首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 399 毫秒
1.
The lly locus confers fluorescence, haemolysis, brown pigmentation and an increased resistance to light in Legionella pneumophila. In this study, we correlated the pigment production of two lly-positive L. pneumophila isolates and a recombinant lly-positive Escherichia coli strain with the presence of homogentisic acid (HGA) in the culture supernatant. The detection of HGA by high performance liquid chromatography and the data analysis of the deduced amino acid sequence of the lly gene indicate that the lly locus codes for a p-hydroxyphenylpyruvate dioxygenase (HPPD). This enzyme catalyses the transformation of p-hydroxyphenylpyruvate into HGA, which subsequently oxidises and polymerises into a melanin-like pigment. One open reading frame (ORF 1) in the lly region exhibited homologies with genes of Synechocystis sp., Petroselium crispum and Streptomyces mycarofaciens that code for methyltransferases. By screening a genomic library of L. pneumophila (serogroup 1) strain Corby with a monoclonal antibody against the legiolysin (lly), we identified two recombinant E. coli clones that did not produce the brown pigment and showed no haemolysis and fluorescence. DNA sequencing revealed that both clones contained 874 nucleotides of the N-terminal part of the lly gene. The recombinant strains expressed truncated legiolysin proteins of 39.5 and 35.7 kDa and did not produce HGA. Considering the highly conserved structure of legiolysin-like HPPD genes from other organisms, we suggest that the C-terminus of the legiolysin may be essential for the enzymatic activity that conferred pigmentation via HGA polymerisation, haemolysis and fluorescence.  相似文献   

2.
Interspecific complementation of an Escherichia coli recA mutant with a Legionella pneumophila genomic library was used to identify a recombinant plasmid encoding the L. pneumophila recA gene. Recombinant E. coli strains harbouring the L. pneumophila recA gene were isolated by replica-plating bacterial colonies on medium containing methyl methanesulphonate (MMS). MMS-resistant clones were identified as encoding the L. pneumophila recA analogue by their ability to protect E. coli HB101 from UV exposure and promote homologous recombination. Subcloning of selected restriction fragments and Tn5 mutagenesis localized the recA gene to a 1.7 kb Bg/II-EcoRI fragment. Analysis of minicell preparations harbouring a 1.9 kb EcoRI fragment containing the recA coding segment revealed a single 37.5 kDa protein. Insertional inactivation of the cloned recA gene by Tn5 resulted in the disappearance of the 37.5 kDa protein, concomitant with the loss of RecA function. The L. pneumophila recA gene product did not promote induction of a lambda lysogen; instead, the presence of the heterologous recA gene caused a significant reduction in spontaneous and mitomycin-C-induced prophage induction in recA+ and recA E. coli backgrounds. Despite the lack of significant genetic homology between the L. pneumophila recA gene and the E. coli counterpart, the L. pneumophila RecA protein was nearly identical to that of E. coli in molecular mass, and the two proteins showed antigenic cross-reactivity. Western blot analysis of UV-treated L. pneumophila revealed a significant increase in RecA antigen in irradiated versus control cells, suggesting that the L. pneumophila recA gene is regulated in a manner similar to that of E. coli recA.  相似文献   

3.
The DNA encoding the zinc metalloprotease of Legionella pneumophila Philadelphia 1 has been isolated and expressed in Escherichia coli. This protein, which is 38,000 Daltons in size, possesses immunological and biochemical properties identical to those previously described for the purified L. pneumophila protease. Periplasmic extracts of E. coli clones expressing the recombinant protease are also capable of causing the haemolysis of canine erythrocytes and the cytotoxic destruction of CHO cells. Using transposon mutagenesis, it was determined that a maximum of 1.2 kb of DNA encoded all three biological activities. Inactivation of proteolytic activity by transposon insertion occurred concomitantly with losses of the haemolytic and cytotoxic phenotypes. A putative regulatory sequence approximately 200-500 bp upstream of the gene's coding region was identified. A 4.0 kb fragment encoding these activities hybridized to the chromosomal DNA of the parent strain of L. pneumophila Philadelphia 1 as well as clinical isolates of L. pneumophila.  相似文献   

