首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species – in this case European horseshoe bats (Rhinolophidae, Chiroptera) – based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern.  相似文献   

2.
In vitro rearing is an important and useful tool for honey bee (Apis mellifera L.) studies. However, it often results in intercastes between queens and workers, which are normally are not seen in hive-reared bees, except when larvae older than three days are grafted for queen rearing. Morphological classification (queen versus worker or intercastes) of bees produced by this method can be subjective and generally depends on size differences. Here, we propose an alternative method for caste classification of female honey bees reared in vitro, based on weight at emergence, ovariole number, spermatheca size and size and shape, and features of the head, mandible and basitarsus. Morphological measurements were made with both traditional morphometric and geometric morphometrics techniques. The classifications were performed by principal component analysis, using naturally developed queens and workers as controls. First, the analysis included all the characters. Subsequently, a new analysis was made without the information about ovariole number and spermatheca size. Geometric morphometrics was less dependent on ovariole number and spermatheca information for caste and intercaste identification. This is useful, since acquiring information concerning these reproductive structures requires time-consuming dissection and they are not accessible when abdomens have been removed for molecular assays or in dried specimens. Additionally, geometric morphometrics divided intercastes into more discrete phenotype subsets. We conclude that morphometric geometrics are superior to traditional morphometrics techniques for identification and classification of honey bee castes and intermediates.  相似文献   

3.
《Journal of morphology》2017,278(4):475-485
The study of morphological variation among and within taxa can shed light on the evolution of phenotypic diversification. In the case of urodeles, the dorso‐ventral view of the head captures most of the ontogenetic and evolutionary variation of the entire head, which is a structure with a high potential for being a target of selection due to its relevance in ecological and social functions. Here, we describe a non‐invasive procedure of geometric morphometrics for exploring morphological variation in the external dorso‐ventral view of urodeles' head. To explore the accuracy of the method and its potential for describing morphological patterns we applied it to two populations of Salamandra salamandra gallaica from NW Iberia. Using landmark‐based geometric morphometrics, we detected differences in head shape between populations and sexes, and an allometric relationship between shape and size. We also determined that not all differences in head shape are due to size variation, suggesting intrinsic shape differences across sexes and populations. These morphological patterns had not been previously explored in S. salamandra , despite the high levels of intraspecific diversity within this species. The methodological procedure presented here allows to detect shape variation at a very fine scale, and solves the drawbacks of using cranial samples, thus increasing the possibilities of using collection specimens and alive animals for exploring dorsal head shape variation and its evolutionary and ecological implications in urodeles. J. Morphol. 278:475–485, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

4.
The recent expansion of a variety of morphometric tools has brought about a revolution in the comparison of morphology in the context of the size and shape in various fields including entomology. First, an overview of the theoretical issues of geometric morphometrics is presented with a caution about the usage of traditional morphometric measurements. Second, focus is then placed on two broad approaches as tools for geometric morphometrics; that is, the landmark‐based and the outline‐based approaches. A brief outline of the two methodologies is provided with some important cautions. The increasing trend of entomological studies in using the procedures of geometric morphometrics is then summarized. Finally, information is provided on useful toolkits such as computer software as well as codes and packages of the R statistical software that could be used in geometric morphometrics.  相似文献   

5.
Mammalian spermatozoa, particularly those of rodent species, are extremely complex cells and differ greatly in form and dimensions. Thus, characterization of sperm size and, particularly, sperm shape represents a major challenge. No consensus exists on a method to objectively assess size and shape of spermatozoa. In this study we apply the principles of geometric morphometrics to analyze rodent sperm head morphology and compare them with two traditional morphometry methods, that is, measurements of linear dimensions and dimensions-derived parameters calculated using formulae employed in sperm morphometry assessments. Our results show that geometric morphometrics clearly identifies shape differences among rodent spermatozoa. It is also capable of discriminating between size and shape and to analyze these two variables separately. Thus, it provides an accurate method to assess sperm head shape. Furthermore, it can identify which sperm morphology traits differ between species, such as the protrusion or retraction of the base of the head, the orientation and relative position of the site of flagellum insertion, the degree of curvature of the hook, and other distinct anatomical features and appendices. We envisage that the use of geometric morphometrics may have a major impact on future studies focused on the characterization of sperm head formation, diversity of sperm head shape among species (and underlying evolutionary forces), the effects of reprotoxicants on changes in cell shape, and phenotyping of genetically-modified individuals.  相似文献   

