首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
Cyclooxygenase 2 (COX-2) expression is induced by physiological and inflammatory stimuli. Regulation of COX-2 expression is stimulus and cell type specific. Exposure to Zn2+ has been associated with activation of multiple intracellular signaling pathways as well as the induction of COX-2 expression. This study aims to elucidate the role of intracellular signaling pathways in Zn2+-induced COX-2 expression in human bronchial epithelial cells. Inhibitors of the phosphatidylinositol 3-kinase (PI3K) potently block Zn2+-induced COX-2 mRNA and protein expression. Overexpression of adenoviral constructs encoding dominant-negative Akt kinase downstream of PI3K or wild-type phosphatase and tensin homolog deleted on chromosome 10, an important PI3K phosphatase, suppresses COX-2 mRNA expression induced by Zn2+. Zn2+ exposure induces phosphorylation of the tyrosine kinases, including Src and EGF receptor (EGFR), and the p38 mitogen-activated protein kinase. Blockage of these kinases results in inhibition of Zn2+-induced Akt phosphorylation as well as COX-2 protein expression. Overexpression of dominant negative p38 constructs suppresses Zn2+-induced increase in COX-2 promoter activity. In contrast, the c-Jun NH2-terminal kinase and the extracellular signal-regulated kinases have minimal effect on Akt phosphorylation and COX-2 expression. Inhibition of p38, Src, and EGFR kinases with pharmacological inhibitors markedly reduces Akt phosphorylation induced by Zn2+. However, the PI3K inhibitors do not show inhibitory effects on p38, Src, and EGFR. These data suggest that p38 and EGFR kinase-mediated Akt activation is required for Zn2+-induced COX-2 expression and that the PI3K/Akt signaling pathway plays a central role in this event.  相似文献   

3.
Intracellular polyamine synthesis is regulated by the enzyme ornithine decarboxylase (ODC), and its inhibition by -difluromethylornithine (DFMO), confers resistance to apoptosis. We have previously shown that DFMO leads to the inhibition of de novo polyamine synthesis, which in turn rapidly activates Src, STAT3 and NF-κB via integrin β3 in intestinal epithelial cells. One mechanism to explain these effects involves the activation of upstream growth factor receptors, such as the epidermal growth factor receptor (EGFR). We therefore hypothesized that EGFR phosphorylation regulates the early response to polyamine depletion. DFMO increased EGFR phosphorylation on tyrosine residues 1173 (pY1173) and 845 (pY845) within 5 min. Phosphorylation declined after 10 min and was prevented by the addition of exogenous putrescine to DFMO containing medium. Phosphorylation of EGFR was concomitant with the activation of ERK1/2. Pretreatment with either DFMO or EGF for 1 h protected cells from TNF-/CHX-induced apoptosis. Exogenous addition of polyamines prevented the protective effect of DFMO. In addition, inhibition of integrin β3 activity (with RGDS), Src activity (with PP2), or EGFR kinase activity (with AG1478), increased basal apoptosis and prevented protection conferred by either DFMO or EGF. Polyamine depletion failed to protect B82L fibroblasts lacking the EGFR (PRN) and PRN cells expressing either a kinase dead EGFR (K721A) or an EGFR (Y845F) mutant lacking the Src phosphorylation site. Conversely, expression of WT-EGFR (WT) restored the protective effect of polyamine depletion. Fibronectin activated the EGFR, Src, ERKs and protected cells from apoptosis. Taken together, our data indicate an essential role of EGFR kinase activity in MEK/ERK-mediated protection, which synergizes with integrin β3 leading to Src-mediated protective responses in polyamine depleted cells.  相似文献   