4.
Abstract The Mip ('macrophage infectivity potentiator') protein of Legionella pneumophila has been shown to be an essential virulence factor, exhibiting peptidyl-prolyl cis/trans isomerase (PPIase) activity that can be inhibited by the immunosuppressant FK506. The cloning and sequencing of mip genes from three different L. pneumophila strains revealed a single amino acid substitution which did not affect the isomerase property of the enzyme. Mip proteins isolated from two wild-type L. pneumophila strains and from two corresponding Escherichia coli K-12 recombinant clones derived from these strains exhibited identical enzymatic properties and the precursor proteins are processed at identical cleavage sites. The mature Mip proteins exist in an oligomeric form. Site-directed mutagenesis demonstrated that a substitution of an Asp residue at position 142 by a Leu residue affects PPIase activity of Mip.  相似文献   

5.
The bite of spiders of the genus Loxosceles can induce a variety of biological effects, including dermonecrosis and complement-dependent haemolysis. The aim of this study was to generate recombinant proteins from the Loxosceles spider gland to facilitate structural and functional studies in the mechanisms of loxoscelism. Using "Expressed Sequencing Tag" strategy of aleatory clones from, L. laeta venom gland cDNA library we have identified clones containing inserts coding for proteins with significant similarity with previously obtained N-terminus of sphingomyelinases from Loxosceles intermedia venom [1]. Clone H17 was expressed as a fusion protein containing a 6x His-tag at its N-terminus and yielded a 33kDa protein. The recombinant protein was endowed with all biological properties ascribed to the whole L. laeta venom and sphingomyelinases from L. intermedia, including dermonecrotic and complement-dependent haemolytic activities. Antiserum raised against the recombinant protein recognised a 32-kDa protein in crude L. laeta venom and was able to block the dermonecrotic reaction caused by whole L. laeta venom. This study demonstrates conclusively that the sphingomyelinase activity in the whole venom is responsible for the major pathological effects of Loxosceles spider envenomation.  相似文献   

6.
7.
8.
The genetical libraries of the pFra plasmid of Yersinia pestis genes were obtained by insertion into the PstI, SalGI, EcoRI, XhoI restriction sites of the cosmid vector pHC79. The immunochemical analysis of the recombinant clones has revealed the clones synthesizing the antigen Fl (fraction I) and mouse toxin (Ymt--Yersinia pestis murine toxin). The restriction analysis of the plasmids from antigen synthesizing clones has permitted to construct the detailed physical map of the fra-ymt region of the pFra plasmid the size of 22 kb. The recombinant F1 positive clones of Escherichia coli are able to form at 37 degrees C the capsule-like structure peculiar for Yersinia pestis. The antigen F1 and the mouse toxin were isolated, purified and characterized. The antigen F1 is an 1-2 Md polymer containing a 16 kDa protein subunit. The mouse toxin a 240 kDa protein consisting of 61 kDa subunits. The nucleotide sequence of ymt gene has been defined.  相似文献   

9.
The lly locus (legiolysin) mediates the browning of the culture medium of Legionella pneumophila in the late stationary growth phase, presumably as a result of synthesis of homogentisic acid. Mutagenesis of the lly gene of the L. pneumophila Philadelphia I derivative JR32 did not affect intracellular replication in the natural host Hartmannella vermiformis. The Lly-negative mutant, however, showed a markedly decreased resistance to ordinary light. The cloned lly gene conferred an increased resistance to light in recombinant L. pneumophila and Escherichia coli K-12, indicating a contribution of the Lly protein to ecological adaptation of Legionella species.  相似文献   

10.
A truncated Bordetella pertussis cya gene product was expressed in Escherichia coli and purified by affinity chromatography on calmodulin-agarose. Trypsin cleavage of the 432-residue recombinant protein (Mr = 46,659) generated two fragments of 28 kDa and 19 kDa. These fragments, each containing a single Trp residue, were purified and analyzed for their catalytic and calmodulin-binding properties. The 28-kDa peptide, corresponding to the N-terminal domain of the recombinant adenylate cyclase, exhibited very low catalytic activity, and was still able to bind calmodulin weakly, as evidenced by using a fluorescent derivative of the activator protein. The 19-kDa peptide, corresponding to the C-terminal domain of the recombinant adenylate cyclase, interacted only with calmodulin as indicated by a shift in its intrinsic fluorescence emission spectrum or by the enhancement of fluorescence of dansyl-calmodulin. T28 and T19 fragments exhibited an increased sensitivity to denaturation by urea as compared to uncleaved adenylate cyclase, suggesting that interactive contacts between ordered portions of T28 and T19 in the intact protein participate both in their own stabilization and in stabilization of the whole tertiary structure. The two fragments reassociated into a highly active calmodulin-dependent species. Reassociation was enhanced by calmodulin itself, which 'trapped' the two complementary peptides into a stable, native-like, ternary complex, which shows similar catalytic properties to intact adenylate cyclase.  相似文献   

