首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 581 毫秒
1.
2.
Lectin-like oxidatively-modified LDL receptor-1 (LOX-1) is a major receptor for oxidized low-density lipoprotein (oxLDL) in aortic endothelial cells. Human LOX-1 (hLOX-1) gene (cDNA) was cloned from the monocytic leukemic cell line THP-1 and expressed in Pichia pastoris. The recombinant protein (rhLOX-1) was purified by his-tag affinity chromatography. Preliminary identification was performed by Western blot analysis and a ligand-receptor binding assay showed that the protein had specific oxLDL-binding activity.Revisions requested 21 September 2004; Revisions received 10 November 2004  相似文献   

3.
以小桐子(Jatropha curcas L.)cDNA为模版,克隆了JcGSK基因的CDS序列。序列分析表明,JcGSK基因包含1 230bp完全阅读框(ORF),编码409个氨基酸。预测其编码蛋白质的相对分子量为46.33kD,理论等电点为8.58。Blast搜索结果及进化分析结果表明,JcGSK蛋白与巴西橡胶树GSK蛋白的氨基酸序列一致性最高(94%)且亲缘关系最近;JcGSK基因编码的蛋白具有一个蛋白激酶特有的结构域。组织表达结果显示,JcGSK基因在小桐子根、茎、叶、花、果皮和种子中都有表达,且在根中表达量最高。小桐子幼苗在NaCl、ABA、PEG、低温和机械损伤处理后JcGSK基因表达量有不同程度的上调,推测其参与小桐子非生物胁迫响应和信号传导过程。JcGSK基因在种子中也有较高表达,在种子发育过程中表达量的变化与种子生长发育趋势基本一致,推测JcGSK基因也参与调控小桐子种子的生长发育。  相似文献   

4.
Human pigment epithelium-derived factor (PEDF), a neurotrophic factor, is the most potent natural inhibitor of angiogenesis. To produce the active PEDF, the gene coding for the human PEDF protein was expressed in E. coli. The rPEDF protein was expressed at 457 mg l–1 as a soluble protein. The yield of purified GST fusion protein was 14 mg ll–1. Purified rPEDF inhibited tube formation in endothelial cells.Revisions requested 30 November 2004; Revisions received 25 January 2005  相似文献   

5.
Liu Z  Sun Z 《Biotechnology letters》2004,26(24):1861-1865
A d -lactonohydrolase gene of about 1.1 kb was cloned from Fusarium moniliforme. The ORF sequence predicted a protein of 382 amino acids with a molecular mass of about 40 kDa. An expression plasmid carrying the gene under the control of the triose phosphate isomerase gene promotor was introduced into Saccharomyces cerevisiae, and the d -lactonohydrolase gene was successfully expressed in the recombinant strains.Revisions requested 10 September 2004; Revisions received 15 October 2004The nucleotide sequence data reported in this paper has been assigned accession number AY728018 in the GeneBank database.  相似文献   

6.
A gene encoding the antimicrobial peptide, lactococcin K, was isolated from Lactococcus lactis subsp. lactis MY23 then cloned and expressed in Escherichia coli. Because the expressed lactococcin K was formed as an inclusion body in recombinant E. coli, a fusion protein containing lactococcin K and maltose-binding protein (MBP) was produced in a soluble form. For high-level production of lactococcin K, we performed a pH-stat fed-batch culture to produce 43,000 AU lactococcin K ml−1 in 12 h. Revisions requested 3 November 2005; Revisions received 7 December 2005  相似文献   

7.
Bifidobacterium adolescentis Int-57 (INT57), isolated from human feces, secretes an amylase. We have shot-gun cloned, sequence analyzed and expressed the gene encoding this amylase in B. longum. The sequenced 2477 bp fragment was homologous to other extracellular amylases. The encoded protein was predicted to be composed of 595 amino acids with a molecular weight of 64 kDa, and was designated AmyB. Highly conserved amylase domains were found in AmyB. The signal sequence and cleavage site was predicted by sequence analysis. AmyB was subcloned into pBES2, a novel E. coliBifidobacterium shuttle vector, to construct pYBamy59. Subsequently, B. longum, with no apparent amylase activity, was transformed with pYBamy59. More than 90% of the amylase activity was detected in the culture broth. This approach may open the way for the development of more efficient expression and secretion systems for Bifidobacterium. Both authors contributed equally Received 17 June 2005; Revisions requested 13 July 2005 and 26 September 2005; Revisions received 12 September 2005 and 8 November 2005; Accepted 11 November 2005  相似文献   

