首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The denaturation of dimeric rabbit muscle phosphoglucose isomerase in guanidine hydrochloride occurs in two discrete steps consisting of partial unfolding followed by subunit dissociation. In 3.5 to 4.5 m guanidine hydrochloride the enzyme forms a stable denaturation intermediate. Formation of this intermediate abolishes catalytic activity, shifts the protein fluorescence emission maximum from 332 to 345 nm, exposes all of the unavailable sulfhydryl groups, and decreases the s20,w from 6.8 to 4.6 S. The intermediate dissociates into fully unfolded polypeptide chains with further increases in the concentration of the denaturant. The fluorescence maximum shifts to 352 nm and the s20,w of the denatured monomer is 1.6 S. From the equilibrium constant for subunit association, 3 × 104M?1, in 4.7 m guanidine hydrochloride, the apparent free energy of association is estimated to be ?6 kcal mol?1. Reconstitution of the enzyme protein takes place by the reversal of the steps observed upon denaturation. The denatured monomers refold and associate to reform the dimeric intermediate which then anneals to yield the intact enzyme molecule.  相似文献   

2.
Prostaglandin A isomerase has been purified 120-fold from rabbit serum by the use of ammonium sulfate fractionation, isoelectric focusing, and Sephadex G-200 chromatography. The molecular weight of the enzyme was estimated to be 110,000 from the elution volume on Sephadex G-200. Prostaglandin A isomerase is a heterogeneous protein with respect to charge. This has been concluded from the spread of enzymatic activity over 1 pH unit after isoelectric focusing. The enzymatic activity is inhibited by N-ethylmaleimide but not by other sulfhydryl blocking agents. The Km was determined to be 5 × 10?5m.  相似文献   

3.
Rabbit muscle triosephosphate isomerase (EC 5.3.1.1) is inactivated by maleimides, Na2S4O6, organic mercurials, 5,5′-dithiobis (2-nitrobenzoic acid), Ag+, and Hg2+. Ag2+ and Hg2+ cause a decrease in the maximum velocity, and under specified conditions the other reagents induce an increase in the Michaelis constant.N-ethylmaleimide reacts with three sulfhydryl residues per mole of enzyme, and the maximum change in Km is about threefold. Mercurials cause a greater change in Km and react with more than three sulfhydryl groups, but subsequent precipitation prevents quantitative analysis after six residues have reacted (with p-hydroxymercuribenzoate).Experiments with several competitive inhibitors and the active-site affinity label, 3-chloroacetolphosphate, showed that the magnitude of the change in Michaelis constant was the same as the magnitude of the changes in the inhibition constants.The rabbit muscle and liver enzyme appear to have similar properties, but the chicken muscle enzyme is much less reactive, and the yeast enzyme does not become inactivated.Evidence is presented to show that the effects cannot be explained by assuming the hydrated substrates are bound to the enzyme as a result of sulfhydryl modification.  相似文献   

4.
The three cysteine residues per subunit of pig muscle phosphoglucose isomerase show different reactivities toward various sulfhydryl reagents. The organomercurial, p-mercuribenzoate, can titrate two of the sulfhydryl groups under nondenaturing conditions. 2,2'-Dithiodipyridine, 5,5'-dithiobis(2-nitrobenzoic acid), iodoacetamide, methyl 2-pyridyl disulfide, and 2-(2'-pyridylmercapto)mercuri-4-nitrophenol all label only one sulfhydryl group under the same conditions, whereas iodoacetic acid does not react with any of the sulfhydryl groups except when the enzyme is fully denatured. It is concluded, therefore, that charge, rather than steric restraint, is the determining factor for the differences seen in the modification patterns of the enzyme by these reagents. When enzyme was first labeled with 2,2'-dithiodipyridine and subsequently with p-mercuribenzoate, it was found that the latter, in a secondary process, will stoichiometrically react with the anion released by the former after the initial reaction with cysteine. The differences in reactivity of the cysteine residues toward the referred-to reagents have been exploited to specifically modify each of the three individual cysteine residues of pig muscle phosphoglucose isomerase.  相似文献   

