showed the significant differences in their properties: the saline-released enzyme had the highest affinity for sucrose among the invertases tested, and was easily bound to cell walls, to DNA, and to a cation exchanger, unlike the EDTA-released enzyme. Sucrose is the source of carbon for plant cells in suspension culture and is probably degraded in the cell wall by the saline-released invertase, which had the highest activity and the highest affinity for sucrose. Hexose products of this degradation would be transported to cytoplasm. Soluble invertase, EDTA-released invertase from the cell wall, and one of two extracellular invertases behaved similarly upon chromatography on DEAE-cellulose. They had similar activity profiles with changing pH, and similar Km values for sucrose. Thus it appears that they are identical. Two extracellular invertases found in the growth medium of the suspension cultures were probably identical with those in the soluble fraction of callus and seedlings of sugar beets, because they showed similar behaviors during chromatography on DEAE-cellulose, and had similar activity profiles with changing pH and Km values for sucrose.  相似文献   

8.
A novel cDNA clone, functionally expressed in E. coli, was isolated from a L. temulentum L. cDNA library. The expressed protein hydrolysed sucrose with an apparent Km of approximately 18 mM, and produced equi-molar concentrations of glucose and fructose. Optimum activity was observed at pH 7-7.5; there was little or no activity at pH 5.5. The expressed protein did not hydrolyse raffinose, stachyose or maltose. The activity of the expressed protein was inhibited by fructose (50% at 15 mM) and TRIS (50% at 2.5 mM), but was not affected by MgCl2, CaCl2 or MnCl2. These findings suggest that this cDNA clone encodes for an alkaline/neutral invertase. Sequence analysis revealed little homology with published sequences for acid invertase, however the invertase motif (NDPN) identified in other invertases was present. Expression studies show that the gene encoding for this enzyme is not regulated by sucrose accumulation in leaf tissue.  相似文献   

9.
Invertase plays a crucial role in carbohydrate partitioning and plant development as it catalyses the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families: acid invertases, which are targeted to the cell wall and vacuole; and neutral/alkaline invertases, which function in the cytosol. In this study, 5 cell wall invertase genes (PtCWINV1-5), 3 vacuolar invertase genes (PtVINV1-3) and 16 neutral/alkaline invertase genes (PtNINV1-16) were identified in the Populus genome and found to be distributed on 14 chromosomes. A comprehensive analysis of poplar invertase genes was performed, including structures, chromosome location, phylogeny, evolutionary pattern and expression profiles. Phylogenetic analysis indicated that the two sub-families were both divided into two clades. Segmental duplication is contributed to neutral/alkaline sub-family expansion. Furthermore, the Populus invertase genes displayed differential expression in roots, stems, leaves, leaf buds and in response to salt/cold stress and pathogen infection. In addition, the analysis of enzyme activity and sugar content revealed that invertase genes play key roles in the sucrose metabolism of various tissues and organs in poplar. This work lays the foundation for future functional analysis of the invertase genes in Populus and other woody perennials.  相似文献   

10.
We have screened a Hydra cDNA library for sequences encoding N-terminal signal peptides using the yeast invertase secretion vector pSUC [Jacobs et al., 1997. A genetic selection for isolating cDNAs encoding secreted proteins. Gene 198, 289–296]. We isolated and sequenced 907 positive clones; 88% encoded signal peptides; 12% lacked signal peptides. By searching the Hydra EST database we identified full-length sequences for the selected clones. These encoded 37 known proteins with signal peptides and 40 novel Hydra-specific proteins with signal peptides. Localization of two signal peptide-containing sequences, VEGF and ferritin, to the secretory pathway was confirmed with GFP fusion proteins. In addition, we isolated 105 clones which lacked signal peptides but which supported invertase secretion from yeast. Isolation of plasmids from these clones and retransformation in invertase-negative yeast cells confirmed the phenotype. A GFP fusion protein of one such clone encoding the foot morphogen pedibin was localized to the cytoplasm in transfected Hydra cells and did not enter the ER/Golgi secretory pathway. Secretion of pedibin and other proteins lacking signal peptides appears to occur by a non-classical protein secretion route.  相似文献   

