首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 908 毫秒
1.
Complete heparin digestion with heparin lyase 2 affords a mixture of disaccharides and resistant tetrasaccharides with 3-O-sulfo group-containing glucosamine residues at their reducing ends. Quantitative online liquid chromatography–mass spectrometric analysis of these resistant tetrasaccharides is described in this article. The disaccharide and tetrasaccharide compositions of seven porcine intestinal heparins and five low-molecular-weight heparins were analyzed by this method. These resistant tetrasaccharides account for from 5.3 to 7.3 wt% of heparin and from 6.2 to 8.3 wt% of low-molecular-weight heparin. Because these tetrasaccharides are derived from heparin’s antithrombin III-binding sites, we examined whether this method could be applied to estimate the anticoagulant activity of heparin. The content of 3-O-sulfo group-containing tetrasaccharides in a heparin correlated positively (r = 0.8294) to heparin’s anticoagulant activity.  相似文献   

2.
Pasteurella multocida Type D, a causative agent of atrophic rhinitis in swine and pasteurellosis in other domestic animals, produces an extracellular polysaccharide capsule that is a putative virulence factor. It was reported previously that the capsule was removed by treating microbes with heparin lyase III. We molecularly cloned a 617-residue enzyme, pmHS, which is a heparosan (nonsulfated, unepimerized heparin) synthase. Recombinant Escherichia coli-derived pmHS catalyzes the polymerization of the monosaccharides from UDP-GlcNAc and UDP-GlcUA. Other structurally related sugar nucleotides did not substitute. Synthase activity was stimulated about 7-25-fold by the addition of an exogenous polymer acceptor. Molecules composed of approximately 500-3,000 sugar residues were produced in vitro. The polysaccharide was sensitive to the action of heparin lyase III but resistant to hyaluronan lyase. The sequence of the pmHS enzyme is not very similar to the vertebrate heparin/heparan sulfate glycosyltransferases, EXT1 and 2, or to other Pasteurella glycosaminoglycan synthases that produce hyaluronan or chondroitin. The pmHS enzyme is the first microbial dual-action glycosyltransferase to be described that forms a polysaccharide composed of beta4GlcUA-alpha4GlcNAc disaccharide repeats. In contrast, heparosan biosynthesis in E. coli K5 requires at least two separate polypeptides, KfiA and KfiC, to catalyze the same polymerization reaction.  相似文献   

3.
Heparosan is a non-sulfated polysaccharide and potential applications include, chemoenzymatic synthesis of heparin and heparan sulfates. Heparosan is produced using microbial cells (natural producers or engineered cells). The characterization of heparosan isolated from both natural producers and engineered-cells are critical steps towards the potential applications of heparosan. Heparosan is characterized using 1) analysis of intact chain size and polydispersity, and 2) disaccharide composition. The current paper describes a novel method for heparosan chain characterization, using heparin lyase III (Hep-3, an eliminase from Flavobacterium heparinum) and heparanase Bp (Hep-Bp, a hydrolase from Burkholderia pseudomallei). The partial digestion of E. coli K5 heparosan with purified His-tagged Hep-3 results in oligomers of defined sizes. The oligomers (degree of polymerization from 2 to 8, DP2-DP8) are completely digested with purified GST-tagged Hep-Bp and analyzed using gel permeation chromatography. Hep-Bp specifically cleaves the linkage between d -glucuronic acid (GlcA) and N-acetyl-d -glucosamine (GlcNAc) but not the linkage between 4-deoxy-α-L-threo-hex-4-enopyranosyluronic acid (deltaUA) and GlcNAc, and results in the presence of a minor resistant trisaccharide (GlcNAc-GlcA-GlcNAc). This method successfully demonstrated the substrate selectivity of Hep-BP on heparosan oligomers. This analytical tool could be applied towards heparosan chain mapping and analysis of unnatural sugar moieties in the heparosan chain.  相似文献   

