首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invertase plays a crucial role in carbohydrate partitioning and plant development as it catalyses the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families: acid invertases, which are targeted to the cell wall and vacuole; and neutral/alkaline invertases, which function in the cytosol. In this study, 5 cell wall invertase genes (PtCWINV1-5), 3 vacuolar invertase genes (PtVINV1-3) and 16 neutral/alkaline invertase genes (PtNINV1-16) were identified in the Populus genome and found to be distributed on 14 chromosomes. A comprehensive analysis of poplar invertase genes was performed, including structures, chromosome location, phylogeny, evolutionary pattern and expression profiles. Phylogenetic analysis indicated that the two sub-families were both divided into two clades. Segmental duplication is contributed to neutral/alkaline sub-family expansion. Furthermore, the Populus invertase genes displayed differential expression in roots, stems, leaves, leaf buds and in response to salt/cold stress and pathogen infection. In addition, the analysis of enzyme activity and sugar content revealed that invertase genes play key roles in the sucrose metabolism of various tissues and organs in poplar. This work lays the foundation for future functional analysis of the invertase genes in Populus and other woody perennials.  相似文献   

2.
3.
In plants, sugars affect growth and development and play an important role in the intricate machinery of signal transduction. Understanding the mechanisms behind the flux of sugar in the plant is of central interest. We recently characterized an Arabidopsis mutant: sweetie, which is defective in the control of growth and development, sterile, shows premature senescence and affects sugar metabolism. Our microarray analysis showed that 15 genes annotated as sugar transporter related proteins were found to be upregulated in sweetie while one sugar transporter gene was found to be downregulated. Most of them are unspecified sugar transporters but four genes have been annotated as monosaccharide transporters and one has been annotated as a disaccharide transporter. Moreover, as computer analyses predicted that SWEETIE might be a membrane protein and might have a function of glycosyl transferase, our data suggest that SWEETIE could be involved in the general control of sugar flux and modulates many important processes such as morphogenesis, flowering, stress responses and senescence.Key words: Arabidopsis thaliana, sweetie mutant, microarray, sugar flux, sugar transport  相似文献   

4.
5.
6.
Sugar transporters are central machineries to mediate cross-membrane transport of sugars into the cells, and sugar availability may serve as a signal to regulate the sugar transporters. However, the mechanisms of sugar transport regulation by signal sugar availability remain unclear in plant and animal cells. Here, we report that a sucrose transporter, MdSUT1, and a sorbitol transporter, MdSOT6, both localized to plasma membrane, were identified from apple (Malus domestica) fruit. Using a combination of the split-ubiquitin yeast two-hybrid, immunocoprecipitation, and bimolecular fluorescence complementation assays, the two distinct sugar transporters were shown to interact physically with an apple endoplasmic reticulum-anchored cytochrome b5 MdCYB5 in vitro and in vivo. In the yeast systems, the two different interaction complexes function to up-regulate the affinity of the sugar transporters, allowing cells to adapt to sugar starvation. An Arabidopsis (Arabidopsis thaliana) homolog of MdCYB5, AtCYB5-A, also interacts with the two sugar transporters and functions similarly. The point mutations leucine-73 → proline in MdSUT1 and leucine-117 → proline in MdSOT6, disrupting the bimolecular interactions but without significantly affecting the transporter activities, abolish the stimulating effects of the sugar transporter-cytochrome b5 complex on the affinity of the sugar transporters. However, the yeast (Saccharomyces cerevisiae) cytochrome b5 ScCYB5, an additional interacting partner of the two plant sugar transporters, has no function in the regulation of the sugar transporters, indicating that the observed biological functions in the yeast systems are specific to plant cytochrome b5s. These findings suggest a novel mechanism by which the plant cells tailor sugar uptake to the surrounding sugar availability.  相似文献   

7.
Family-1 UDP glycosyltransferases (UGTs) from plants transfer sugar moieties from activated sugar donors to a wide range of small molecules, and control many metabolic processes during plant growth and development. Here, we report a genome-wide analysis of maize that identified 147 Family-1 glycosyltransferases based on their conserved PSPG motifs. Phylogenetic analysis of these genes with 18 Arabidopsis UGTs and two rice UGTs clustered them into 17 groups (A–Q). The patterns of intron gain/loss events, as well as their positions within UGTs from the same group, further aided elucidation of their divergence and evolutionary relationships between UGTs. Expression analysis of the maize UGT genes using both online microarray data and quantitative real-time PCR verification indicates that UGT genes are widely expressed in various tissues and likely play important roles in plant growth and development. Our study provides useful information on the Family-1 UGTs in maize, and will facilitate their further characterization to better understand their functions.  相似文献   