4.
5.
Glucosylceramide-based glycosphingolipids have been previously demonstrated to regulate negatively the formation of inositol 1,4,5-trisphosphate by phospholipase C-gamma1. In the present study, the depletion of endogenous glucosylceramide by D-t-EtDO-P4 in cultured ECV304 cells induced autophosphorylation of Src kinase at tyrosine residue 418 within the catalytic loop and dephosphorylation of Src kinase at tyrosine residues 529 within the carboxyl-terminal regulatory region. Phosphotransferase activities of Src kinase were also induced in the glucosylceramide-depleted cells. c-Src kinase activity and phosphorylations at Src Tyr-418 and epidermal growth factor (EGF) receptor Tyr-1068 were significantly enhanced by bradykinin in response to 100 nm D-t-EtDO-P4 compared with control cells. The phosphorylation and dephosphorylation on Tyr-418 and Tyr-529 residues of c-Src were reversed by treatment of 4-amino-5-(4-chlorophenyl)-7-t-butyl(pyrazolo)[3,4-d]pyrimidine (PP2), an inhibitor of Src kinase, in control cells. Glucosylceramide-depleted cells resisted treatment with PP2, and both phosphorylation of Tyr-418 and dephosphorylation of Tyr-529 induced by depletion of glucosylceramide were maintained. Compared with untreated cells, tyrosine phosphorylation of phospholipase C-gamma1 was enhanced by EGF stimulation in glucosylceramide-depleted cells, associated with enhanced tyrosine phosphorylation of the EGF receptor at Tyr-1068 and Tyr-1086 stimulated by EGF. The Src inhibitor, PP2, significantly blocked EGF-induced tyrosine phosphorylation of phospholipase C-gamma1 in control cells, whereas in glucosylceramide-depleted cells, suppression of Src kinase activity by PP2 toward EGF-induced tyrosine phosphorylation of phospholipase C-gamma1 was less significant. Thus the activation of Src kinase by depletion of glucosylceramide-based glycosphingolipids in cultured ECV304 cells is a critical up-stream event in the activation of phospholipase C-gamma1.  相似文献   

6.
Exposure of MDA-MB-468 cells to ionizing radiation (IR) caused biphasic activation of ERK as indicated by its phosphorylation at Thr202/Tyr204. Specific epidermal growth factor receptor (EGFR) inhibitor AG1478 and specific Src inhibitor PP2 inhibited IR-induced ERK1/2 activation but phosphatidylinositol-3 kinase inhibitor wortmannin did not. IR caused EGFR tyrosine phosphorylation, whereas it did not induce EGFR autophosphorylation at Tyr992, Tyr1045, and Tyr1068 or Src-dependent EGFR phosphorylation at Tyr845. SHP-2, which positively regulates EGFR/Ras/ERK signaling cascade, became activated by IR as indicated by its phosphorylation at Tyr542. This activation was inhibited by PP2 not by AG1478, which suggests Src-dependent activation of SHP-2. Src and PTPalpha, which positively regulates Src, became activated as indicated by phosphorylation at Tyr416 and Tyr789, respectively. These data suggest that IR-induced ERK1/2 activation involves EGFR through a Src-dependent pathway that is distinct from EGFR ligand activation.  相似文献   

7.
Recently we reported the activation MAPKs, MEK, and Rafs by electroconvulsive shock (ECS) in the rat hippocampus. However, the upstream pathways for the activation of Raf-MEK-MAPK cascade after ECS have not been studied yet. Since the proline-rich tyrosine kinase 2 (Pyk2) and Src were reported to be involved in the activation of the MAPKs in neuronal cells, we examined tyrosine phosphorylation and activation of Pyk2 in the rat hippocampus after ECS. ECS transiently increased the phosphorylation of Pyk2 at multiple tyrosine residues (Tyr-402, Tyr-580, and Tyr-881). The phosphorylations reached the peak at 1 min and returned to basal level by 10 min after ECS. At 1 min after ECS, the binding of Pyk2 to Src and Grb2, and of Grb2 to Ras increased. These results suggested that ECS activates Pyk2, which then transmits the signal to MAPK cascade via Src, Grb2, and Ras in the rat hippocampus.  相似文献   