4.
Heparosan is a polysaccharide, which serves as the critical precursor in heparin biosynthesis and chemoenzymatic synthesis of bioengineered heparin. Because the molecular weight of microbial heparosan is considerably larger than heparin, the controlled depolymerization of microbial heparosan is necessary prior to its conversion to bioengineered heparin. We have previously reported that other acidic polysaccharides could be partially depolymerized with maintenance of their internal structure using a titanium dioxide-catalyzed photochemical reaction. This photolytic process is characterized by the generation of reactive oxygen species that oxidize individual saccharide residues within the polysaccharide chain. Using a similar approach, a microbial heparosan from Escherichia coli K5 of molecular weight >15,000 was depolymerized to a heparosan of molecular weight 8,000. The (1)H-NMR spectra obtained showed that the photolyzed heparosan maintained the same structure as the starting heparosan. The polysaccharide chains of the photochemically depolymerized heparosan were also characterized by electrospray ionization-Fourier-transform mass spectrometry. While the chain of K5 heparosan starting material contained primarily an even number of saccharide residues, as a result of coliphage K5 lyase processing, both odd and even chain numbers were detected in the photochemically-depolymerized heparosan. These results suggest that the photochemical depolymerization of heparosan was a random process that can take place at either the glucuronic acid or the N-acetylglucosamine residue within the heparosan polysaccharide.  相似文献   

5.
A simple, accurate, and robust quantitative capillary electrophoresis (CE) method for the determination of oversulfated chondroitin sulfate (OSCS) as a contaminant in heparin (Hep) preparations is described. After degradation of the polysaccharides by acidic hydrolysis, the hexosamines produced (i.e., GlcN from Hep and GalN from OSCS) were derivatized with anthranilic acid (AA) and separated by means of CE in approximately 10 min with high sensitivity detection at 214 nm (limit of detection [LOD] of ∼200 pg). Furthermore, AA-derivatized GlcN and GalN showed quite similar molar absorptivity, allowing direct and simple quantification of OSCS in Hep samples. Moreover, a preliminary step of specific enzymatic treatment by using chondroitin ABC lyase may be applied for the specific elimination of interference in the analysis due to the possible presence in Hep samples of natural chondroitin sulfate and dermatan sulfate impurities, making this analytical approach highly specific for OSCS contamination given that chondroitin ABC lyase is unable to act on this semisynthetic polymer. The CE method was validated for specificity, linearity, accuracy, precision, LOD, and limit of quantification (LOQ). Due to the very high sensitivity of CE, as little as 1% OSCS contaminant in Hep sample could be detected and quantified. Finally, a contaminated raw Hep sample was found to contain 38.9% OSCS, whereas a formulated contaminated Hep was calculated to have 39.7% OSCS.  相似文献   

6.
The chemical step in the chemoenzymatic synthesis of bioengineered heparin has been examined and optimized statistically using a response surface methodology. A four factor, two level full factorial design experiment and a three factor Box-Behnken design were carried out. The goal was to establish a method to prepare N-sulfo, N-acetyl heparosan of the desired N-acetyl content, number average molecular weight, and in maximum yield by controlling the reactant concentrations, reaction time and reaction temperature. The response surface models obtained were used to predict the reaction conditions required to optimally prepare N-sulfo, N-acetyl heparosan from Escherichia coli generated heparosan starting material of different molecular weights.  相似文献   

7.
We isolated a novel pyridoxal-5-phosphate-dependent l-cystine lyase from the dandelion Taraxacum brevicorniculatum. Real time qPCR analysis showed that C–S lyase from Taraxacum brevicorniculatum (TbCSL) mRNA is expressed in all plant tissues, although at relatively low levels in the latex and pedicel. The 1251 bp TbCSL cDNA encodes a protein with a calculated molecular mass of 46,127 kDa. It is homologous to tyrosine and alanine aminotransferases (AlaATs) as well as to an Arabidopsis thaliana carbon–sulfur lyase (C–S lyase) (SUR1), which has a role in glucosinolate metabolism. TbCSL displayed in vitrol-cystine lyase and AlaAT activities of 4 and 19 nkat mg−1 protein, respectively. However, we detected no in vitro tyrosine aminotransferase (TyrAT) activity and RNAi knockdown of the enzyme had no effect on phenotype, showing that TbCSL substrates might be channeled into redundant pathways. TbCSL is in vivo localized in the cytosol and functions as a C–S lyase or an aminotransferase in planta, but the purified enzyme converts at least two substrates specifically, and can thus be utilized for further in vitro applications.  相似文献   