8.
The chitinase gene of Manduca sexta was cloned into the expression vector, pET-28a, and expressed in Escherichia coli BL21 (DE3) host cells. The protein product was expressed in inclusion bodies. After denaturation and renaturation procedures using a Ni2+-NTA affinity chromatography column, soluble chitinase was obtained. The authenticity of the renatured protein was confirmed by Western blotting. Polyclonal antibodies to the purified protein were raised in rabbits. The antibody reacted specifically with the expressed chitinase and was used to quantify its presence in transgenic cotton being developed to resist attack by various insects.Revisions requested 24 September 2004; Revisions received 18 November 2004  相似文献   

9.
10.
以小桐子(Jatropha curcas)cDNA为模板,克隆了酰基辅酶A结合蛋白(Acyl-CoA-binding Protein)基因(JcACBP)的CDS序列,对其序列进行了生物信息学分析,并采用实时荧光定量PCR方法,研究了JcACBP基因在小桐子不同器官和果实生长发育阶段的表达模式。结果显示:JcACBP基因完全阅读框(coding sequence,CDS)全长279bp,编码92个氨基酸。预测其编码蛋白质的分子量为10.30kD,具有ACBP家族典型的结构域。JcACBP基因推测氨基酸与油桐(Vernicia fordii,AFZ62125)的亲缘关系最近(96%)。JcACBP基因在小桐子根、茎、叶、花、发育中的胚及果实等组织中都有表达,其中在花后40d的种子中表达最高,其次是果皮,而在根中表达较少;在果实发育过程中的表达与果实油脂积累的变化趋势基本一致。  相似文献   

11.
类钙调磷酸酶B亚基蛋白(calcineurin B-like calcium sensor,CBL)属Ca2+结合蛋白,通过与类钙调磷酸酶B亚基互作蛋白激酶(calcineurin B-like calcium sensor interacting protein kinase,CIPK)互作介导Ca2+信号转导过程。CBL-CIPK信号系统参与了植物对多种逆境胁迫的响应过程。为深入探讨小桐子的抗冷性机制,该研究基于BLAST序列比对的方法,在全基因组水平对小桐子CBLCIPK基因家族进行了鉴定,并对其系统进化、基因结构、表达特性及功能互作进行了解析。结果表明:(1)在小桐子基因组中共鉴定到8个CBL基因与18个CIPK基因,CBL与CIPK蛋白长度分别在211~257 aa与422~484 aa之间,等电点分别在4.65~5.08与6.20~9.26之间。(2)另外,CBL基因家族都包含8~10个外显子,而CIPK基因家族分为显著的1~2个外显子(11个基因)和12~15个外显子(7个基因)两类。(3)多序列比对显示,小桐子CBL蛋白都鉴定到1个由14个氨基酸残基组成的非典型EF-hand基序与3个取代程度不同的典型EF-hand基序,而CIPK蛋白都包含N端激酶结构域与C端自抑制FISL/NAF结构域。(4)染色体定位显示,26个小桐子CBLCIPK基因不均匀地分布于9条染色体上。(5)转录组数据分析表明,大部分CBLCIPK基因在小桐子叶片、根及种子中都有高水平表达,其中JcCIPK14与JcCIPK18在低温处理时上调表达量达到了极显著水平(P<0.01),参与小桐子的抗冷性过程。综上结果为开展小桐子CBLCIPK基因的功能鉴定与低温信号转导机制研究提供了借鉴。  相似文献   

12.
An Arthrobacter sp. was isolated that, when induced by fructosyl-valine, expressed a fructosyl-amine oxidase (FAOD) that was specific for -glycated amino acids. The N-terminal amino acid sequence of the purified oxidase was determined and used to design oligonucleotides to amplify the gene by inverse PCR. Expression of the gene in Escherichia coli produced 0.23 units FAOD per mg protein, over 30-fold greater than native expression levels, with properties almost indistinguishable from the native enzyme. The presence of FAOD was confirmed in other Arthrobacter ssp.Revisions requested 8 September 2004; Revisions received 4 November 2004  相似文献   

13.
Summary The gene rpoA, encoding a protein homologous to the alpha subunit of RNA polymerase from Escherichia coli has been located in pea chloroplast DNA downstream of the petD gene for subunit IV of the cytochrome b-f complex. Nucleotide sequence analysis has revealed that rpoA encodes a polypeptide of 334 amino acid residues with a molecular weight of 38916. Northern blot analysis has shown that rpoA is co-transcribed with the gene for ribosomal protein S11. A lacZ-rpoA gene-fusion has been constructed and expressed in E. coli. Antibodies raised against the fusion protein have been employed to demonstrate the synthesis of the rpoA gene product in isolated pea chloroplasts. Western blot analysis using these antibodies and antibodies against the RNA polymerase core enzyme from the cyanobacterium, Anabaena 7120, has revealed the presence of the gene product in a crude RNA polymerase preparation from pea chloroplasts.  相似文献   