6.
The interspecific differentiation of South American rodents of the genus Graomys was assayed at ecological and morphometric levels in two species. At the ecological level, niche modelling was used. At the morphometric level, the hypothesis that the size and shape of the skull vary with the geographic location was tested using geometric morphometrics by assessing the extent and spatial distribution of phenotypic skull variation within and among two species, Graomys griseoflavus and Graomys chacoensis. Our results of niche modelling indicate the spatial differentiation between the two species, with G. chacoensis inhabiting preferably the Chaco ecoregion and G. griseoflavus inhabiting mainly the Monte ecoregion. In multiple linear regressions, approximately 20% of the skull size variation is explained by latitude, altitude, and temperature seasonality. The partial least square analysis reveals strong correlation between shape and environmental variables, mainly with latitude, annual mean temperature, and annual precipitation. Discrimination between G. griseoflavus and G. chacoensis was highly reliable when using geometric morphometric tools. These results permit us to elucidate some evolutionary processes that have occurred in these species.  相似文献   

7.
Body shape is a difficult, but important, trait to quantify. Researchers have traditionally used multivariate analysis of several linear measures ('trusses') across the body form to quantify shape. Newer geometric morphometric methods claim to better estimate shape because they analyze the geometry among the locations of all landmarks simultaneously rather than the linear distances between pairs of landmarks. We tested this claim by comparing the results of several traditional morphometric analyses against a newer geometric analysis involving thin-plate splines (TPS), all applied to a common data set of morphologically variable new world cichlids Amphilophus citrinellus and A. zaliosus. The TPS method yielded slightly stronger evidence of morphological differences among forms, although traditional methods also distinguished the two species. Perhaps our most important result was the idiosyncratic interpretation of shape variation among the traditional truss-based methods, whereas the generation of deformation grids using the TPS approach yielded clear and visually interpretable figures. Our results indicate that geometric morphometrics can be a more effective way to analyze and interpret body form, but also that traditional methods can be relied upon to provide statistical evidence of shape differences, although not necessarily accurate information about the nature of variation in shape.  相似文献   

8.
Terrestrial tetrapods use their claws to interact with their environments in a plethora of ways. Birds in particular have developed a diversity of claw shapes since they are often not bound to terrestrial locomotion and have heterogeneous body masses ranging several orders of magnitude. Numerous previous studies have hypothesized a connection between pedal claw shape and ecological mode in birds, yet have generated conflicting results, spanning from clear ecological groupings based on claw shape to a complete overlap of ecological modes. The majority of these studies have relied on traditional morphometric arc measurements of keratinous sheaths and have variably accounted for likely confounding factors such as body mass and phylogenetic relatedness. To better address the hypothesized relationship between ecology and claw shape in birds, we collected 580 radiographs allowing visualization of the bony core and keratinous sheath shape in 21 avian orders. Geometric morphometrics was used to quantify bony core and keratinous sheath shape and was compared to results using traditional arc measurements. Neither approach significantly separates bird claws into coarse ecological categories after integrating body size and phylogenetic relatedness; however, some separation between ecological groups is evident and we find a gradual shift from the claw shape of ground‐dwelling birds to those of predatory birds. Further, the bony claw core and keratinous sheath are significantly correlated, and the degree of functional integration does not differ across ecological groups. Therefore, it is likely possible to compare fossil bony cores with extant keratinous sheaths after applying corrections. Finally, traditional metrics and geometric morphometric shape are significantly, yet loosely correlated. Based on these results, future workers are encouraged to use geometric morphometric approaches to study claw geometry and account for confounding factors such as body size, phylogeny, and individual variation prior to predicting ecology in fossil taxa.  相似文献   