8.
Previous studies have shown that epidermal growth factor (EGF) synergizes with various extracellular matrix components in promoting the migration of B82L fibroblasts expressing wild-type EGF receptors and that functional EGF receptors are critical for the conversion of B82L fibroblasts to a migratory cell type (). In the present study, we examined the effects of platelet-derived growth factor (PDGF) on the motility of B82L fibroblasts using a microchemotaxis chamber. We found that PDGF can enhance fibronectin-induced migration of B82L fibroblasts expressing wild-type EGF receptors (B82L-clone B3). However, B82L cells that lack the EGF receptor (B82L-parental) or that express an EGF receptor that is kinase-inactive (B82L-K721M) or C-terminally truncated (B82L-c'973) exhibit little PDGF-stimulated migration. In addition, none of these three cell lines exhibit the capacity to migrate to fibronectin alone. These observations indicate that, similar to cell migration toward fibronectin, PDGF-induced cell migration of B82L fibroblasts is augmented by the expression of an intact EGF receptor kinase. The loss of PDGF-stimulated motility in B82L cells that do not express an intact EGF receptor does not appear to result from a gross dysfunction of PDGF receptors, because ligand-stimulated tyrosine phosphorylation of the PDGF-beta receptor and the activation of mitogen-activated protein kinases are readily detectable in these cells. Moreover, an interaction between EGF and PDGF receptor systems is supported by the observation that the EGF receptor exhibits an increase in phosphotyrosine content in a time-dependent fashion upon the addition of PDGF. Altogether, these studies demonstrate that the expression of EGF receptor is critical for PDGF-stimulated migration of murine B82L fibroblasts and suggest a role for the EGF receptor downstream of PDGF receptor activation in the signaling events that lead to PDGF-stimulated cell motility.  相似文献   

9.
We showed previously that epithelial growth factor (EGF) receptor (EGFR) signaling is triggered by metallic compounds associated with ambient air particles. Specifically, we demonstrated that As, Zn, and V activated the EGFR tyrosine kinase and the downstream kinases MEK1/2 and ERK1/2. In this study, we examined the role of Ras in EGFR signaling and the nuclear factor-kappaB (NF-kappaB) activation pathway and the possible interaction between these two signaling pathways in a human airway epithelial cell line (BEAS-2B) exposed to As, V, or Zn ions. Each metal significantly increased Ras activity, and this effect was inhibited by the EGFR tyrosine kinase activity inhibitor PD-153035. Adenoviral-mediated overexpression of a dominant-negative mutant form of Ras(N17) significantly blocked MEK1/2 or ERK1/2 phosphorylation in As-, Zn-, or V-exposed BEAS-2B cells but caused little inhibition of V-, Zn- or EGF-induced EGFR tyrosine phosphorylation. This confirmed Ras as an important intermediate effector in EGFR signaling. Interestingly, V, but not As, Zn, or EGF, induced IkappaBalpha serine phosphorylation, IkappaBalpha breakdown, and NF-kappaB DNA binding. Moreover, PD-153035 and overexpression of Ras(N17) each significantly blocked V-induced IkappaBalpha breakdown and NF-kappaB activation, while inhibition of MEK activity with PD-98059 failed to do so. In summary, exposure to As, Zn, and V initiated EGFR signaling and Ras-dependent activation of MEK1/2 and ERK1/2, but only V induced Ras-dependent NF-kappaB nuclear translocation. EGFR signaling appears to cross talk with NF-kappaB signaling at the level of Ras, but additional signals appear necessary for NF-kappaB activation. Together, these data suggest that, in V-treated BEAS-2B cells, Ras-dependent signaling is essential, but not sufficient, for activation of NF-kappaB.  相似文献   

10.
Recent evidence indicates that cyclooxygenase-2 (COX-2) and epidermal growth factor receptor (EGFR) are involved in hepatocarcinogenesis. This study was designed to evaluate the possible interaction between the COX-2 and EGFR signaling pathways in human hepatocellular carcinoma (HCC) cells. Immunohistochemical analysis using serial sections of human HCC tissues revealed positive correlation between COX-2 and EGFR in HCC cells (P < 0.01). Overexpression of COX-2 in cultured HCC cells (Hep3B) or treatment with PGE(2) or the selective EP(1) receptor agonist, ONO-DI-004, increased EGFR phosphorylation and tumor cell invasion. The PGE(2)-induced EGFR phosphorylation and cell invasiveness were blocked by the EP(1) receptor siRNA or antagonist ONO-8711 and by two EGFR tyrosine kinase inhibitors, AG1478 and PD153035. The EP(1)-induced EGFR transactivation and cell invasion involves c-Src, in light of the presence of native binding complex of EP(1)/Src/EGFR and the inhibition of PGE(2)-induced EGFR phosphorylation and cell invasion by the Src siRNA and the Src inhibitor, PP2. Further, overexpression of COX-2 or treatment with PGE(2) also induced phosphorylation of c-Met, another receptor tyrosine kinase critical for HCC cell invasion. Moreover, activation of EGFR by EGF increased COX-2 promoter activity and protein expression in Hep3B and Huh-7 cells, whereas blocking PGE(2) synthesis or EP(1) attenuated EGFR phosphorylation induced by EGF, suggesting that the COX-2/PGE(2)/EP(1) pathway also modulate the activation of EGFR by its cognate ligand. These findings disclose a cross-talk between the COX-2/PGE(2)/EP(1) and EGFR/c-Met signaling pathways that coordinately regulate human HCC cell invasion.  相似文献   

