首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sclerotized attachment organ of monogeneans has been widely used to address fundamental questions in ecology and evolution. However, traditional morphometric techniques appear to be partially inadequate and non-optimal. Traditional linear measurements mainly provide information on the size of sclerites but provide very little information, if any, on their shape. The shape of sclerites is indeed virtually unexplored and its implication for ecological and evolutionary processes remains to be analyzed. This study aims to both introduce and illustrate the use of geometric morphometrics in order to study sclerites of monogeneans in a biogeographic context. To do this, we investigated morphological variation patterns among four populations from the Pacific Ocean and six monogenean species through traditional and geometric morphometric techniques. Unlike the traditional method, the geometric morphometric method yielded a high percentage of individuals correctly classified to the four populations, providing strong evidence for phenotypic variability, divergence and local adaptation among islands without evolutionary constraint. Moreover, the traditional method also resulted in inconsistent interpretations of shape variations. This study highlighted the limitations that may arise when using traditional morphometric techniques and emphasizes that considerable information about the shape of sclerotized haptoral parts is added by using geometric morphometrics. Given the prominent taxonomic, ecological and evolutionary role of the haptor for characterizing monogeneans, we ultimately discuss the potential broad use of geometric morphometrics in a wide variety of ecological and evolutionary contexts. This powerful approach might allow a more robust estimation of the extent to which traditional evolutionary theories based on size of sclerites are congruent with their shape.  相似文献   

2.
The ability to generate large closing forces is important for many animals. Several studies have demonstrated that bite or pinching force capacity is usually related to the linear dimensions of the closing apparatus. However, relatively few studies have applied geometric morphometrics to examine the effects of size‐independent shape on force production, particularly in studies of crustacean pinching force. In this study, we utilized traditional and geometric morphometric techniques to compare the pinching force of Procambarus clarkii crayfish to their chela morphology. We found that males possessed larger chelae and pinched harder than females, but that their chela shape and size were weak predictors of strength. Female pinching force was significantly affected by both chela size and shape, with shape variation along the short axis of the claw contributing most to pinching force. We discuss our results in the context of reliable signaling of strength by males and females, and the different selective forces acting on chela shape in the two sexes.  相似文献   

3.
An analysis and a comparison of the methods of geometric morphometrics as applied to fish species identification and to studies on the population structure of fish stocks based on peculiarities of the otolith shape are performed. A review of the geometric morphometric methods used in studies on fish otoliths is provided. The results of our own research on possible utilization of elliptical Fourier analysis for species identification are also described.  相似文献   

4.
The mammalian scapula is a complex morphological structure, composed of two ossification plates that fuse into a single structure. Most studies on morphological differentiation in the scapula have considered it to be a simple, spatially integrated structure, primarily influenced by the important locomotor function presented by this element. We used recently developed geometric morphometric techniques to test and quantify functional and phylogenetic influences on scapular shape variation in fossil and extant xenarthran mammals. The order Xenarthra is well represented in the fossil record and presents a stable phylogenetic hypothesis for its genealogical history. In addition, its species present a large variety of locomotor habits. Our results show that approximately half of the shape variation in the scapula is due to phylogenetic heritage. This is contrary to the view that the scapula is influenced only by functional demands. There are large‐scale shape transformations that provide biomechanical adaptation for the several habits (arboreality, terrestriality, and digging), and small scale‐shape transformations (mostly related to the coracoid process) that are not influenced by function. A nonlinear relationship between morphometric and phylogenetic distances indicates the presence of a complex mixture of evolutionary processes acting on shape differentiation of the scapula. J. Morphol. 241:251–263, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
Body shape is a difficult, but important, trait to quantify. Researchers have traditionally used multivariate analysis of several linear measures ('trusses') across the body form to quantify shape. Newer geometric morphometric methods claim to better estimate shape because they analyze the geometry among the locations of all landmarks simultaneously rather than the linear distances between pairs of landmarks. We tested this claim by comparing the results of several traditional morphometric analyses against a newer geometric analysis involving thin-plate splines (TPS), all applied to a common data set of morphologically variable new world cichlids Amphilophus citrinellus and A. zaliosus. The TPS method yielded slightly stronger evidence of morphological differences among forms, although traditional methods also distinguished the two species. Perhaps our most important result was the idiosyncratic interpretation of shape variation among the traditional truss-based methods, whereas the generation of deformation grids using the TPS approach yielded clear and visually interpretable figures. Our results indicate that geometric morphometrics can be a more effective way to analyze and interpret body form, but also that traditional methods can be relied upon to provide statistical evidence of shape differences, although not necessarily accurate information about the nature of variation in shape.  相似文献   