5.
Glyceraldehyde 3-P dehydrogenase was purified approximately 250-fold from pig liver and crystallized. The purification procedure consisted of treating liver homogenates with zinc chloride, followed by ammonium sulfate fractionation and ion exchange chromatography. The enzyme was monodisperse in the ultracentrifuge with a sedimentation coefficient of s20,w = 7.85 S. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed a single subunit band with an approximate molecular weight of 38,000. High-speed sedimentation equilibrium gave a molecular weight of 1.5 × 105. Incubation of the enzyme with ATP at 0 °C caused a loss of its dehydrogenase activity; some of the lost activity was regained upon warming to room temperature. Sucrose density gradient studies of the ATP-treated enzyme revealed a decrease in its sedimentation coefficient from 7.8 to 3.85 S. In the forward reaction direction, the Km for glyceraldehyde 3-P was 240 μm and the Km for NAD was 12 μm. In the backward reaction direction, the Km for NADH was 23 μm and the Ki for NAD was 850 μm. Pig liver glyceraldehyde-3-P dehydrogenase resembles the rabbit muscle enzyme in that it apparently contains 2 to 3 mol of tightly bound NAD. However, it differs strongly from that enzyme in its rate and extent of inactivation by ATP at 0 °C and by urea; the pig liver enzyme, like the yeast enzyme, dissociates much more slowly and much less completely than the rabbit muscle enzyme under comparable conditions.  相似文献   

6.
NAD+-dependent and NADP+-dependent glyceraldehyde-3-phosphate (G-3-P) dehydrogenases were isolated from Euglena gracilis and characterized as to their physical and chemical parameters. NAD+-G-3-P dehydrogenase was found to have a strong resemblance to similar enzymes from muscle tissue. It has a molecular weight of about 140,000, four subunits of identical size and charge, and a single species of NH2-terminal amino acid. Two sulfhydryl groups per subunit are present, one of which is directly involved in the catalytic activity and is rapidly titratable. The enzyme also exhibits the “half the sites reactivity” of sulfhydryl groups as defined by O. P. Malhotra and S. A. Bernhard ((1968) J. Biol. Chem. 243, 1243). The pH and temperature optima are also similar to those of the enzymes from muscle tissue, as are the reaction kinetics and the strict specificity for NAD+.NADP+-dependent G-3-P dehydrogenase is different in many respects. Its molecular weight is slightly lower (~136,000) than that of the NAD+ enzyme, though it also consists of four subunits. It has a higher affinity for the reverse reaction substrates, in line with its probable function in vivo in CO2 fixation. There is only one sulfhydryl group per subunit, and that is not involved in activity, suggesting a difference in reaction mechanisms between the two enzymes. The NADP+-dependent enzyme exhibits activation by ATP, whereas the NAD+-dependent enzyme is competitively inhibited by this nucleotide.The greatest difference observed is in the physical characteristics of the enzymes. NADP+-G-3-P dehydrogenase was highly hydrophobic. Its solubility in a 10% aqueous solution of p-dioxane was approximately four to five times that of the NAD+-enzyme. Isolation of the enzyme was accomplished by fractionation in 1,2-dimethoxyethane, which also stabilized the enzymatic activity, as did aqueous p-dioxane. The high axial ratio of the NADP+-enzyme (~9) coupled with its very low degree of hydration as well as the high degree of amidation of the dicarboxylic amino acids (>90%) indicates that the exterior of the enzyme molecule is probably hydrophobic in nature. This is in agreement with its in vivo hydrophobic environment in the chloroplast membrane and explains the lability of the enzyme once extracted into an aqueous environment as well as its stabilization in solvents.  相似文献   

7.
Phosphoglucose isomerase is the first committed enzyme of glycolysis. The protein also has a variety of biological activities on mammalian cells. The molecular basis of these extracellular functions is unclear, and the high resolution three-dimensional structure of a mammalian enzyme has not been described. We report here the cDNA and protein sequence for phosphoglucose isomerase from rabbit muscle. The sequence was obtained directly by PCR without the need to screen clones from a cDNA library and encoded active enzyme when expressed in bacterial cells. The 558 amino acid rabbit coding sequence is the same length as and highly similar (92% residue identity) to the sequences from human and pig and less so (88%) to the mouse enzyme. Non-conservative amino acid changes between the four mammalian sequences are concentrated in the first 35 and last five residues. The rabbit protein has an additional Cys residue and amino acid changes at five positions otherwise invariant in the mammalian enzymes.  相似文献   

8.
The fate of hydrogen atoms at C-2 of glucose 6-phosphate (G6P) and C-1 of fructose 6-phosphate (F6P) was studied in the reaction catalysed by phosphoglucose isomerase from Thermococcus kodakarensis (TkPGI) through 1D and 2D NMR methods. When the reaction was performed in 2H2O the hydrogen atoms in the aforementioned positions were exchanged with deuterons indicating that the isomerization occurred by a cis-enediol intermediate involving C-1 pro-R hydrogen of F6P. These features are similar to those described for phosphoglucose isomerases from rabbit muscle and Pyrococcus furiosus.  相似文献   