11.
Gonadotropin releasing hormone (GnRH) contributes to the maintenance of gonadotrope function by increasing extracellular signal-regulated kinase (ERK) activity subsequent to binding to its cognate G-protein-coupled receptor. As the GnRH receptor exclusively interacts with G(q/11) proteins and as receptor expression is regulated in a beta-arrestin-independent fashion, it represents a good model to systematically dissect underlying signaling pathways. In alphaT3-1 gonadotropes endogenously expressing the GnRH receptor, GnRH challenge resulted in a rapid increase in ERK activity which was attenuated by the epidermal growth factor receptor (EGFR)-specific tyrosine kinase inhibitor AG1478. In COS-7 cells transiently expressing the human GnRH receptor, agonist-induced ERK activation was independent of free Gbetagamma subunits but could be mimicked by short-term phorbol ester treatment. Most notably, G(q/11)-induced ERK activation was sensitive to N17-Ras and to expression of the C-terminal Src kinase but also to other dominant negative mutants of signaling components localized upstream of Ras, like Shc and the EGFR. GnRH as well as phorbol esters led to Ras activation in COS-7 and alphaT3-1 cells, which was dependent on Src and EGFR tyrosine kinases, indicating that both tyrosine kinases act downstream of protein kinase C (PKC) and upstream of Ras. However, Src did not contribute to Shc tyrosine phosphorylation. GnRH or phorbol ester challenge resulted in PKC-dependent EGFR autophosphorylation. Furthermore, a 5-min phorbol ester treatment was sufficient to trigger tyrosine phosphorylation of the platelet-derived growth factor-beta receptor in L cells. Thus, in several cell systems PKC is able to stimulate Ras via activation of receptor tyrosine kinases.  相似文献   

12.
The epidermal growth factor receptor (EGFR) can be activated by both direct ligand binding and cross-talk with other molecules, such as integrins. This integrin-mediated cross-talk with growth factor receptors participates in regulating cell proliferation, survival, migration, and invasion. Previous studies have shown that ligand-dependent EGFR activation is inhibited by GM3, the predominant ganglioside of epithelial cells, but the effect of GM3 on ligand-independent, integrin-EGFR cross-talk is unknown. Using a squamous carcinoma cell line we show that endogenous accumulation of GM3 disrupts the ligand-independent association of the integrin beta1 subunit with EGFR and results in inhibition of cell proliferation. Consistently, endogenous depletion of GM3 markedly increases the association of EGFR with tyrosine-phosphorylated integrin beta1 and promotes cell proliferation. The ligand-independent stimulation of EGFR does not require focal adhesion kinase phosphorylation or cytoskeletal rearrangement. Stimulation of EGFR and mitogen-activated protein kinase signaling by GM3 depletion involves the phosphorylation of EGFR at tyrosine residues 845, 1068, and 1148 but not 1086 or 1173. The specific blockade of phosphorylation at Tyr-845 with Src family kinase inhibition and at Tyr-1148 with phosphatidylinositol 3-kinase inhibition suggests that GM3 inhibits integrin-induced, ligand-independent EGFR phosphorylation (cross-talk) through suppression of Src family kinase and phosphatidylinositol 3-kinase signaling.  相似文献   