6.
Four morphologically cryptic species of the Bactrocera dorsalis fruit fly complex (B. dorsalis s.s., B. papayae, B. carambolae and B. philippinensis) are serious agricultural pests. As they are difficult to diagnose using traditional taxonomic techniques, we examined the potential for geometric morphometric analysis of wing size and shape to discriminate between them. Fifteen wing landmarks generated size and shape data for 245 specimens for subsequent comparisons among three geographically distinct samples of each species. Intraspecific wing size was significantly different within samples of B. carambolae and B. dorsalis s.s. but not within samples of B. papayae or B. philippinensis. Although B. papayae had the smallest wings (average centroid size=6.002 mm±0.061 SE) and B. dorsalis s.s. the largest (6.349 mm±0.066 SE), interspecific wing size comparisons were generally non-informative and incapable of discriminating species. Contrary to the wing size data, canonical variate analysis based on wing shape data discriminated all species with a relatively high degree of accuracy; individuals were correctly reassigned to their respective species on average 93.27% of the time. A single sample group of B. carambolae from locality 'TN Malaysia' was the only sample to be considerably different from its conspecific groups with regards to both wing size and wing shape. This sample was subsequently deemed to have been originally misidentified and likely represents an undescribed species. We demonstrate that geometric morphometric techniques analysing wing shape represent a promising approach for discriminating between morphologically cryptic taxa of the B. dorsalis species complex.  相似文献   

7.

Background

The tools and techniques used in morphometrics have always aimed to transform the physical shape of an object into a concise set of numerical data for mathematical analysis. The advent of landmark-based morphometrics opened new avenues of research, but these methods are not without drawbacks. The time investment required of trained individuals to accurately landmark a data set is significant, and the reliance on readily-identifiable physical features can hamper research efforts. This is especially true of those investigating smooth or featureless surfaces.

Methods

In this paper, we present a new method to perform this transformation for data obtained from high-resolution scanning technology. This method uses surface scans, instead of landmarks, to calculate a shape difference metric analogous to Procrustes distance and perform superimposition. This is accomplished by building upon and extending the Iterative Closest Point algorithm. We also explore some new ways this data can be used; for example, we can calculate an averaged surface directly and visualize point-wise shape information over this surface. Finally, we briefly demonstrate this method on a set of primate skulls and compare the results of the new methodology with traditional geometric morphometric analysis.  相似文献   

8.
External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species – in this case European horseshoe bats (Rhinolophidae, Chiroptera) – based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern.  相似文献   

9.
The relatively new two-block partial least-squares method for analyzing the covariance between two sets of variables is described and contrasted with the well-known method of canonical correlation analysis. Their statistical properties, type of answers, and visualization techniques are discussed. Examples are given to show its usefulness in comparing two sets of variables--especially when one or both of the sets of variables are shape variables from a geometric morphometric study.  相似文献   

10.
The southern supercontinent of Gondwana was home to an extraordinary diversity of stem‐crocodylians (Crocodyliformes) during the Late Cretaceous. The remarkable morphological disparity of notosuchian crocodyliforms indicates that this group filled a wide range of ecological roles more frequently occupied by other vertebrates. Among notosuchians, the distinctive cranial morphology and large body sizes of Baurusuchidae suggest a role as apex predators in ecosystems in which the otherwise dominant predatory theropod dinosaurs were scarce. Large‐bodied crocodyliforms, modern and extinct, are known to have reached large sizes by extending their growth period. In a similar way, peramorphic heterochronic processes may have driven the evolution of the similarly large baurusuchids. To assess the presence of peramorphic processes in the cranial evolution of baurusuchids, we applied a geometric morphometric approach to investigate ontogenetic cranial shape variation in a comprehensive sample of notosuchians. Our results provide quantitative morphological evidence that peramorphic processes influenced the cranial evolution of baurusuchids. After applying size and ancestral ontogenetic allometry corrections to our data, we found no support for the action of either hypermorphosis or acceleration, indicating that these two processes alone cannot explain the shape variation observed in Notosuchia. Nevertheless, the strong link between cranial shape variation and size increase in baurusuchids suggests that peramorphic processes were involved in the emergence of hypercarnivory in these animals. Our findings illustrate the role of heterochrony as a macroevolutionary driver, and stress, once more, the usefulness of geometric morphometric techniques for identifying heterochronic processes behind evolutionary trends.  相似文献   