9.
Isopentenyl pyrophosphate isomerase (EC 5.3.3.2) from pig liver has been purified 197-fold. The preparation was estimated to contain less than 10% of contaminating protein. The molecular weight determined by gel filtration was 82,500 ± 3,000 and the isoelectric point from isoelectric focusing was in the range 6.0–6.2. N-terminal analysis showed the presence of both leucine and proline. The pH optimum of the enzyme preparation was 6.3. After dialysis against EDTA, activity was restored by either Mn2+ or Mg2+, the former being more effective. At the optimum pH and concentration of Mn2+, Km and V were 2.7 μm and 6.7 μmol min?1 mg?1, respectively. The enzyme was partially inhibited by a variety of terpene mono- and pyrophosphate esters, by inorganic phosphate ions, and by acetate ions; essentially complete inhibition by sulfhydryl-blocking reagents was observed. ATP partially inhibited, the degree of inhibition showing a sigmoid dependence on ATP concentration. Monothiols and dithiothreitol activated the enzyme, as did mevalonic acid.  相似文献   

10.
large-scale purification procedure for phosphoglucose isomerase from pig skeletal muscle is described. It consists of two fractionations by selective precipitation and two ion exchange chromatography steps yielding an end product of approximately 900 units (micromoles of sub-strate converted to product per rain per mg of protein, at 30°) specific activity. The method separates three isoenzymic forms with an overall recovery of about 30% of the original total enzyme activity in the form of Isoenzyme III, the latter being the predominant enzyme species.  相似文献   

11.
Electrophoretic variants of phosphoglucose isomerase (EC.5.3.1.9) and phosphoglucose mutase (EC.2.7.5.1) have been studied in eight species of freshwater molluscs. Two phenotypes of phosphoglucose isomerase were observed in Melanopsis nodosa and one phenotype was observed in the rest of the species. One phenotype of phosphoglucose mutase was observed in all the species of molluscs studied. Phosphoglucose isomerase is inferred to be a dimer encoded at a single polymorphic locus in Melanoides nodosa. There are two alleles at this locus. Phosphoglucose mutase is inferred to be a monomer encoded at a single monomorphic locus in all species. The electrophoretic analysis revealed that phosphoglucose isomerase enzyme cannot be considered a good taxonomic criterion to differentiate the different members of the six families studied but, on the other hand, it is considered a good taxonomic criterion to differentiate Melanopsis nodosa and Theodoxus jordani. Phosphoglucose mutase is considered a good taxonomic criterion to differentiate the family Melanidae from the remaining five families studied. General protein can be considered a good taxonomic criterion to differentiate the family Corbicullidae from Melanidae, Viviparidae and Neritidae but, on the other hand, it seems to be a less useful taxonomic criterion to differentiate between the Viviparidae and Neritidae.  相似文献   

12.
Bacillus sphaericus cannot metabolize sugar since it lacks several of the enzymes necessary for glycolysis. Our results confirmed the presence of a glucokinase-encoding gene, glcK, and a phosphofructokinase-encoding gene, pfk, on the bacterial chromosome and expression of glucokinase during vegetative growth of B. sphaericus strains. However, no phosphoglucose isomerase gene (pgi) or phosphoglucose isomerase enzyme activity was detected in these strains. Furthermore, one glcK open reading frame was cloned from B. sphaericus strain C3-41 and then expressed in Escherichia coli. Biochemical analysis revealed that this gene encoded a protein with a molecular mass of 33 kDa and that the purified recombinant glucokinase had Km values of 0.52 and 0.31 mM for ATP and glucose, respectively. It has been proved that this ATP-dependent glucokinase can also phosphorylate fructose and mannose, and sequence alignment of the glcK gene indicated that it belongs to the ROK protein family. It is postulated that the absence of the phosphoglucose isomerase-encoding gene pgi in B. sphaericus might be one of the reasons for the inability of this bacterium to metabolize carbohydrates. Our findings provide additional data that further elucidate the specific metabolic pathway and could be used for genetic improvement of B. sphaericus.  相似文献   