8.
A novel halophilic alginate-degrading microorganism was isolated from rotten seaweed and identified as Isoptericola halotolerans CGMCC5336. The lyase from the strain was purified to homogeneity by combining of ammonium sulfate fractionation and anion-exchange chromatography with a specific activity of 8409.19 U/ml and a recovery of 25.07%. This enzyme was a monomer with a molecular mass of approximately 28 kDa. The optimal temperature and pH were 50 °C and pH 7.0, respectively. The lyase maintained stability at neutral pH (7.0–8.0) and temperatures below 50 °C. Metal ions including Na+, Mg2+, Mn2+, and Ca2+ notably increased the activity of the enzyme. With sodium alginate as the substrate, the Km and Vmax were 0.26 mg/ml and 1.31 mg/ml min, respectively. The alginate lyase had substrate specificity for polyguluronate and polymannuronate units in alginate molecules, indicating its bifunctionality. These excellent characteristics demonstrated the potential applications in alginate oligosaccharides production with low polymerisation degrees.  相似文献   

9.
Mycoplasma agassizii and M. testudineum have been associated with upper respiratory tract disease (URTD) in the threatened desert tortoise (Gopherus agassizii). Because microbiological culture methods have proven difficult to employ in wild desert tortoises, our goal was to develop a sensitive and specific qPCR method for detecting and quantifying mycoplasma DNA in nasal lavage fluid collected in the field. Primers for 16S ribosomal RNA gene sequences specific for M. agassizii and M. testudineum were designed, together with primers that recognize conserved sequences of both microorganisms. Standard curves generated with DNA extracted from known numbers of mycoplasma cells revealed a lower detection limit of approximately 5 fg. The qPCR method did not recognize normal flora DNA, and nasal lavage fluid contained no interfering substances. Nasal lavage samples collected from 20 captive desert tortoises housed at the Desert Tortoise Conservation Center (Clark County, Nevada, USA) revealed the presence of M. agassizii DNA in 100% of the tortoises. Concentrations ranged from a low of 6 pg ml− 1 to a high of 72,962 pg ml− 1. Only one of the tortoises was positive for M. testudineum. Interestingly, not all of the qPCR positive tortoises showed evidence of seroconversion, suggesting that they were colonized but not infected. This new quantitative method will provide a critical tool for managing threatened populations of the desert tortoise.  相似文献   

10.
A method for the detection of trehalose-6-phosphate (T6P) in tissue of the model plant Arabidopsis thaliana is presented. Liquid-liquid extraction (LLE) and mixed mode solid-phase extraction (SPE) were used for sample pretreatment followed by anion exchange chromatography (AEC) coupled with electrospray ionization mass spectrometry (MS) for highly selective quantitative analysis. LLE of plant material was performed with chloroform/acetonitrile/water (3:7:16, v/v/v) followed by SPE with Oasis MAX material, which significantly reduced the complexity of the extracts. On-line coupling of MS with gradient AEC using a sodium hydroxide eluent was accomplished with a postcolumn ion suppressor. The method allows specific quantification of T6P with good linearity for spiked plant extracts, from 80 nM to 1.3 μM (r2 > 0.98). The limit of detection in plant extracts was 40 nM. The recovery of the method was above 80% for relevant T6P levels. The method was applied to the determination of T6P in seedlings from four mutant A. thaliana lines (TRR1-4) resisting growth arrest caused by external supply of trehalose. Results reveal that T6P accumulation differed substantially in the four mutant lines and wild type (WT). It is concluded that the mutants circumvent the growth arrest observed in WT seedlings on 100 mM trehalose by different mechanisms.  相似文献   

11.
Twelve reagents were evaluated to develop a direct DNA extraction method suitable for PCR detection of foodborne bacterial pathogens. Many reagents exhibited strong PCR inhibition, requiring significant dilution of the extract with a corresponding reduction in sensitivity. Most reagents also exhibited much lower recovery of DNA from the gram-positive test organism (Listeria monocytogenes) than from the gram-negative organism (Escherichia coli O157:H7), preventing unbiased detection and quantitation of both organisms. The 5× HotSHOT + Tween reagent exhibited minimal inhibition and high extraction efficiency for both test organisms, providing a 15-min single-tube DNA-extraction protocol suitable for highly sensitive quantitative PCR assays.  相似文献   