11.
几何形态测量方法是生物学研究中用于形态特征分析和形态比较研究的一种常用方法。其核心思想是利用空间坐标点获取研究对象的形态数据,再通过坐标数据的多元统计分析,定量探讨研究对象的形态特征及影响其形态变异的因素。近年来,随着三维扫描技术的广泛应用以及对于石制品形态特征量化分析要求的提高,基于三维模型的几何形态测量方法开始出现在相关的旧石器考古研究中。本文首先对三维几何形态测量分析方法及其在石制品研究中的应用情况进行介绍,随后具体阐述了该方法的分析流程。为便于国内学者更好地了解这一方法,本文进一步以广西百色盆地南坡山遗址发现的手斧为例,利用三维几何形态测量方法对这些手斧的几何形态特征进行了初步探讨。三维几何形态测量方法为石制品形态研究提供了新思路和新视角,有望成为今后中国旧石器考古研究中一个重要的发展方向。  相似文献   

12.
This study provides baseline quantitative data on the morphological development of the chondrocranium in a larval anuran. Both linear and geometric morphometric methods are used to quantitatively analyze size-related shape change in a complete developmental series of larvae of the wood frog, Rana sylvatica. The null hypothesis of isometry was rejected in all geometric morphometric and most linear morphometric analyses. Reduced major axis regressions of 11 linear chondrocranial measurements on size indicate a mixture of allometric and isometric scaling. Measurements in the otic and oral regions tend to scale with negative allometry and those associated with the palatoquadrate and muscular process scale with isometry or positive allometry. Geometric morphometric analyses, based on a set of 11 chondrocranial landmarks, include linear regression of relative warp scores and multivariate regression of partial warp scores and uniform components on log centroid size. Body size explains about one-quarter to one-third of the total shape variation found in the sample. Areas of regional shape transformation (e.g., palatoquadrate, otic region, trabecular horns) are identified by thin-plate spline deformation grids and are concordant with linear morphometric results. Thus, the anuran chondrocranium is not a static structure during premetamorphic stages and allometric patterns generally follow scaling predictions for tetrapod cranial development. Potential implications regarding larval functional morphology, cranial development, and chondrocranial evolution in anurans are discussed.  相似文献   

13.
The avian beak is a multipurpose organ playing a vital role in a variety of functions, including feeding, drinking, playing, grasping objects, mating, nesting, preening and defence against predators and parasites. With regards to poultry production, the beak is the first point of contact between the bird and feed. The beak is also manipulated to prevent unwanted behaviour such as feather pecking, toe pecking and cannibalism in poultry as well as head/neck injuries to breeder hens during mating. Thus, investigating the beak morphometry of poultry in relation to feeding and other behaviours may lead to novel insights for poultry breeding, management and feeding strategies. Beak morphometry data may be captured by advanced imaging techniques coupled with the use of geometric morphometric techniques. This emerging technology may be utilized to study the effects of beak shape on many critical management issues including heat stress, parasite management, pecking and feeding behaviour. In addition, existing literature identifies several genes related to beak development in chickens and other avian species. Use of morphometric assessments to develop phenotypic data on beak shape and detailed studies on beak-related behaviours in chickens may help in improving management and welfare of commercial poultry.  相似文献   