8.
Ser acetyltransferase (SERAT), which catalyzes O-acetyl-Ser (OAS) formation, plays a key role in sulfur assimilation and Cys synthesis. Despite several studies on SERATs from various plant species, the in vivo function of multiple SERAT genes in plant cells remains unaddressed. Comparative genomics studies with the five genes of the SERAT gene family in Arabidopsis thaliana indicated that all three Arabidopsis SERAT subfamilies are conserved across five plant species with available genome sequences. Single and multiple knockout mutants of all Arabidopsis SERAT gene family members were analyzed. All five quadruple mutants with a single gene survived, with three mutants showing dwarfism. However, the quintuple mutant lacking all SERAT genes was embryo-lethal. Thus, all five isoforms show functional redundancy in vivo. The developmental and compartment-specific roles of each SERAT isoform were also demonstrated. Mitochondrial SERAT2;2 plays a predominant role in cellular OAS formation, while plastidic SERAT2;1 contributes less to OAS formation and subsequent Cys synthesis. Three cytosolic isoforms, SERAT1;1, SERAT3;1, and SERAT3;2, may play a major role during seed development. Thus, the evolutionally conserved SERAT gene family is essential in cellular processes, and the substrates and products of SERAT must be exchangeable between the cytosol and organelles.  相似文献   

9.
10.
Plant growth and development rely on sugar transport between source and sink cells and between different organelles. The plastid-localized sugar transporter GLUCOSE-6-PHOSPHATE TRANSLOCATER1 (GPT1) is an essential gene in Arabidopsis (Arabidopsis thaliana). Using a partially rescued gpt1 mutant and cell-specific RNAi suppression of GPT1, we demonstrated that GPT1 is essential to the function of the embryo suspensor and the development of the embryo. GPT1 showed a dynamic expression/accumulation pattern during embryogenesis. Inhibition of GPT1 accumulation via RNAi using a suspensor-specific promoter resulted in embryos and seedlings with defects similar to auxin mutants. Loss of function of GPT1 in the suspensor also led to abnormal/ectopic cell division in the lower part of the suspensor, which gave rise to an ectopic embryo, resulting in twin embryos in some seeds. Furthermore, loss of function of GPT1 resulted in vacuolar localization of PIN-FORMED1 (PIN1) and altered DR5 auxin activity. Proper localization of PIN1 on the plasma membrane is essential to polar auxin transport and distribution, a key determinant of pattern formation during embryogenesis. Our findings suggest that the function of GPT1 in the embryo suspensor is linked to sugar and/or hormone distribution between the embryo proper and the maternal tissues, and is important for maintenance of suspensor identity and function during embryogenesis.

Specific expression of a sugar transporter that localizes to the plastids of cells in the embryo suspensor affects auxin activity and embryo development.  相似文献   

11.
Diseases caused by Phytophthora pathogens devastate many crops worldwide. During infection, Phytophthora pathogens secrete effectors, which are central molecules for understanding the complex plant–Phytophthora interactions. In this study, we profiled the effector repertoire secreted by Phytophthora sojae into the soybean (Glycine max) apoplast during infection using liquid chromatography–mass spectrometry. A secreted aldose 1-epimerase (AEP1) was shown to induce cell death in Nicotiana benthamiana, as did the other two AEP1s from different Phytophthora species. AEP1 could also trigger immune responses in N. benthamiana, other Solanaceae plants, and Arabidopsis (Arabidopsis thaliana). A glucose dehydrogenase assay revealed AEP1 encodes an active AEP1. The enzyme activity of AEP1 is dispensable for AEP1-triggered cell death and immune responses, while AEP-triggered immune signaling in N. benthamiana requires the central immune regulator BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1. In addition, AEP1 acts as a virulence factor that mediates P. sojae extracellular sugar uptake by mutarotation of extracellular aldose from the α-anomer to the β-anomer. Taken together, these results revealed the function of a microbial apoplastic effector, highlighting the importance of extracellular sugar uptake for Phytophthora infection. To counteract, the key effector for sugar conversion can be recognized by the plant membrane receptor complex to activate plant immunity.