13.
The 16 sulfhydryl groups of native, homogeneous rabbit muscle fructose diphosphatase can all react with 5,5′-dithiobis-(2-nitrobenzoic acid). High concentrations of substrate (1–2 mm) decrease the reaction rate of the sulfhydryl groups, while concentrations up to 70 μm have no effect. After titration of the four most rapidly reacting sulfhydryl groups there is a marked desensitization toward the allosteric inhibitor AMP. In the presence of 30 μm AMP only 4–5 sulfhydryl groups/tetramer react with 5,5′-dithiobis-(2-nitrobenzoic acid), and the enzyme again becomes desensitized toward AMP inhibition. Together with a 3.5-fold increase in the I50 for AMP inhibition, the Km for Mg2+ or Mn2+ ions is also increased. In the presence of 7 mm MgCl2 or 0.28 mm MnCl2 only 6–8 sulfhydryl groups are modified. The rapid reaction of 4 sulfhydryl groups again results in desensitization. There is neither a protection by the substrate against inactivation, nor a protection by the allosteric inhibitor against desensitization. It is concluded that AMP and the divalent cations induce conformational changes in the protein molecule making 11–12 or 8–10 sulfhydryl groups inert for 5,5′-dithiobis-(2-nitrobenzoic acid), respectively. The Km for fructose-1,6-diphosphate is not changed after the modification of 4–5 sulfhydryl groups.  相似文献   

14.
A.M. El-Badry 《BBA》1974,333(2):366-377
Hexosediphosphatase (d-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) has been isolated, purified, and crystallized, from previously isolated spinach chloroplasts. The effects of various anions, cations, and sulfhydryl compounds were tested, and activation by Mg2+, glycine, HCO3?, and sulfhydryl compounds is described. The purified enzyme is very specific for fructose 1,6-diphosphate and does not attack sedoheptulose-1,7-bisphosphate. The s20 value of the enzyme was 7.7, from which the molecular weight of the enzyme was estimated as 140 000.  相似文献   

15.
A fructose diphosphate aldolase has been isolated from ascarid muscle and crystallized by simple column chromatography and an ammonium sulfate fractionation procedure. It was found to be homogeneous on electrophoresis and Sephadex G-200 gel filtration. This enzyme has a fructose diphosphate/fructose 1-phosphate activity ratio close to 40 and specific activity for fructose diphosphate cleavage close to 11. Km values of ascarid aldolase are 1 × 10−6m and 2 × 10−3m for fructose diphosphate and fructose 1-phosphate, respectively. The enzyme reveals a number of catalytic and molecular properties similar to those found for class I fructose diphosphate aldolases. It has C-terminal functional tyrosine residues, a molecular weight of 155,000, and is inactivated by NaBH4 in presence of substrate. Data show the presence of two types of subunits in ascarid aldolase; the subunits have different electrophoretic mobilities but similar molecular weights of 40,000. Immunological studies indicate that the antibody-binding sites of the molecules of the rabbit muscle aldolase A or rabbit liver aldolase B are structurally different from those of ascarid aldolase. Hybridization studies show the formation of one middle hybrid form from a binary mixture of the subunits of ascarid and rabbit muscle aldolases. Hybridization between rabbit liver aldolase and ascarid aldolase was not observed. The results indicate that ascarid aldolase is structurally more related to the mammalian aldolase A than to the aldolase B.  相似文献   

16.
An alkaliphilic, thermophilic Bacillus sp. (NCIM 59) produced extracellular xylose isomerase at pH 10 and 50°C by using xylose or wheat bran as the carbon source. The distribution of xylose isomerase as a function of growth in comparison with distributions of extra- and intracellular marker enzymes such as xylanase and β-galactosidase revealed that xylose isomerase was truly secreted as an extracellular enzyme and was not released because of sporulation or lysis. The enzyme was purified to homogeneity by ammonium sulfate precipitation followed by gel filtration, preparative polyacrylamide gel electrophoresis, and ion-exchange chromatography. The molecular weight of xylose isomerase was estimated to be 160,000 by gel filtration and 50,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating the presence of three subunits. The enzyme is most active at pH 8.0 and with incubation at 85°C for 20 min. Divalent metal ions Mg2+, Co2+, and Mn2+ were required for maximum activity of the enzyme. The Km values for D-xylose and D-glucose at 80°C and pH 7.5 were 6.66 and 142 mM, respectively, while Kcat values were 2.3 × 102 s-1 and 0.5 × 102 s-1, respectively.  相似文献   