12.
The structures of the N,N′-dimethylpropyleneurea (DMPU) solvated gallium(III) and indium(III) ions have been determined in DMPU solution by means of EXAFS. The gallium(III) ion is five-coordinate with a mean Ga-O bond distance of 1.924(5) Å, while the larger indium(III) ion is octahedrally coordinated with a mean In-O bond distance of 2.146(3) Å. The complex formation equilibria in DMPU for the gallium(III) and indium(III) bromide systems have been studied calorimetrically at 298 K. Three relatively strong complexes are formed in the indium(III) bromide system in DMPU, whereas no stability constants could be established in the gallium(III) bromide system as the heats of complex formation were very close to zero. Gallium(III) bromide is present as DMPU solvated GaBr3 complexes in solution with three equatorial Ga-Br bonds at 2.328(3) Å, and two Ga-O bonds at 1.92(3) Å in the apical positions of a distorted trigonal bipyramid. The DMPU solvated indium(III) bromide has the same configuration with a mean In-Br bond distance of 2.510(3) Å, and two In-O bonds at 2.201(6) Å. Indium(III) binds three bromides and three Me2SO molecules through the oxygen atoms in octahedral fac-configuration with mean In-Br and In-O bond distances of 2.630(3) and 2.211(15) Å, respectively.  相似文献   

13.
A nuclear magnetic resonance (NMR) method was implemented to assess in vivo oxygenation levels by a quantitative determination of the 1H NMR myoglobin (Mb) resonances. The proximal His-F8 NδH at 70-90 ppm and Val-E11 γCH3 resonance at -2.8 ppm, reflecting deoxygenated (deoxy-Mb) and oxygenated (met-Mb) states, were alternately recorded. The method was developed in vitro choosing a couple of NMR sequences that could each maximize the signal-to-noise ratio (SNR) while avoiding baseline rolling and suppressing the water signal. Two quantitative calibration methods were implemented for deoxy- and met-Mb samples (0.1-1 mM), respectively. The respective limit of detection (LOD) and limit of quantification (LOQ) were 0.015 and 0.05 mM for met-Mb and 0.013 and 0.042 mM for deoxy-Mb. Sequences and calibration curves were employed in vivo in Arenicola marina to obtain, for the first time, an accurate measurement of oxy- and deoxy-Mb actual concentrations. In Arenicola, the peaks at approximately 87 and -2.7 ppm, reflecting the deoxy- and oxy-Mb states, respectively, were alternately recorded during increasing hypoxia. The deoxy-Mb concentrations were obtained from the calibration curve. The oxy-Mb concentrations were calculated from the calibration of met-Mb because it was proved that oxy- and met-Mb gave the same NMR molar response. From oxy- and deoxy-Mb concentrations, the intracellular oxygen partial pressure (PiO2) trend was determined.  相似文献   

14.
15.
A microchip electrophoresis (MCE) method with chemiluminescence (CL) detection was developed for the determination of carnosine-related peptides, including carnosine, homocarnosine, and anserine, in biological samples. A simple integrated MCE-CL system was built to perform the assays. The highly sensitive CL detection was achieved by means of the CL reaction between hydrogen peroxide and N-(4-aminobutyl)-N-ethylisoluminol-tagged peptides in the presence of adenine as a CL enhancer and Co2+ as a catalyst. Experimental conditions for analyte labeling, MCE separation, and CL detection were studied. MCE separation of the above-mentioned three peptides took less than 120 s. Detection limits (signal/noise ratio [S/N] = 3) of 3.0 × 10−8, 2.8 × 10−8, and 3.4 × 10−8 M were obtained for carnosine, anserine, and homocarnosine, respectively. The current MCE-CL method was applied for the determination of carnosine, anserine, and homocarnosine in human cerebrospinal fluid (CSF) and canine plasma. Homocarnosine was detected at the micromolar (μM) level in the CSF samples analyzed, whereas the levels of carnosine and anserine in these samples were below the detection limit of the assay. Interestingly, both carnosine and anserine were detected in the canine plasma samples, whereas homocarnosine was not.  相似文献   

16.
A PCR-based method was developed for the stone fruit quarantine pathogen Xanthomonas arboricola pv. pruni (Xap), which provides rapid, sensitive and specific in planta detection and isolate identification. Primers specific for Xap were identified using random amplified polymorphic DNA (RAPD). Simplex PCR with these primers had a limit of detection per PCR reaction of approximately 10 CFU for isolate cultures and 50 CFU for plant material when used on tenfold dilutions of isolate culture or genomic DNA extracted from spiked samples, respectively. The primers were adapted as a high-throughput single-step screening based on a digoxigenin-labeled DNA probe assay with a detection limit of 4 × 102 CFU from isolate cultures. A duplex-PCR method was designed that includes the pathovar-level with species-level primers based on species-specific regions of the quinate metabolic gene qumA, increasing diagnostic confidence and offering the first molecular test for all X. arboricola pathovars.  相似文献   