11.
We have cloned the chromosomal hemolysin determinants from Escherichia coli strains belonging to the four O-serotypes O4, O6, O18, and O75. The hemolysin-producing clones were isolated from gene banks of these strains which were constructed by inserting partial Sau3A fragments of chromosomal DNA into the cosmid pJC74. The hemolytic cosmid clones were relatively stable. The inserts were further subcloned either as SalI fragments in pACYC184 or as BamHI-SalI fragments in a recombinant plasmid (pANN202) containing cistron C (hlyC) of the plasmid-encoded hemolysin determinant. Detailed restriction maps of each of these determinants were constructed, and it was found that, despite sharing overall homology, the determinants exhibited minor specific differences in their structure. These appeared to be restricted to cistron A (hlyA), which is the structural gene for hemolysin. In the gene banks of two of these hemolytic strains, we could also identify clones which carried the genetic determinants for the mannose-resistant hemagglutination antigens Vb and VIc. Both of these fimbrial antigens were expressed in the E. coli K-12 clones to an extent similar to that observed in the wild-type strains. These recombinant cosmids were rather unstable, and, in the absence of selection, segregated at a high frequency.  相似文献   

12.
The gene encoding the 25 kDa major outer membrane protein (MOMP) of Legionella pneumophila was transformed into Escherichia coli JM 83 and the resultant E. coli LP 116 clone expressed the Legionella-MOMP. Compared with the parent E. coli strain, the clone showed a fivefold increase in opsonin-independent binding to U-937 cells. Furthermore, this gene was incorporated by electroporation into a low virulence derivative of Leg. pneumophila which showed reduced expression of the MOMP but enhanced expression of a 31 kDa protein in the OMP profile. After electroporation, the attenuated strain showed an increased expression of the MOMP while the 31 kDa protein was eliminated and virulence for the chick embryo was re-established. The use of a monoclonal antibody specific for the MOMP abolished virulence and adherence. These studies suggest that the 25 kDa MOMP of Leg. pneumophila serves as an adhesive molecule for host cells and that this protein plays a major role in the virulence of the organism for the chick embryo.  相似文献   

13.
Clostridium difficile, a human pathogen, produces two very large protein toxins, A and B (250-600 kDa), which resist dissociation into subunits. To clone the toxin A gene, a genomic library of 3-8 kb chromosomal DNA fragments of C. difficile strain VPI 10463 established in pUC12 was screened with a rabbit polyclonal toxin A antiserum. Thirty-five clones were isolated which carried 2.5-7.0 kb inserts representing a 10 kb region of the C. difficile genome. All the inserts were oriented in the same direction, suggesting that toxin A gene expression was under control of the lac promoter of the pUC12 vector. Western blot experiments revealed the presence of low amounts of fusion proteins of variable size (30-170 kDa) in Escherichia coli strains harbouring recombinant plasmids. As deduced from subcloning experiments, the DNA sequences encoding toxin A comprised about 4 kb, corresponding to about 140 kDa of the 300-600 kDa protein. This was either due to incomplete cloning of the gene or it might indicate a subunit composition of toxin A. No additional gene(s) with homology to the cloned toxin A gene was detected.  相似文献   