14.
The β-ketoacyl-acyl carrier protein synthase III (KAS III; EC 2.3.1.180) is a condensing enzyme catalyzing the initial step of fatty acid biosynthesis using acetyl-CoA as primer. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus L.) developing seeds, a cDNA coding for HaKAS III (EF514400) was isolated, cloned and sequenced. Its protein sequence is as much as 72% identical to other KAS III-like ones such as those from Perilla frutescens, Jatropha curcas, Ricinus communis or Cuphea hookeriana. Phylogenetic study of the HaKAS III homologous proteins infers its origin from cyanobacterial ancestors. A genomic DNA gel blot analysis revealed that HaKAS III is a single copy gene. Expression levels of this gene, examined by Q-PCR, revealed higher levels in developing seeds storing oil than in leaves, stems, roots or seedling cotyledons. Heterologous expression of HaKAS III in Escherichia coli altered their fatty acid content and composition implying an interaction of HaKAS III with the bacterial FAS complex. Testing purified HaKAS III recombinant protein by adding to a reconstituted E. coli FAS system lacking condensation activity revealed a novel substrate specificity. In contrast to all hitherto characterized plant KAS IIIs, the activities of which are limited to the first cycles of intraplastidial fatty acid biosynthesis yielding C6 chains, HaKAS III participates in at least four cycles resulting in C10 chains.  相似文献   

15.
Genomic analysis of a hyperthermophilic archaeon, Thermococcus sp. NA1, revealed an ORF of 1689 bases encoding 562 amino acids that showed a high similarity to DNA ligases from other hyperthermophilic archaea. The ligase, which was designated TNA1_lig (Thermococcus sp. NA1 ligase), was cloned and expressed in Escherichia coli. The recombinant TNA1_lig was purified by metal affinity chromatography. The optimum ligase activity of the recombinant TNA1_lig occurred at 80 °C and pH 7.5. The enzyme was activated by MgCl2 and ZnCl2 but was inhibited by MnCl2 and NiCl2. Additionally, the enzyme was activated by either ATP or NAD+. Revisions requested 27 October 2005; Revisions received 14 December 2005  相似文献   

16.
17.
18.
Shoot branching is considered a key factor that influences plant architecture and productivity. In the present study, the open reading frame encoding lateral shoot-inducing factor, named JLIF, was cloned from Jatropha curcas L. JLIF encoded a 214 amino acid polypeptide and contained a strongly conserved QALGGH motif in zinc-finger domain which is the typical motif of the SUP protein family. Sequence and phylogenetic analysis indicated that JLIF had very high similarity (97.67%) to the LIF gene in petunia, but showed no significant similarity to other known SUP proteins except for the conserved motifs. Taken together, we presumed JLIF was the ortholog of LIF protein, and both appeared to belong to a novel subfamily of the SUP proteins. Semi-quantitative RT-PCR analysis revealed JLIF was abundant in stems and petioles, weakly expressed in leaves and seeds, but absent in roots. Subsequently, the JLIF gene was introduced into tobacco under the control of the Cauliflower Mosaic Virus (CaMV) 35S promoter. PCR analysis and Southern blot hybridization were performed to confirm if JLIF was stably integrated into the tobacco genome. GUS activity analysis and RT-PCR revealed the location of the overexpressed JLIF. Overexpression of JLIF in transgenic tobaccos resulted in reduced plants height and shortened internodes in vitro.  相似文献   

19.
Propan-2-ol was used as an acyl acceptor for immobilized lipase-catalyzed preparation of biodiesel. The optimum conditions for transesterification of crude jatropha (Jatropha curcas), karanj (Pongamia pinnata) and sunflower (Helianthus annuus) oils were 10% Novozym-435 (immobilized Candida antarctica lipase B) based on oil weight, alcohol to oil molar ratio of 4:1 at 50 °C for 8 h. The maximum conversions achieved using propan-2-ol were 92.8, 91.7 and 93.4% from crude jatropha, karanj and sunflower oils, respectively. Reusability of the lipase was maintained over 12 repeated cycles with propan-2-ol while it reached to zero by 7th cycle when methanol was used as an acyl acceptor, under standard reaction conditions. Revisions requested 22 December 2005; Revisions received 26 January 2006  相似文献   

20.
To understand the expression pattern of theS RNase gene in the floral tissues associated with self-incompatibility (SI), promoter region of S11 RNase gene was serially deleted and fused GUS. Five chimeric constructs containing a deleted promoter region of the S11 RNase gene were constructed, and introduced intoNicotiana tabacum using Agrobacterium-mediated transformation. Northern blot analysis revealed that the GUS gene was expressed in the style, anther, and developing pollen of all stages in each transgenic tobacco plant The developing pollen expressed the same amount of GUS mRNA in all stages in transgenic tobacco plants. In addition, histochemical analysis showed GUS gene expression in vascular bundle, endothecium, stomium, and tapetum cells during pollen development in transgenic plants. From these results, it is speculated that SI ofLycopersicon peruvianum may occur through the interaction ofS RNase expressed in both style and pollen tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号