17.
In this study, apical meristems from adventitious buds of three lily (Lilium L.) cultivars were successfully cryopreserved by droplet-vitrification. The most effective techniques were as follows. Excised meristems from in vitro plantlets which had been sub-cultured for about 2 months were cold-hardened at 4 °C for 1 week, precultured on MS medium supplemented with 0.3 mol L−1 sucrose for 2 days, osmoprotected in loading solution for 20-40 min at room temperature and then soaked in PVS2 solution for 90-120 min at 0 °C, frozen in microdroplets of vitrification solution placed on aluminium foils, which were immersed rapidly in liquid nitrogen. The meristems were then rapidly rewarmed by dilution solution, transferred to regeneration medium and stored in the dark for two weeks at 20 °C, and then cultured under white fluorescent light at an intensity of 2000 lux, with a 16 h photoperiod at 20 °C. The highest post-thaw survival percentages of three cultivars ‘Siberia’ (Lilium × siberia), Lilium lancifolium Thunb. and ‘Snow Queen’ Lilium × longiflorum were 65.0%, 83.8% and 43.3%, and regeneration percentages were 62.0%, 67.6% and 35.0%, respectively. The study demonstrated that cryopreservation by droplet-vitrification increased survival and regeneration percentages of certain lily cultivars compared with vitrification. Thus to cryopreserve lily meristems, droplet-vitrification method is preferable to the vitrification method.  相似文献   

18.
A study was conducted to evaluate the performance of the ALOA (chromogenic media) in combination with immunomagnetic separation (IMS) for the detection of Listeria monocytogenes in ready-to-eat food products. IMS-ALOA method was found to be equivalent to Health Canada's reference culture method as well as comparable to BAX-PCR method in terms of the sensitivity of the methods for the detection of L. monocytogenes in ready-to-eat foods such as turkey roast, beef roast, mixed vegetable salads, potato and egg salad, soft cheese and smoked salmon. The IMS-ALOA method gave 100% sensitivity in the inclusivity tests with 42 pure L. monocytogenes strains. Exclusivity testing with five other species of Listeria genus and 29 pure non-L. monocytogenes strains from 21 different genera showed 97% specificity. The method was able to detect L. monocytogenes at levels near or below 1 cfu/25 g regulatory limit in ready-to-eat food matrices after 24 h enrichment, with a turnaround time of 3 days compared to 7-8 days for culture method. IMS-ALOA method is a valuable alternate test method for the screening of L. monocytogenes in a variety of foods especially ready-to-eat foods.  相似文献   

19.
20.
A series of novel octahedral ruthenium(III) complexes involving 6-benzylaminopurine (L) derivatives as N-donor ligands has been prepared by the reaction of [(DMSO)2H][trans-RuCl4(DMSO)2] with the corresponding L derivative. The complexes 1-12 have the general compositions trans-[RuCl4(DMSO)(n-Cl-LH)] ⋅ xSol (1-3), trans-[RuCl4(DMSO)(n-Br-LH)] · xSol (4-6), trans-[RuCl4(DMSO)(n-OMe-LH)] · xSol (7-9) and trans-[RuCl4(DMSO)(n-OH-LH)] · xSol (10-12); n = 2, 3, and 4, x = 0-1.5; and Sol = H2O, DMSO, EtOH and/or (Me)2CO. The complexes have been thoroughly characterized by elemental analysis, UV-visible, FTIR, Raman, and EPR spectroscopy, ES + (positive ionization electrospray) mass spectrometry, thermal analysis, cyclic voltammetry, magnetic and conductivity measurements. The X-ray molecular structure of trans-[RuCl4(DMSO)(3-Br-LH)] ⋅ (Me)2CO (5) revealed the distorted octahedral coordination in the vicinity of the central atom, and also confirmed that the 3-Br-L ligand is present as the N3-protonated N7-H tautomer and is coordinated to Ru(III) through the N9 atom of the purine moiety. The tested complexes have been found to be in vitro non-cytotoxic against K562, G361, HOS and MCF7 human cancer cell lines with IC50 > 100 μM in contrast to the moderate results regarding the antiradical activity with IC50 ≈ 10− 3 M. On the contrary, in vivo antitumor activity screening showed that the prepared Ru(III) complexes possess higher pro-apoptotic activity than NAMI-A. The reduction of Ru(III) to Ru(II) and Ru(II)-species formation in tumor tissues was confirmed by means of a simple method of detection and visualization of intracellular Ru(II) by fluorescence microscopy. The originality of this method is based on the preparation of a Ru(II)-bipyridine complex in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号