13.
We have previously shown that prothrombin, a blood coagulation factor, can cause an inhibition of DNA synthesis in normal rat hepatocytes. To explore the mechanisms of this prothrombin action, we examined its effects on the activation of fibronectin receptor integrin alpha5, since fibronectin was found to be degraded by prothrombin actions in primary hepatocyte cultures. We found that prothrombin treatment of rat hepatocytes without addition of any growth factor induced tyrosine phosphorylation of integrin alpha5 and interaction of integrin alpha5 with epidermal growth factor receptor (EGFR), leading to EGFR tyrosine phosphorylation at tyrosine residues Tyr-845 and Tyr-1173. EGFR tyrosine phosphorylation triggered phosphorylation of its down-stream target Shc and the activation of the c-Jun N-terminal kinase (JNK) pathway. Prothrombin also induced hepatocyte apoptosis, a change in cell shape and activation of caspase 3 pathway. The JNK pathway is most likely involved in prothrombin-induced hepatocyte apoptosis, because pre-treatment of hepatocytes with JNK kinase inhibitor II (SP600125) antagonized these prothrombin actions. The data suggest that integrin-related EGFR activation by prothrombin can induce cell growth inhibition and apoptosis via an EGFR-JNK signaling pathway.  相似文献   

14.
The mechanisms involved in the mechanical loading-induced increase in bone formation remain unclear. In this study, we showed that cyclic strain (CS) (10 min, 1% stretch at 0.25 Hz) stimulated the proliferation of overnight serum-starved ROS 17/2.8 osteoblast-like cells plated on type I collagen-coated silicone membranes. This increase was blocked by MEK inhibitor PD-98059. Signaling events were then assessed 0 min, 30 min, and 4 h after one CS period with Western blotting and coimmunoprecipitation. CS rapidly and time-dependently promoted phosphorylation of both ERK2 at Tyr-187 and focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, leading to the activation of the Ras/Raf/MEK pathway. Cell transfection with FAK mutated at Tyr-397 completely blocked ERK2 Tyr-187 phosphorylation. Quantitative immunofluorescence analysis of phosphotyrosine residues showed an increase in focal adhesion plaque number and size in strained cells. CS also induced both Src-Tyr-418 phosphorylation and Src to FAK association. Treatment with the selective Src family kinase inhibitor pyrazolopyrimidine 2 did not prevent CS-induced FAK-Tyr-397 phosphorylation suggesting a Src-independent activation of FAK. CS also activated proline-rich tyrosine kinase 2 (PYK2), a tyrosine kinase highly homologous to FAK, at the 402 phosphorylation site and promoted its association to FAK in a time-dependent manner. Mutation of PYK2 at the Tyr-402 site prevented the ERK2 phosphorylation only at 4 h. Intra and extracellular calcium chelators prevented PYK2 activation only at 4 h. In summary, our data showed that osteoblast response to mitogenic CS was mediated by MEK pathway activation. The latter was induced by ERK2 phosphorylation under the control of FAK and PYK2 phosphorylation orchestrated in a time-dependent manner.  相似文献   

15.
Bromocriptine, acting through the dopamine D2 receptor, provides robust protection against apoptosis induced by oxidative stress in PC12-D2R and immortalized nigral dopamine cells. We now report the characterization of the D2 receptor signaling pathways mediating the cytoprotection. Bromocriptine caused protein kinase B (Akt) activation in PC12-D2R cells and the inhibition of either phosphoinositide (PI) 3-kinase, epidermal growth factor receptor (EGFR), or c-Src eliminated the Akt activation and the cytoprotective effects of bromocriptine against oxidative stress. Co-immunoprecipitation studies showed that the D2 receptor forms a complex with the EGFR and c-Src that was augmented by bromocriptine, suggesting a cross-talk between these proteins in mediating the activation of Akt. EGFR repression by inhibitor or by RNA interference eliminated the activation of Akt by bromocriptine. D2 receptor stimulation by bromocriptine induced c-Src tyrosine 418 phosphorylation and EGFR phosphorylation specifically at tyrosine 845, a known substrate of Src kinase. Furthermore, Src tyrosine kinase inhibitor or dominant negative Src interfered with Akt translocation and phosphorylation. Thus, the predominant signaling cascade mediating cytoprotection by the D2 receptor involves c-Src/EGFR transactivation by D2 receptor, activating PI 3-kinase and Akt. We also found that the agonist pramipexole failed to stimulate activation of Akt in PC12-D2R cells, providing an explanation for our previous observations that, despite efficiently activating G-protein signaling, this agonist had little cytoprotective activity in this experimental system. These results support the hypothesis that specific dopamine agonists stabilize distinct conformations of the D2 receptor that differ in their coupling to G-proteins and to a cytoprotective c-Src/EGFR-mediated PI-3 kinase/Akt pathway.  相似文献   