14.
Urinary tract infection (UTI) is a very common extraintestinal infection, and Escherichia coli is by far the most common causative organism. Uropathogenic E. coli possess traits that distinguish them from commensal strains of E. coli, such as secretion systems that allow virulence factors to be targeted to extracytoplasmic compartments. One of at least five characterized secretion mechanisms is the autotransporter system, which involves translocation of a protein across the inner membrane, presumably via the sec system, and across the outer membrane through a beta-barrel porin structure formed by the carboxy-terminus autotransporter domain. We identified a 107 kDa protein that was expressed significantly more often by E. coli strains associated with the clinical syndrome of acute pyelonephritis than by faecal strains (P = 0.029). We isolated the protein from E. coli CFT073, a strain cultured from the blood and urine of a patient with acute pyelonephritis. The N-terminal amino acid sequence showed highest similarity to two known SPATE (serine protease autotransporters of Enterobacteriaceae) proteins, Pet and EspC. Using a 509 bp probe from the 5' region of pet, 10 cosmid clones of an E. coli CFT073 gene library were positive for hybridization. From one cosmid clone, a 7.5 kb EcoRI restriction fragment, which reacted strongly with the probe, was shown to include the entire 3885 bp gene. The predicted 142 kDa protein product possesses the three domains that are typical of SPATE autotransporters: an unusually long signal sequence of 49 amino acids; a 107 kDa passenger domain containing a consensus serine protease active site (GDSGSG); and a C-terminal autotransporter domain of 30 kDa. The protein exhibited serine protease activity and displayed cytopathic activity on VERO primary kidney, HK-2 bladder and HEp-2 cell lines; the name Sat (secreted autotransporter toxin) was derived from these properties. In addition, Sat antibodies were present in the serum of mice infected with E. coli CFT073. Based upon its association with pathogenic isolates, its cytopathic phenotype and its ability to elicit a strong antibody response after infection, we postulate that Sat represents a novel virulence determinant of uropathogenic E. coli.  相似文献   

15.
A search of various domestic isolates of Thiobacillus ferrooxidans revealed that some were fairly resistant to mercury ion. A proportion of mercury-resistant clones were able to volatilize mercury, and their corresponding gene was localized not in the plasmid DNA but in chromosomal DNA. This mercury ion resistance gene was cloned in Escherichia coli. E. coli carrying the recombinant plasmid was able to grow in the presence of more than 40 micrograms of HgCl2 per ml. Deletion analysis of the recombinant plasmid showed that the entire coding sequence of the mercury ion resistance gene was located within a 2.3-kilobase fragment of the chromosomal DNA from strain E-15. At least two polypeptides (molecular mass, 56 and 16 kDa, respectively) were coded by this fragment.  相似文献   

16.
Legionella pneumophila is an intracellular parasite which is able to survive and multiply in human monocytes and alveolar macrophages. The Mip (macrophage infectivity potentiator) protein has been shown to be an essential virulence factor. A search of translated nucleic acid data bases has shown that the Mip protein from strain Wadsworth possesses regions homologous to those found in the FK506-binding proteins (FKBPs) of several different eukaryotic organisms. FKBPs are able to bind to the immunosuppressant macrolide FK506 and possess peptidyl-prolyl cis/trans isomerase (PPIase) activity. The gene coding for the Mip protein was cloned from the chromosome of L. pneumophila strain Philadelphia I and sequenced. It was synthesized in Escherichia coli K-12 and after purification it exhibited PPIase activity catalysing the slow cis/trans isomerization of prolyl peptide bonds in oligopeptides. Mip is inhibited by FK506 and fully resistant to cyclosporin A, as was also found for the recently characterized FKBP-type PPIases of eukaryotes. However, the N-terminal extension of Mip and/or the substitutions of the variable amino acids in the C-terminal FKBP core leads to variations, when compared with eukaryotic FKBPs, in substrate specificity with the oligopeptide substrates of type Suc-Ala-Xaa-Pro-Phe-4-nitroanilide. Nevertheless, the Legionella Mip factor represents a bacterial gene product which shares some characteristics normally found in eukaryotic proteins. In view of the activity of PPIases in protein-folding reactions, such prokaryotic FKBP analogues may represent a new class of bacterial pathogenicity factors.  相似文献   

17.
A prominent 19 kDa surface antigen of Legionella pneumophila, cloned in Escherichia coli, was found to be intimately associated with peptidoglycan. The DNA region encoding this antigen was mapped on an 11.9 kb plasmid by means of deletion analysis and transposon mutagenesis. PhoA+ gene fusions, gene-rated by TnphoA insertions into this region, confirmed the presence of a gene encoding a secreted protein. PhoA+ transposon insertions were also associated with loss of the 19 kDa antigen in immunoassays using a monoclonal antibody (mAb1E9) and the replacement of the 19 kDa antigen with larger fusion proteins in immunoblots using Legionella immune serum. A 1540bp PstI fragment carrying the gene was sequenced, and the open reading frame encoding the antigen was identified. The gene encodes a polypeptide 176 amino acid residues long and 18913Da in size. The presence of a signal sequence of 22 amino acids with a consensus sequence for cleavage by signal peptidase II indicates that the antigen is a lipoprotein, and striking similarity with peptidoglycan-associated lipoproteins (PALs) from E. coli (51% amino acid homology) and Haemophilus influenzae (55% homology) is noted. We conclude that the 19kDa antigen of L. pneumophila is the structural equivalent of the PAL found in other Gram-negative species and suggest that its post-translational acylation may explain its potency as an immunogen.  相似文献   