9.
10.
The robust skull and highly subdivided adductor mandibulae muscles of triggerfishes provide an excellent system within which to analyze the evolutionary processes underlying phenotypic diversification. We surveyed the anatomical diversity of balistid jaws using Procrustes‐based geometric morphometric analyses and a phylomorphospace approach to quantifying morphological transformation through evolution. We hypothesized that metrics of interspecific cranial shape would reveal patterns of phylogenetic diversification that are congruent with functional and ecological transformation. Morphological landmarks outlining skull and adductor mandibulae muscle shape were collected from 27 triggerfish species. Procrustes‐transformed skull shape configurations revealed significant phylogenetic and size‐influenced structure. Phylomorphospace plots of cranial shape diversity reveal groupings of shape between different species of triggerfish that are mostly consistent with phylogenetic relatedness. Repeated instances of convergence upon similar cranial shape by genetically disparate taxa are likely due to the functional demands of shared specialized dietary habits. This study shows that the diversification of triggerfish skulls occurs via modifications of cranial silhouette and the positioning of subdivided jaw adductor muscles. Using the morphometric data collected here as input to a biomechanical model of triggerfish jaw function, we find that subdivided jaw adductors, in conjunction with a unique cranial skeleton, have direct biomechanical consequences that are not always congruent with phylomorphospace patterns in the triggerfish lineage. The integration of geometric morphometrics with biomechanical modeling in a phylogenetic context provides novel insight into the evolutionary patterns and ecological role of muscle subdivisions in triggerfishes. J. Morphol. 277:737–752, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
Podarcis bocagei and P. carbonelli are two closely related lacertid species, very similar morphologically and ecologically. We investigated sexual dimorphism patterns presented by both species in allopatry and in sympatry. Sexual size and shape dimorphism patterns were analyzed using both multivariate and geometric morphometric techniques. Multivariate morphometrics revealed a marked sexual dimorphism in both species--males being larger with more robust habitus and females presenting a longer trunk. General patterns of sexual size dimorphism are not modified in sympatry, although there is evidence for some morphological change in male head size. The application of geometric morphometrics offered a more detailed image of head shape and revealed that males present a more developed tympanic area than do females, while females have a more rounded head. Differences in the degree of sexual shape dimorphism were detected in sympatry, but no consistent patterns were observed. From the results of the study, and based on previous knowledge on the populations studied, we conclude that the morphological differences observed are probably not caused by exploitative competition between the species, but rather appear attributable to the modification of the relative influence of sexual and natural selection on both sexes.  相似文献   

12.
The wing shape and size morphology of populations of the medically important phlebotomine sand fly, Phlebotomus papatasi, were examined in two endemic (south of the Atlas Mountains) and nonendemic (north of the Atlas Mountains) foci of cutaneous leishmaniasis by using geometric morphometrics in Morocco. Although it is present in all of Morocco, P. papatasi is the main vector of Leishmania major in only southern part of the Atlas Mountains. There are four major mountain ranges that serve as geographical barriers for species distribution in the study area and at least four gaps were recognized among these barriers. We found statistically significant differences in wing shape morphology between southern and northern populations. Analysis clearly recognized two main groups of populations on both sides of the mountains. The graphical depiction of Principal Component Analysis (PCA) and Canonical Variates Analysis (CVA) confirmed our morphometric study suggesting that the difference in wing morphology between the populations indicates that the population of P. papatasi shows phenotypic plasticity in the study area. According to centroid size analyses, which were used as measures of wing size differences among different sites, the north population of P. papatasi had relatively larger wings than the south population.  相似文献   