16.
Communication between receptor tyrosine kinase (RTK)- and G protein-coupled receptor (GPCR)-mediated signaling systems has received increasing attention in recent years. Here, we report that activation of G protein-coupled bradykinin B2 receptor induces an up-regulation of cellular responses mediated by epidermal growth factor receptor (EGFR) and provide essential mechanistic characteristics of this sensitization process. EGF, which failed to evoke detectable amount of calcium increase and neurotransmitter release when administrated alone in primary cultures of rat adrenal chromaffin cells and PC12 cells, became capable of inducing these responses specifically after bradykinin pretreatment. Both EGFR and non-receptor tyrosine kinase p60Src, whose kinase activities were required in the sensitization, were found to be enriched in cholesterol-rich lipid rafts. Bradykinin caused activation of p60Src and Src-dependent phosphorylation of the EGFR on Tyr-845 in lipid rafts, as well as recruitment of phospholipase C (PLC) gamma1 to the rafts. Depletion of cholesterol by methyl-beta-cyclodextrin disrupted the raft localization of EGFR and Src, as well as bradykinin-induced translocation of PLCgamma1. Furthermore, sensitization, which was impaired by cholesterol depletion, was restored by repletion of cholesterol. Therefore, we suggest that lipid rafts are essential participants in the regulation of receptor-mediated signal transduction and cross-talk via organizing signaling complexes in membrane microdomains.  相似文献   

17.
B Boyer  S Roche  M Denoyelle    J P Thiery 《The EMBO journal》1997,16(19):5904-5913
We have demonstrated previously that Src controls the epidermal growth factor (EGF)-induced dispersion of NBT-II carcinoma epithelial cells. Here we show that while only Src and Yes were expressed and activated by EGF, microinjected kinase-inactive mutants of Src (SrcK-) and Fyn (FynK-) were able to exert a dominant-negative effect on the scattering response. Both SH2 and SH3 domains of FynK- were required for inhibition of cell scattering. Expression of dominant-negative N17Ras also abrogated EGF-induced dispersion, showing that Ras is another regulator of cell dispersion. Expression of SrcK- did not alter EGF-evoked Shc tyrosine phosphorylation, Shc-Grb2 complex formation and MAPK activation, three elements of the Ras pathway. Furthermore, the expression of Jun-Fos and Slug rescued the block induced by N17Ras but not by SrcK-, showing that Src kinases and Ras operate in separate pathways. In addition, actinomycin D inhibition of RNA synthesis repressed the ability of the activated mutant L61Ras but not that of F527Src to induce epithelial cell scattering. Since tyrosine phosphorylation of cytoskeleton-associated proteins pp125FAK and cortactin were abolished in EGF-stimulated SrcK- cells, we concluded that, in contrast to Ras, Src kinases may control epithelial cell dispersion in the absence of gene expression and by directly regulating the organization of the cortical cytoskeleton.  相似文献   