Phytophthora sojae apoplastic effector AEP1 triggers pattern-triggered immunity in nonhost plants and contributes to P. sojae virulence by promoting the uptake of extracellular sugar.  相似文献   

12.
Dubest S  Gallego ME  White CI 《EMBO reports》2002,3(11):1049-1054
Using a specific recombination assay, we show in the plant Arabidopsis thaliana that AtRad1 protein plays a role in the removal of non-homologous tails in homologous recombination. Recombination in the presence of non-homologous overhangs is reduced 11-fold in the atrad1 mutant compared with the wild-type plants. AtRad1p is the A. thaliana homologue of the human Xpf and Saccharomyces cerevisiae Rad1 proteins. Rad1p is a subunit of the Rad1p/Rad10p structure-specific endonuclease that acts in nucleotide excision repair and inter-strand crosslink repair. This endonuclease also plays a role in mitotic recombination to remove non-homologous, 3′-ended overhangs from recombination intermediates. The Arabidopsis atrad1 mutant (uvh1), unlike rad1 mutants known from other eukaryotes, is hypersensitive to ionizing radiation. This last observation may indicate a more important role for the Rad1/Rad10 endonuclease in recombination in plants. This is the first direct demonstration of the involvement of AtRad1p in homologous recombination in plants.  相似文献   

13.
Six genes of the Arabidopsis thaliana monosaccharide transporter-like (MST-like) superfamily share significant homology with polyol transporter genes previously identified in plants translocating polyols (mannitol or sorbitol) in their phloem (celery [Apium graveolens], common plantain [Plantago major], or sour cherry [Prunus cerasus]). The physiological role and the functional properties of this group of proteins were unclear in Arabidopsis, which translocates sucrose and small amounts of raffinose rather than polyols. Here, we describe POLYOL TRANSPORTER5 (AtPLT5), the first member of this subgroup of Arabidopsis MST-like transporters. Transient expression of an AtPLT5–green fluorescent protein fusion in plant cells and functional analyses of the AtPLT5 protein in yeast and Xenopus oocytes demonstrate that AtPLT5 is located in the plasma membrane and characterize this protein as a broad-spectrum H+-symporter for linear polyols, such as sorbitol, xylitol, erythritol, or glycerol. Unexpectedly, however, AtPLT5 catalyzes also the transport of the cyclic polyol myo-inositol and of different hexoses and pentoses, including ribose, a sugar that is not transported by any of the previously characterized plant sugar transporters. RT-PCR analyses and AtPLT5 promoter-reporter gene plants revealed that AtPLT5 is most strongly expressed in Arabidopsis roots, but also in the vascular tissue of leaves and in specific floral organs. The potential physiological role of AtPLT5 is discussed.  相似文献   

14.
Membrane trafficking plays a fundamental role in eukaryotic cell biology. Of the numerous known or predicted protein components of the plant cell trafficking system, only a relatively small subset have been characterized with respect to their biological roles in plant growth, development, and response to stresses. In this study, we investigated the subcellular localization and function of an Arabidopsis (Arabidopsis thaliana) small GTPase belonging to the RabE family. RabE proteins are phylogenetically related to well-characterized regulators of polarized vesicle transport from the Golgi apparatus to the plasma membrane in animal and yeast cells. The RabE family of GTPases has also been proposed to be a putative host target of AvrPto, an effector protein produced by the plant pathogen Pseudomonas syringae, based on yeast two-hybrid analysis. We generated transgenic Arabidopsis plants that constitutively expressed one of the five RabE proteins (RabE1d) fused to green fluorescent protein (GFP). GFP-RabE1d and endogenous RabE proteins were found to be associated with the Golgi apparatus and the plasma membrane in Arabidopsis leaf cells. RabE down-regulation, due to cosuppression in transgenic plants, resulted in drastically altered leaf morphology and reduced plant size, providing experimental evidence for an important role of RabE GTPases in regulating plant growth. RabE down-regulation did not affect plant susceptibility to pathogenic P. syringae bacteria; conversely, expression of the constitutively active RabE1d-Q74L enhanced plant defenses, conferring resistance to P. syringae infection.  相似文献   