17.
A large-scale purification procedure for phosphoglucose isomerase from pig skeletal muscle is described. It consists of two fractionations by selective precipitation and two ion exchange chromatography steps yielding an end product of approximately 900 units (micromoles of substrate converted to product per min per mg of protein, at 30 degrees) specific activity. The method separates three isoenzymic forms with an overall recovery of about 30% of the original total enzyme activity in the form of Isoenzyme III, the latter being the predominant enzyme species.  相似文献   

18.
Isolation and characterization of pig muscle aldolase. A comparative study   总被引:1,自引:0,他引:1  
Aldolase with a specific activity of 10.8 units/mg protein was isolated from pig muscle. Its molecular weight was found to be 150,000. The optimum pH for the catalytic activity was 7.25 and the apparent temperature optimum was 313 K. The Km value was 2.9 X 10(-5) M with FDP as substrate, and 2.8 X 10(-3) M with F1P as substrate. The thermal stability of this pig muscle enzyme was higher than that of the rabbit muscle enzyme. The thermal inactivation of the pig aldolase did not show simple first-order kinetics. The higher conformational stability of the pig aldolase than that of the rabbit enzyme was demonstrated by its higher resistance to the denaturing effect of urea.  相似文献   

19.
Previous viscometric studies from this laboratory (Johnson, C. S., Vogtmann, L., and Deal, W. C., Jr. (1976) Biochem. Biophys. Res. Commun.73, 391–395) have shown that at 3.5 ° C, pig kidney phosphofructokinase (PFK) is markedly asymmetric and rabbit muscle PFK is moderately asymmetric. The present viscometric and ultracentrifugal studies show that both enzymes are also asymmetric at near-physiological temperatures, that both exist in high-temperature and low-temperature forms, and that the high-temperature forms of both are less asymmetric and more dissociated than the low-temperature forms. The risults also show that the transitions from low- to high-temperature forms are reversible if the exposure to 35 °C is short enough that no irreversible chemical modification occurs. For pig kidney PFK, intrinsic viscosity values of 34.0, 25.6, and 13.8 ml/g were obtained at 3.5, 20 and 35 °C, respectively, whereas rabbit muscle PFK yielded values of 6.9, 6.2, and 5.2 ml/g at the corresponding temperatures. These data clearly show a decrease in asymmetry with increase in temperature. However, both enzymes are still asymmetric at the higher temperature, inasmuch as most globular macromolecules have intrinsic viscosity values in the range of 3 to 4 ml/g, regardless of molekular weight. Studies from 1 to 45 ° C at a fixed protein concentration (4.8 mg/ml) showed that pig kidney PFK has reduced viscosity values of 51.0 ml/g (low-temperature form) and 20.4 ml/g (high-temperature form) in plateau regions of the viscosity graph at the temperature extremes; the mid-point of the transition between the two forms is at about 22–24 °C. Rabbit muscle PFK at 4.2 mg/ml reproducibly gave corresponding reduced viscosity values of 6.9 and 4.8 ml/g for the low- and high-temperature forms, respectively; the transition mid-point between the two forms is at about 16 °C. The first reported sedimentation velocity studies of rabbit muscle PFK at near-physiological temperature (35 °C) show that with near-physiological protein concentration (1.25 mg/ml), the enzyme is in a much more dissociated form, s20,w(weight average) = 14. 5 S; s20,w(peak leading edge) = 17 S, than that previously reported at lower temperatures, s20,w(fastest peak) = 23–30 S. Similarly, the first sedimentation studies on the pig kidney enzyme indicate a lower sedimentation coefficient at 35 ° C (s0.39%20,w = 48 S) than at 3.5 ° C(65 S).  相似文献   

20.
An inducible l-mandelate-4-hydroxylase has been partially purified from crude extracts of Pseudomonas convexa. This enzyme catalyzed the hydroxylation of l-mandelic acid to 4-hydroxymandelic acid. It required tetrahydropteridine, NADPH, Fe2+, and O2 for its activity. The approximate molecular weight of the enzyme was assessed as 91,000 by gel filtration on Sephadex G-150. The enzyme was optimally active at pH 5.4 and 38 °C. A classical Michaelis-Menten kinetic pattern was observed with l-mandelate, NADPH, and ferrous sulfate and Km values for these substrates were found to be 1 × 10?4, 1.9 × 10?4, and 4.7 × 10?5m, respectively. The enzyme is very specific for l-mandelate as substrate. Thiol inhibitors inhibited the enzyme reaction, indicating that the sulfhydryl groups may be essential for the enzyme action. Treatment of the partially purified enzyme with denaturing agents inactivated the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号