13.
The study of the cephalic shape of crocodilian is relevant in the fields of ecology, systematics, evolution, and conservation. Therefore, the integration of geometric analysis within quantitative genetics allows the evaluation of the inheritable shape components. In this study, the dorsal cephalic region of 210 Caiman latirostris hatchlings was analyzed from seven populations in Santa Fe, Argentina, to detect intra‐, and inter‐population phenotypic variability, and to determine the heritability of biological shape and size, using newly available geometric morphometric tools. The principal component analysis showed two configurations of cephalic shape that could be related to sexual dimorphism. In the canonical variate analysis, Procrustes distances between groups indicated that there are differences in shape among populations. Furthermore, the method of partial least squares indicated a covariation between cephalic shape and environmental variables. Regarding to CS of the skull we found significant differences among populations, moreover the partial least squares was also significant. Estimates of the heritability of shape and size were high, indicating that the components of these features are susceptible to the selection. J. Morphol. 277:370–378, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
  • 1 Morphometrics, the study of the variation and change in form amongst organisms, serves as a basic methodological tool in various fields of biological research, including systematics. Because it includes information about spatial relationships amongst anatomical landmarks, geometric morphometrics is more suitable for analyzing morphometric variation than methods based on distance measurements.
  • 2 Geometric morphometrics allows us to answer general ecological and evolutionary questions about shape.
  • 3 In this paper, landmark‐based methods are described and illustrated, based on a dataset of measurements from 295 Apodemus mandibles, and the applications of such methods in the systematics of insectivores (Eulipotyphla) and rodents (Rodentia) are summarized.
  相似文献   

15.
New morphometric methods, the geometrical morphometrics, offer promising perspectives to appraise morphological variation among organisms and open up, to a large extent, the field of morphometrics for the study of systematics and evolution. Until now, however, few studies have explored the potential of these methods at a microgeographical scale. In the present work, we applied them to quantify morphological (size and shape) differentiation among populations of two forest species of ground beetles: Carabus auronitens and C. nemoralis . We found a significant shape variation among sites, as well as among sexes, for both species. Additionally, for C. auronitens , we found significant positive correlations in both sexes between morphological (shape) and geographical distances between populations. In contrast, significant size differences were found between sexes, but not between sites. We conclude that geometrical morphometric methods provide valuable tools for the study of morphological variation among populations and therefore offer, on the whole, interesting perspectives for the study of biodiversity patterns.  相似文献   

16.
17.
Geometric morphometrics is the statistical analysis of form based on Cartesian landmark coordinates. After separating shape from overall size, position, and orientation of the landmark configurations, the resulting Procrustes shape coordinates can be used for statistical analysis. Kendall shape space, the mathematical space induced by the shape coordinates, is a metric space that can be approximated locally by a Euclidean tangent space. Thus, notions of distance (similarity) between shapes or of the length and direction of developmental and evolutionary trajectories can be meaningfully assessed in this space. Results of statistical techniques that preserve these convenient properties—such as principal component analysis, multivariate regression, or partial least squares analysis—can be visualized as actual shapes or shape deformations. The Procrustes distance between a shape and its relabeled reflection is a measure of bilateral asymmetry. Shape space can be extended to form space by augmenting the shape coordinates with the natural logarithm of Centroid Size, a measure of size in geometric morphometrics that is uncorrelated with shape for small isotropic landmark variation. The thin-plate spline interpolation function is the standard tool to compute deformation grids and 3D visualizations. It is also central to the estimation of missing landmarks and to the semilandmark algorithm, which permits to include outlines and surfaces in geometric morphometric analysis. The powerful visualization tools of geometric morphometrics and the typically large amount of shape variables give rise to a specific exploratory style of analysis, allowing the identification and quantification of previously unknown shape features.  相似文献   