15.
16.
17.
18.
Ethylene, a regulator of plant growth and development, is perceived by specific receptors that act as negative regulators of the ethylene response. Five ethylene receptors, i.e., ETR1, ERS1, EIN4, ETR2, and ERS2, are present in Arabidopsis and dominant negative mutants of each that confer ethylene insensitivity have been reported. In contrast, maize contains just two types of ethylene receptors: ZmERS1, encoded by ZmERS1a and ZmERS1b, and ZmETR2, encoded by ZmETR2a and ZmETR2b. In this study, we introduced a Cys to Tyr mutation in the transmembrane domain of ZmERS1b and ZmETR2b that is present in the etr1-1 dominant negative mutant and expressed each protein in Arabidopsis. Mutant Zmers1b and Zmetr2b receptors conferred ethylene insensitivity and Arabidopsis expressing Zmers1b or Zmetr2b were larger and exhibited a delay in leaf senescence characteristic of ethylene insensitive Arabidopsis mutants. Zmers1b and Zmetr2b were dominant and functioned equally well in a hemizygous or homozygous state. Expression of the Zmers1b N-terminal transmembrane domain was sufficient to exert dominance over endogenous Arabidopsis ethylene receptors whereas the Zmetr2b N-terminal domain failed to do so. Neither Zmers1b nor Zmetr2b functioned in the absence of subfamily 1 ethylene receptors, i.e., ETR1 and ERS1. These results suggest that Cys65 in maize ZmERS1b and ZmETR2b plays the same role that it does in Arabidopsis receptors. Moreover, the results demonstrate that the mutant maize ethylene receptors are functionally dependent on subfamily 1 ethylene receptors in Arabidopsis, indicating substantial functional conservation between maize and Arabidopsis ethylene receptors despite their sequence divergence.  相似文献   

19.
Sugar is the primary product of photosynthesis in plant and plays a critical role in regulating plant growth and development. In this study, quantitative trait loci (QTLs) for total soluble sugar, sucrose, and fructose contents in rice grain were identified using a double haploid population derived from a cross between japonica CJ06 and indica TN1. A total of 17 QTLs, including four QTLs for total soluble sugar content, seven QTLs for sucrose content, and six QTLs for fructose content, were detected on chromosome 1, 3, 4, 5, 6, and 8, with the LOD ranges from 2.61 to 3.85. Furthermore, among the determined varieties, we found that the total soluble sugar content in japonica showed higher than that in indica. Comparative genetic analysis showed that starch synthesis related gene is presumably involved in sugar-related metabolic activity in rice grain.  相似文献   

20.
NCP1/AtMOB1A Plays Key Roles in Auxin-Mediated Arabidopsis Development   总被引:1,自引:0,他引:1  
MOB1 protein is a core component of the Hippo signaling pathway in animals where it is involved in controlling tissue growth and tumor suppression. Plant MOB1 proteins display high sequence homology to animal MOB1 proteins, but little is known regarding their role in plant growth and development. Herein we report the critical roles of Arabidopsis MOB1 (AtMOB1A) in auxin-mediated development in Arabidopsis. We found that loss-of-function mutations in AtMOB1A completely eliminated the formation of cotyledons when combined with mutations in PINOID (PID), which encodes a Ser/Thr protein kinase that participates in auxin signaling and transport. We showed that atmob1a was fully rescued by its Drosophila counterpart, suggesting functional conservation. The atmob1a pid double mutants phenocopied several well-characterized mutant combinations that are defective in auxin biosynthesis or transport. Moreover, we demonstrated that atmob1a greatly enhanced several other known auxin mutants, suggesting that AtMOB1A plays a key role in auxin-mediated plant development. The atmob1a single mutant displayed defects in early embryogenesis and had shorter root and smaller flowers than wild type plants. AtMOB1A is uniformly expressed in embryos and suspensor cells during embryogenesis, consistent with its role in embryo development. AtMOB1A protein is localized to nucleus, cytoplasm, and associated to plasma membrane, suggesting that it plays roles in these subcellular localizations. Furthermore, we showed that disruption of AtMOB1A led to a reduced sensitivity to exogenous auxin. Our results demonstrated that AtMOB1A plays an important role in Arabidopsis development by promoting auxin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号