14.
Non-geographic morphometric variation, particularly at the level of sexual dimorphism and ontogenetic (age-related) variation, has been documented in rodents, and useful for establishing whether to analyse sexes separately or together, and for selecting adult specimens for subsequent data recording and analysis. However, such studies have largely been based on traditional morphometric analyses of linear measurements that mainly focus on overall size, rather than shape-related morphometric variation. Unit-free, landmark/outline-based geometric morphometric analyses are considered to offer a more appropriate tool for assessing shape-related morphometric variation. In this study, we used geometric cranial morphometric analysis to assess the nature and extent of sexual dimorphism and age variation within the Tete veld rat, Aethomys ineptus (Thomas and Wroughton, 1908) from southern Africa and the African Nile rat, Arvicanthis niloticus (Desmarest, 1822) from Sudan. The results obtained were in turn compared with previously published results based on independent geometric and traditional cranial morphometric data from the same sampled populations examined in the present study. While our geometric morphometric results detected statistically significant sexual dimorphism in cranial shape within Ar. niloticus only, previously published results based on traditional morphometric data failed to detect significant sexual dimorphism within this species. However, similar to previously published traditional morphometric data, our geometric morphometric results detected statistically significant age-related variation in cranial shape and size within both Ae. ineptus and Ar. niloticus, with individuals of age classes 5 and 6 being considered to represent adult specimens. Our results highlight the importance of carefully evaluating both size- and shape-related non-geographic morphometric variation prior to the analysis of geographic variation and the delineation of species. Erroneous conclusions of non-geographic variation may have implications in the interpretation of geographic and evolutionary processes that may be responsible for morphological differences at both the inter- and intra-specific levels.  相似文献   

15.
Characterizing patterns of observed current variation, and testing hypotheses concerning the potential drivers of this variation, is fundamental to understanding how morphology evolves. Phylogenetic history, size and ecology are all central components driving the evolution of morphological variation, but only recently have methods become available to tease these aspects apart for particular body structures. Extant monitor lizards (Varanus) have radiated into an incredible range of habitats and display the largest body size range of any terrestrial vertebrate genus. Although their body morphology remains remarkably conservative, they have obvious head shape variation. We use two‐dimensional geometric morphometric techniques to characterize the patterns of dorsal head shape variation in 36 species (375 specimens) of varanid, and test how this variation relates to size, phylogenetic history and ecology as represented by habitat. Interspecific head shape disparity is strongly allometric. Once size effects are removed, principal component analysis shows that most shape variation relates to changes in the snout and head width. Size‐corrected head shape variation has strong phylogenetic signal at a broad level, but habitat use is predictive of shape disparity within phylogenetic lineages. Size often explains shape disparity among organisms; however, the ability to separate size and shape variation using geometric morphometrics has enabled the identification of phylogenetic history and habitat as additional key factors contributing to the evolution of head shape disparity among varanid lizards.  相似文献   

16.
In vitro rearing is an important and useful tool for honey bee (Apis mellifera L.) studies. However, it often results in intercastes between queens and workers, which are normally are not seen in hive-reared bees, except when larvae older than three days are grafted for queen rearing. Morphological classification (queen versus worker or intercastes) of bees produced by this method can be subjective and generally depends on size differences. Here, we propose an alternative method for caste classification of female honey bees reared in vitro, based on weight at emergence, ovariole number, spermatheca size and size and shape, and features of the head, mandible and basitarsus. Morphological measurements were made with both traditional morphometric and geometric morphometrics techniques. The classifications were performed by principal component analysis, using naturally developed queens and workers as controls. First, the analysis included all the characters. Subsequently, a new analysis was made without the information about ovariole number and spermatheca size. Geometric morphometrics was less dependent on ovariole number and spermatheca information for caste and intercaste identification. This is useful, since acquiring information concerning these reproductive structures requires time-consuming dissection and they are not accessible when abdomens have been removed for molecular assays or in dried specimens. Additionally, geometric morphometrics divided intercastes into more discrete phenotype subsets. We conclude that morphometric geometrics are superior to traditional morphometrics techniques for identification and classification of honey bee castes and intermediates.  相似文献   

17.
An analysis of the hind wing morphology (size and shape) within and among western corn rootworm, Diabrotica virgifera virgifera LeConte, populations over a large geographic scale in Europe was conducted. The changes in hind wing shape and size detected were related to identifiable invasion processes (i.e. multiple introduction events into Europe), first characterised using genetic markers. Overall implications from this work suggest that geometric morphometric techniques can be used to detect population changes related to invasions and could therefore serve as a cheaper and more accessible alternative ‘biomarker’ to more expensive and specialised-use genetic markers, such as microsatellites or SNPs, when investigating biological invasions.  相似文献   