18.
The time scales of evolutionary and ecological studies tend to converge, as shown by evidences that contemporary evolution can occur as fast as ecological processes. This opens new questions regarding variation of characters usually considered to change mostly along an evolutionary time scale, such as morphometric traits, including osteological and dental features such as mandibles and teeth of mammals. Using two-dimensional geometric morphometric approach, we questioned whether such features can change on a seasonal and local basis, in relation to the ecological dynamics of the populations. Our model comprised populations of house mice (Mus musculus domesticus) in two contrasted situations in mainland Western Europe: a feral population vs. two close commensal populations. Mitochondrial DNA (D-loop) provided insight into the diversity and dynamics of the populations.The feral population appeared as genetically highly diversified, suggesting a possible functioning as a sink in relation to the surrounding commensal populations. In contrast, commensal populations were highly homogeneous from a genetic point of view, suggesting each population to be isolated. This triggered morphological differentiation between neighboring farms. Seasonal differences in morphometric traits (mandible size and shape and molar size and shape) were significant in both settings, although seasonal variations were greater in the feral than in the commensal population. Seasonal variations in molar size and shape could be attributed to differential wear in young or overwintered populations. Differences in mandible shape could be related to aging in overwintered animals, but also possibly to differing growth conditions depending on the season. The impact of these ecological processes on morphometric traits is moderate compared to divergence over a large biogeographic scale, but their significance nevertheless underlines that even morphological characters may trace populations dynamics at small scale in time and space.  相似文献   

19.
Abstract.  Complexes of sibling and cryptic species are encountered frequently in parasitic Hymenoptera. Geometric morphometrics is a useful tool to detect minimal morphological variations, which often are undetectable by traditional morphological studies and even by classical morphometric approaches. We applied geometric morphometrics to wing venation to assess a complex case of sibling species in the genus Eubazus (Hymenoptera, Braconidae), parasitoids of conifer bark weevils of the genus Pissodes (Coleoptera, Curculionidae). The results and methods were compared with previous taxonomic studies on the same species, involving classical multivariate morphometrics, isoenzyme analyses, cross-mating experiments and biological observations. Geometric morphometrics confirmed the previous division into four distinct species. However, this approach enabled the four species to be separated simultaneously, with a reliability of 98.6% for well-classified females and 93.1% for males. A similar result in previous studies was obtained only by combining isoenzyme analyses and several canonical variate analyses, including many morphometric characters. Furthermore, measurements of wing venation were less time-consuming, more reliable and required less prior knowledge of braconid taxonomy than the measurements needed for the classical morphometrics methods. Geometric morphometrics was used also to test the effect of host species on wing shape. Several female populations of Eubazus semirugosus originating from three different Pissodes spp. were compared. Significant differences were found in wing shape between conspecific Eubazus from different host species. The results are discussed in relation to reproductive isolation and genetic flow between the four species.  相似文献   

20.
Vignon, M. (2011) Inference in morphological taxonomy using collinear data and small sample sizes: Monogenean sclerites (Platyhelminthes) as a case study. —Zoologica Scripta, 40, 306–316. Taxonomists and evolutionary biologists frequently use a combination of morphological measurements to distinguish between species and investigate local adaptation. However, the entire set of characters often displays various degrees of collinearity. This paper discusses the effect of using collinear data in morphological taxonomy and ways to handle multicollinearity in a classification context, with special consideration for small sample size. In addition, I propose a robust and easy‐to‐use combination of dimension reduction using partial least squares (PLS) with traditional discriminant methods for morphological data. To do this, I investigated morphological variation patterns among four monogenean populations from the Pacific Ocean using the correlated morphological features of the sclerotized attachment organ. The new approach yielded better prediction results (lower classification error rates) than the traditional dimension reduction method based on principle component analysis (PCA) and is also much more robust for small sample size. This emphasizes that PLS may be more efficient than PCA in dealing with correlated data and extracting the most relevant morphological differences among groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号