11.
De novo purine biosynthesis is localized to both mitochondria and plastids isolated from Bradyrhizobium sp.-infected cells of cowpea (Vigna unguiculata L. Walp) nodules, but several of the pathway enzymes, including aminoimidazole ribonucleotide synthetase (AIRS [EC 6.3.3.1], encoded by Vupur5), are encoded by single genes. Immunolocalization confirmed the presence of AIRS protein in both organelles. Enzymatically active AIRS was purified separately from nodule mitochondria and plastids. N-terminal sequencing showed that these two isoforms matched the Vupur5 cDNA sequence but were processed at different sites following import; the mitochondrial isoform was five amino acids longer than the plastid isoform. Electrospray tandem mass spectrometry of a trypsin digest of mitochondrial AIRS identified two internal peptides identical with the amino acid sequence deduced from Vupur5 cDNA. Western blots of proteins from mitochondria and plastids isolated from root tips showed a single AIRS protein present at low levels in both organelles. (35)S-AIRS protein translated from a Vupur5 cDNA was imported into isolated pea (Pisum sativum) leaf chloroplasts in vitro by an ATP-dependent process but not into import-competent mitochondria from several plant and non-plant sources. Components of the mature protein are likely to be important for import because the N-terminal targeting sequence was unable to target green fluorescent protein to either chloroplasts or mitochondria in Arabidopsis leaves. The data confirm localization of the protein translated from the AIRS gene in cowpea to both plastids and mitochondria and that it is cotargeted to both organelles, but the mechanism underlying import into mitochondria has features that are yet to be identified.  相似文献   

12.
Alkaline/neutral invertases (A/N‐Invs) are now recognized as essential proteins in plant life. They catalyze the irreversible breakdown of sucrose into glucose and fructose and thus supply the cells with energy as well as signaling molecules. In this study we report on a mechanism that affects the activity of the cytosolic invertase AtCINV1 (At‐A/N‐InvG or AT1G35580). We demonstrate that Ser547 at the extreme C‐terminus of the AtCINV1 protein is a substrate of calcium‐dependent kinases (CPK3 and 21) and that phosphorylation creates a high‐affinity binding site for 14‐3‐3 proteins. The invertase as such has basal activity, but we provide evidence that interaction with 14‐3‐3 proteins enhances its activity. The analysis of three quadruple 14‐3‐3 mutants generated from six T‐DNA insertion mutants of the non‐epsilon family shows both specificity as well as redundancy for this function of 14‐3‐3 proteins. The strong reduction in hexose levels in the roots of one 14‐3‐3 quadruple mutant plant is in line with the activating function of 14‐3‐3 proteins. The physiological relevance of this mechanism that affects A/N‐invertase activity is underscored by the light‐induced activation and is another example of the central role of 14‐3‐3 proteins in mediating dark/light signaling. The nature of the light‐induced signal that travels from the shoot to root and the question whether this signal is transmitted via cytosolic Ca++ changes that activate calcium‐dependent kinases, await further study.  相似文献   

13.
A variety of approaches were used to predict dual-targeted proteins in Arabidopsis thaliana . These predictions were experimentally tested using GFP fusions. Twelve new dual-targeted proteins were identified: five that were dual-targeted to mitochondria and plastids, six that were dual-targeted to mitochondria and peroxisomes, and one that was dual-targeted to mitochondria and the nucleus. Two methods to predict dual-targeted proteins had a high success rate: (1) combining the AraPerox database with a variety of subcellular prediction programs to identify mitochondrial- and peroxisomal-targeted proteins, and (2) using a variety of prediction programs on a biochemical pathway or process known to contain at least one dual-targeted protein. Several technical parameters need to be taken into account before assigning subcellular localization using GFP fusion proteins. The position of GFP with respect to the tagged polypeptide, the tissue or cells used to detect subcellular localization, and the portion of a candidate protein fused to GFP are all relevant to the expression and targeting of a fusion protein. Testing all gene models for a chromosomal locus is required if more than one model exists.  相似文献   