18.
Background and AimsThe relative contributions of inter- and intraspecific variation to phytolith shape and size have only been investigated in a limited number of studies. However, a detailed understanding of phytolith variation patterns among populations or even within a single plant specimen is of key importance for the correct taxonomic identification of grass taxa in fossil samples and for the reconstruction of vegetation and environmental conditions in the past. In this study, we used geometric morphometric analysis for the quantification of different sources of phytolith shape and size variation.MethodsWe used landmark-based geometric morphometric methods for the analysis of phytolith shapes in two extant grass species (Brachypodium pinnatum and B. sylvaticum). For each species, 1200 phytoliths were analysed from 12 leaves originating from six plants growing in three populations. Phytolith shape and size data were subjected to multivariate Procrustes analysis of variance (ANOVA), multivariate regression, principal component analysis and linear discriminant analysis.Key ResultsInterspecific variation largely outweighed intraspecific variation with respect to phytolith shape. Individual phytolith shapes were classified with 83 % accuracy into their respective species. Conversely, variation in phytolith shapes within species but among populations, possibly related to environmental heterogeneity, was comparatively low.ConclusionsOur results imply that phytolith shape relatively closely corresponds to the taxonomic identity of closely related grass species. Moreover, our methodological approach, applied here in phytolith analysis for the first time, enabled the quantification and separation of variation that is not related to species discrimination. Our findings strengthen the role of grass phytoliths in the reconstruction of past vegetation dynamics.  相似文献   

19.
The body shape of a species is associated with its evolutionary history and can reflect behavioural peculiarities related to the ecological niche of each species. Morphology can characterise the morphometric niche of species and can be represented as body shape points within a morphometric universe. This information can be to calculate the morphometric diversity of communities through hypervolume metrics, and the hole sizes that remain in the morphometric hypervolume, which are empty areas with no species. Such holes may be ‘natural’ or caused by a local extinction. In this study, we evaluate the ecological community of dung beetles through the lens of morphometric diversity. We evaluated 38 dung beetle species from 30 subtropical communities in southern Brazil sampled in the summer of 2015, including 15 forest remnant communities from the Atlantic Forest and 15 communities from adjacent maize cultivations. The shape of 495 dung beetle specimens was measured using geometric morphometric and hypervolume techniques to calculate the morphometric diversity and the hole size of each of the 30 communities. We found that the taxonomic diversity positively correlated with the morphometric diversity and negatively correlated with the size of the holes. We also found that forest communities had higher values of morphometric diversity and smaller holes in the hypervolume than the maize cultivation communities, suggesting that local extinction may reduce community body shape spaces.  相似文献   

20.
Differences between the sexes may arise because of differences in reproductive strategy, with females investing more in traits related to reproductive output and males investing more in traits related to resource holding capacity and territory defence. Sexual dimorphism is widespread in lizards and in many species males and females also differ in head shape. Males typically have bigger heads than females resulting in intersexual differences in bite force. Whereas most studies documenting differences in head dimensions between sexes use linear dimensions, the use of geometric morphometrics has been advocated as more appropriate to characterize such differences. This method may allow the characterization of local shape differences that may have functional consequences, and provides unbiased indicators of shape. Here, we explore whether the two approaches provide similar results in an analyses of head shape in Tupinambis merianae. The Argentine black and white tegu differs dramatically in body size, head size, and bite force between the sexes. However, whether the intersexual differences in bite force are simply the result of differences in head size or whether more subtle modifications (e.g., in muscle insertion areas) are involved remains currently unknown. Based on the crania and mandibles of 19 lizards with known bite force, we show intersexual differences in the shape of the cranium and mandible using both linear and geometric morphometric approaches. Although both types of analyses showed generally similar results for the mandible, this was not the case for the cranium. Geometric morphometric approaches provided better insights into the underlying functional relationships between the cranium and the jaw musculature, as illustrated by shape differences in muscle insertion areas not detected using linear morphometric data. J. Morphol. 275:1016–1026, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号