18.
Cholecystokinin (CCK) and related peptides are potent growth factors in the gastrointestinal tract and may be important for human cancer. CCK exerts its growth modulatory effects through G(q)-coupled receptors (CCK(A) and CCK(B)) and activation of extracellular signal-regulated protein kinase 1/2 (ERK1/2). In the present study, we investigated the different mechanisms participating in CCK-induced activation of ERK1/2 in pancreatic AR42J cells expressing both CCK(A) and CCK(B). CCK activated ERK1/2 and Raf-1 to a similar extent as epidermal growth factor (EGF). Inhibition of EGF receptor (EGFR) tyrosine kinase or expression of dominant-negative Ras reduced CCK-induced ERK1/2 activation, indicating participation of the EGFR and Ras in CCK-induced ERK1/2 activation. However, compared with EGF, CCK caused only small increases in tyrosine phosphorylation of the EGFR and Shc, Shc-Grb2 complex formation, and Ras activation. Signal amplification between Ras and Raf in a CCK-induced ERK cascade appears to be mediated by activation of protein kinase Cepsilon (PKCepsilon), because 1) down-modulation of phorbol ester-sensitive PKCs inhibited CCK-induced activation of Ras, Raf, and ERK1/2 without influencing Shc-Grb2 complex formation; 2) PKCepsilon, but not PKCalpha or PKCdelta, was detectable in Raf-1 immunoprecipitates, although CCK activated all three PKC isoenzymes. In addition, the present study provides evidence that the Src family tyrosine kinase Yes is activated by CCK and mediates CCK-induced tyrosine phosphorylation of Shc. Furthermore, we show that CCK-induced activation of the EGFR and Yes is achieved through the CCK(B) receptor. Together, our data show that different signals emanating from the CCK receptors mediate ERK1/2 activation; activation of Yes and the EGFR mediate Shc-Grb2 recruitment, and activation of PKC, most likely PKCepsilon, augments CCK-stimulated ERK1/2 activation at the Ras/Raf level.  相似文献   

19.
Previous studies have indicated that the urokinase-type plasminogen activator receptor (uPAR) can functionally interact with integrins thereby modulating integrin activity. We have previously demonstrated that treatment of fibroblasts with the uPAR ligand, P25, results in an increase in the activation of the beta1 integrin and a 35-fold increase in fibronectin matrix assembly (Monaghan, E., Gueorguiev, V., Wilkins-Port, C., and McKeown-Longo, P. J. (2004) J. Biol. Chem. 279, 1400-1407). Experiments were conducted to address the mechanism of uPAR regulation of matrix assembly. Treatment of fibroblasts with P25 led to an increase in the activation of the epidermal growth factor receptor (EGFR) and a colocalization of activated EGFR with beta1 integrins in cell matrix contacts. The effects of P25 on matrix assembly and beta1 integrin activation were inhibited by pretreatment with EGFR or Src kinase inhibitors, suggesting a role for both Src and EGFR in integrin activation by uPAR. Phosphorylation of EGFR in response to P25 occurred on Tyr-845, an Src-dependent phosphorylation site and was inhibited by PP2, the Src kinase inhibitor, consistent with Src kinase lying upstream of EGFR and integrin activation. Cells null for Src kinases also showed a loss of P25-induced matrix assembly, integrin activation, and EGFR phosphorylation. These P25-induced effects were restored following Src re-expression. The effects of P25 were specific for uPAR as enhanced matrix assembly by P25 was not seen in uPAR-/- cells, but was restored upon uPAR re-expression. These data provide evidence for a novel pathway of fibronectin matrix assembly through the uPAR-dependent sequential activation of Src kinase, EGFR, and beta1 integrin.  相似文献   

20.
Exposure of cells to oxidants increases the phosphorylation of the Src family tyrosine protein kinase Lck at Tyr-394, a conserved residue in the activation loop of the catalytic domain. Kinase-deficient Lck expressed in fibroblasts that do not express any endogenous Lck has been shown to be phosphorylated at Tyr-394 following H(2)O(2) treatment to an extent indistinguishable from that seen with wild type Lck. This finding indicates that a kinase other than Lck itself is capable of phosphorylating Tyr-394. Because fibroblasts express other Src family members, it remained to be determined whether the phosphorylation of Tyr-394 was carried out by another Src family kinase or by an unrelated tyrosine protein kinase. We examined here whether Tyr-394 in kinase-deficient Lck was phosphorylated following exposure of cells devoid of endogenous Src family kinase activity to H(2)O(2). Strikingly, treatment of such cells with H(2)O(2) led to the phosphorylation of Tyr-394 to an extent identical to that seen with wild type Lck, demonstrating that Src family kinases are not required for H(2)O(2)-induced phosphorylation of Lck. Furthermore, this efficient phosphorylation of Lck at Tyr-394 in non-lymphoid cells suggests the existence of an ubiquitous activator of Src family kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号