14.
Vargas WA  Pontis HG  Salerno GL 《Planta》2007,226(6):1535-1545
It is well accepted that sucrose (Suc) metabolism is involved in responses to environmental stresses in many plant species. In the present study we showed that alkaline invertase (A-Inv) expression is up-regulated in wheat leaves after an osmotic stress or a low-temperature treatment. We demonstrated that the increase of total alkaline/neutral Inv activity in wheat leaves after a stress could be due to the induction of an A-Inv isoform. Also, we identified and functionally characterized the first wheat cDNA sequence that codes for an A-Inv. The wheat leaf full-length sequence encoded a protein 70% similar to a neutral Inv of Lolium temulentum; however, after functional characterization, it resulted to encode a protein that hydrolyzed Suc to hexoses with an optimum pH of 8, and, consequently, the encoding sequence was named Ta-A-Inv. By RT-PCR assays we demonstrated that Ta-A-Inv expression is induced in response to osmotic and cold stress in mature primary wheat leaves. We propose that Ta-A-Inv activity could play an important role associated with a more efficient cytosolic Suc hydrolysis during environmental stresses. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
To determine the relationship between invertase gene expression and glucose and fructose accumulation in ripening tomato fruit, fruit vacuolar invertase cDNA and genomic clones from the cultivated species, Lycopersicon esculentum cv. UC82B, and a wild species, Lycopersicon pimpinellifolium, were isolated and characterized. The coding sequences of all cDNA clones examined are identical. By comparison to the known amino acid sequence of mature L. esculentum fruit vacuolar invertase, a putative signal sequence and putative amino-terminal and carboxy-terminal propeptides were identified in the derived amino acid sequence. Of the residues 42% are identical with those of carrot cell wall invertase. A putative catalytic site and a five-residue motif found in carrot, yeast, and bacterial invertases are also present in the tomato sequence. Minor differences between the nucleotide sequences of the genomic clones from the two tomato species were found in one intron and in the putative regulatory region. The gene appears to be present in one copy per haploid genome. Northern analysis suggests a different temporal pattern of vacuolar invertase mRNA levels during fruit development in the two species, with the invertase mRNA appearing at an earlier stage of fruit development in the wild species. Nucleotide differences found in the putative regulatory regions may be involved in species differences in temporal regulation of this gene, which in turn may contribute to observed differences in hexose accumulation in ripening fruit.  相似文献   

16.
H S Lee  A Sturm 《Plant physiology》1996,112(4):1513-1522
Neutral and alkaline invertase were identified in cells of a suspension culture of carrot (Daucus carota L.) and purified to electrophoretic homogeneity. Neutral invertase is an octamer with a molecular mass of 456 kD and subunits of 57 kD, whereas alkaline invertase is a tetramer with a molecular mass of 504 kD and subunits of 126 kD. Both enzymes had sharp pH profiles, with maximal activities at pH 6.8 for neutral invertase and pH 8.0 for alkaline invertase, and both hydrolyzed sucrose with typical hyperbolic kinetics and similar Km values of about 20 mM at pH 7.5. Neutral invertase also hydrolyzed raffinose and stachyose and, therefore, is a beta-fructofuranosidase. In contrast, alkaline invertase was highly specific for sucrose. Fructose acted as a competitive inhibitor of both enzymes, with Ki values of about 15 mM. Glucose was a noncompetitive inhibitor of both neutral and alkaline invertase, with a Ki of about 30 mM. Neither enzyme was inhibited by HgCl2. Alkaline invertase was markedly inhibited by CaCl2, MgCl2, and MnCl2, and neutral invertase was not. In contrast to alkaline invertase, neutral invertase was inhibited by the nucleotides ATP, CTP, GTP, and UTP.  相似文献   