18.
目的:在大肠杆菌中表达沙门菌外膜蛋白(OMP)D,纯化后制备兔抗OMPD抗体。方法:用PCR方法从鼠伤寒沙门菌中扩增出ompD基因,并插入融合表达载体pET-28a(+)的多克隆位点,构建重组表达质粒pET28a(+)-ompD;以重组质粒转化大肠杆菌BL21(DE3),筛选阳性重组菌株,经IPTG诱导目的蛋白表达,在变性条件下对目的蛋白进行亲和层析纯化;以表达的OMPD蛋白免疫家兔,制备抗OMPD的多克隆抗体并进行鉴定。结果:扩增了ompD基因,测序证实正确后亚克隆于表达载体pET-28a(+)中,经PCR筛选和酶切鉴定获得阳性克隆,经诱导在大肠杆菌中表达出相对分子质量为40×103的目的蛋白并进行纯化;纯化的OMPD免疫家兔后,能有效地刺激特异性抗体的产生,抗血清的效价达到1∶10000以上,且具有良好的特异性。结论:构建ompD基因的原核表达载体,并在大肠杆菌中获得高效表达;制备出兔抗OMPD抗体,效价及特异性均良好,为进一步制备肠黏膜高亲和力疫苗奠定了基础。  相似文献   

19.
Sequence analysis of the Legionella micdadei groELS operon   总被引:4,自引:0,他引:4  
A 2.7 kb DNA fragment encoding the 60 kDa common antigen (CA) and a 13 kDa protein of Legionella micdadei was sequenced. Two open reading frames of 57,677 and 10,456 Da were identified, corresponding to the heat shock proteins GroEL and GroES, respectively. Typical -35, -10, and Shine-Dalgarno heat shock expression signals were identified upstream of the L. micdadei groEL gene. Further upstream, a poly-T region, also a feature of the sigma 32-regulated Escherichia coli groELS heat shock operon, was found. Despite the high degree of homology of the expression signals in E. coli and L. micdadei, Western blot analysis with an L. micdadei specific anti-groEL antibody did not reveal a significant increase in the amount of the GroEL protein during heat shock in L. micdadei or in the recombinant E. coli expressing L. micdadei GroEL.  相似文献   

20.
为发展新型面粉改良酶制剂,利用大肠杆菌Escherichia coli原核表达了小麦静息巯基氧化酶(Wheat quiescin sulfhydryl oxidase,wQSOX)。将合成的wqsox基因构建至pMAL-c5x载体,并在大肠杆菌中进行表达,优化蛋白表达条件后对重组蛋白进行分离纯化及融合标签切除,获得的重组wQSOX蛋白用于酶学性质探究以及面包品质改良。结果表明,合成的截短wqsox基因包含1359 bp,编码453个氨基酸,理论蛋白分子量51 kDa;构建的pMAL-c5x-wqsox重组质粒在E.coli Rosetta gamiB(DE3)中可溶表达了重组蛋白MBP-wQSOX,其最佳表达条件为:诱导温度25℃,诱导剂IPTG浓度0.3 mmol/L,诱导时间6 h;利用Xa因子蛋白酶切除了MBP融合标签,亲和层析纯化得到了wQSOX;wQSOX可催化DTT、GSH和Cys氧化,并伴随着H2O2的生成,其中对DTT表现出最高的底物特异性;酶学性质研究发现,wQSOX最适反应温度和pH分别为50℃和10.0,在高温和碱性环境条件下表现出较好的稳定性;每克面粉中添加1.1 U wQSOX能够显著(P<0.05)提高26.4%的面包比容,降低20.5%的面包芯硬度和24.8%的咀嚼性,表现出了较好的改良面包加工品质能力。研究结果对丰富新型面粉改良酶制剂种类以及推动wQSOX在焙烤行业的应用奠定了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号