17.
Sugar acts as a signal molecule and plays a pivotal role in plant development and stress response. Neutral/alkaline invertases found only in photosynthetic bacteria and plants is sucrose-specific enzymes cleave sucrose into glucose and fructose. We have identified a gene for neutral/alkaline invertase in Arabidopsis designated as AtCYT-INV1 which is involved in sugar/ABA signaling and plays multiple roles in plant development and osmotic stress-induced inhibition on lateral root growth.Key Words: Arabidopsis thaliana, AtCTY-INV1, sugar signaling  相似文献   

18.
Although a lot of vacuolar invertase (EC 3.2.1.26) cDNAs are available from a diversity of plant species, up to now no sequence information is available on invertases from any dicot fructan-containing species. Therefore, we describe the cloning of vacuolar acid invertase cDNA from etiolated Belgian endive leaves ( Cichorium intybus L. var. foliosum cv. Flash), formed throughout the forcing process of the witloof chicory roots. Full-length cDNA was obtained by a combination of RT-PCR, PCR and 5'- and 3' RACE RT-PCR, starting with primers based on conserved amino acid sequences. The cloned chicory acid invertase groups together with vacuolar type invertases and fructan biosynthetic enzymes. A putative role for vacuolar type invertases in fructan synthesizing plants is discussed.  相似文献   

19.
We have screened a Hydra cDNA library for sequences encoding N-terminal signal peptides using the yeast invertase secretion vector pSUC [Jacobs et al., 1997. A genetic selection for isolating cDNAs encoding secreted proteins. Gene 198, 289-296]. We isolated and sequenced 907 positive clones; 88% encoded signal peptides; 12% lacked signal peptides. By searching the Hydra EST database we identified full-length sequences for the selected clones. These encoded 37 known proteins with signal peptides and 40 novel Hydra-specific proteins with signal peptides. Localization of two signal peptide-containing sequences, VEGF and ferritin, to the secretory pathway was confirmed with GFP fusion proteins. In addition, we isolated 105 clones which lacked signal peptides but which supported invertase secretion from yeast. Isolation of plasmids from these clones and retransformation in invertase-negative yeast cells confirmed the phenotype. A GFP fusion protein of one such clone encoding the foot morphogen pedibin was localized to the cytoplasm in transfected Hydra cells and did not enter the ER/Golgi secretory pathway. Secretion of pedibin and other proteins lacking signal peptides appears to occur by a non-classical protein secretion route.  相似文献   

20.
Alkaline invertase from sprouting soybean (Glycine max) hypocotyls was purified to apparent electrophoretic homogeneity by consecutive use of DEAE-cellulose, green 19 dye, and Cibacron blue 3GA dye affinity chromatography. This protocol produced about a 100-fold purification with about a 11% yield. The purified protein had a specific activity of 48 mumol of glucose produced mg-1 protein min-1 (pH 7.0) and showed a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) (58 kDa) and in native PAGE, as indicated by both protein and activity staining. The native enzyme molecular mass was about 240 kDa, suggesting a homotetrameric structure. The purified enzyme exhibited hyperbolic saturation kinetics with a Km (sucrose) near 10 mM and the enzyme did not utilize raffinose, maltose, lactose, or cellibose as a substrate. Impure alkaline invertase preparations, which contained acid invertase activity, on contrast, showed biphasic curves versus sucrose concentration. Combining equal activities of purified alkaline invertase with acid invertase resulted in a biphasic response, but there was a transition to hyperbolic saturation kinetics when the activity ratio, alkaline: acid invertase, was increased above unity. Alkaline invertase activity was inhibited by HgCl2, pridoxal phosphate, and Tris with respective Ki values near 2 microM, 5 microM, and 4 mM. Glycoprotein staining (periodic acid-Schiff method) was negative and alkaline invertase did not bind to two immobilized lectins, concanavalin A and wheat germ agglutinin; hence, the enzyme apparently is not a glycoprotein. The purified alkaline invertase, and a purified soybean acid invertase, was used to raise rabbit polyclonal antibodies. The alkaline invertase antibody preparation was specific for alkaline invertase and cross-reacted with alkaline invertases from other plants. Neither purified soybean alkaline invertases nor the crude enzyme from several plants cross-reacted with the soybean acid invertase antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号