首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Conidia of the cellulolytic strain Trichoderma reesei F522 were mutagenized with UV irradiation and N-methyl|-N'-nitro-N-nitrosoguanidine (NTG). A visual agar plate detection system was developed, using esculin and ferric ions, to identify mutants of T. reesei with increased beta-glucosidase activity. Selected mutants were tested for production of extracellular cellulases in shake flasks on autohydrolyzed wheat straw as carbon source. The most active mutant V-7 showed about 6-times higher activity of beta-glucosidase than the parent strain F-522, whereas the filter paper degrading and endo-1,4-beta-D-glucanase activities increased by 45% and by almost 31%, respectively. Cellulase preparations obtained from the parent and mutant strains were then used along with Kluyveromyces fragilis cells for ethanol production from ethanol-alkali pulped straw in the simultaneous saccharification and fermentation (SSF) process. From 10% (w/v) of straw pulp (dry matter), 2.5% (w/v) ethanol was obtained at 43 degrees C after 48 h using cellulase derived from the parent strain of T. reesei. When the beta-glucosidase-hyperproducing mutant V-7 was employed, the ethanol yield in the SSF process increased to 3.4% (w/v), the reaction time was shortened to 24 h and no cellobiose was detected in straw hydrolyzates.  相似文献   

2.
Simultaneous saccharification and fermentation (SSF) studies were carried out to produce ethanol from lignocellulosic wastes (sugar cane leaves and Antigonum leptopus leaves) using Trichoderma reesei cellulase and yeast cells. The ability of a thermotolerant yeast, Kluyveromyces fragilis NCIM 3358, was compared with Saccharomyces cerevisiae NRRL-Y-132. K. fragilis was found to perform better in the SSF process and result in high yields of ethanol (2.5-3.5% w/v) compared to S. cerevisiae (2.0-2.5% w/v). Increased ethanol yields were obtained when the cellulase was supplemented with beta-glucosidase. The conversions with K. fragilis were completed in a short time. The substrates were in the following order in terms of fast conversions: Solka floc > A. leptopus > sugar cane.  相似文献   

3.
Simultaneous saccharification and fermentation (SSF) process for ethanol production from various lignocellulosic woody (poplar and eucalyptus) and herbaceous (Sorghum sp. bagasse, wheat straw and Brassica carinata residue) materials has been assayed using the thermotolerant yeast strain Kluyveromyces marxianus CECT 10875. Biomass samples were previously treated in a steam explosion pilot plant to provide pretreated biomass with increased cellulose content relative to untreated materials and to enhance cellulase accessibility. SSF experiments were performed in laboratory conditions at 42 °C, 10% (w/v) substrate concentration and 15 FPU/g substrate of commercial cellulase. The results indicate that it is possible to reach SSF yields in the range of 50–72% of the maximum theoretical SSF yield, based on the glucose available in pretreated materials, in 72–82 h. Maximum ethanol contents from 16 to 19 g/l were obtained in fermentation media, depending on the material tested.  相似文献   

4.
The simultaneous saccharification and fermentation (SSF) of pretreated sugar cane leaves to produce ethanol using a cellulolytic enzyme complex from Trichoderma reesei QM 9414 and Saccharomyces cerevisiae NRRL-Y-132 was optimized. Enzymic saccharification parameters were evaluated prior to SSF studies. A 92% conversion of 2·5% substrate (alkaline hydrogen peroxide pretreated) to sugars was achieved at 50°C and pH 4·5, using T. reesei cellulase (40 FPU/g substrate), in 48 h. The pretreated substrate was then subjected to an SSF process using the cellulase complex and S. cerevisiae cells. Optimization of the SSF system is described.  相似文献   

5.
Wheat straw used in this study contained 44.24 +/- 0.28% cellulose and 25.23 +/- 0.11% hemicellulose. Alkaline H(2)O(2) pretreatment and enzymatic saccharification were evaluated for conversion of wheat straw cellulose and hemicellulose to fermentable sugars. The maximum yield of monomeric sugars from wheat straw (8.6%, w/v) by alkaline peroxide pretreatment (2.15% H(2)O(2), v/v; pH 11.5; 35 degrees C; 24 h) and enzymatic saccharification (45 degrees C, pH 5.0, 120 h) by three commercial enzyme preparations (cellulase, beta-glucosidase, and xylanase) using 0.16 mL of each enzyme preparation per g of straw was 672 +/- 4 mg/g (96.7% yield). During the pretreatment, no measurable quantities of furfural and hydroxymethyl furfural were produced. The concentration of ethanol (per L) from alkaline peroxide pretreated enzyme saccharified wheat straw (66.0 g) hydrolyzate by recombinant Escherichia coli strain FBR5 at pH 6.5 and 37 degrees C in 48 h was 18.9 +/- 0.9 g with a yield of 0.46 g per g of available sugars (0.29 g/g straw). The ethanol concentration (per L) was 15.1 +/- 0.1 g with a yield of 0.23 g/g of straw in the case of simultaneous saccharification and fermentation by the E. coli strain at pH 6.0 and 37 degrees C in 48 h.  相似文献   

6.
探讨了木质纤维素经过湿氧化爆破后在同步糖化发酵过程中酵母产乙醇的基本规律.采用单因素方法对湿氧化爆破条件、酶系组成和添加量以及预酶解时间和温度进行了优化.不同湿氧化爆破预处理条件下的稻秆对同步糖化发酵工艺的影响较大,在预处理温度160 ℃,进氧压力为4×105 Pa,碱用量为6%(w/w),反应时间为20 min的条件...  相似文献   

7.
Bioethanol production from ammonia percolated wheat straw   总被引:2,自引:0,他引:2  
This study examined the effectiveness of ammonia percolation pretreatment of wheat straw for ethanol production. Ground wheat straw at a 10% (w/v) loading was pretreated with a 15% (v/v) ammonia solution. The experiments were performed at treatment temperature of 50∼170°C and residence time of 10∼150 min. The solids treated with the ammonia solution showed high lignin degradation and sugar availability. The pretreated wheat straw was hydrolyzed by a cellulase complex (NS50013) and β-glucosidase (NS50010) at 45°C. After saccharification, Saccharomyces cerevisiae was added for fermentation. The incubator was rotated at 120 rpm at 35°C. As a result of the pretreatment, the delignification efficiency was > 70% (170°C, 30 min) and temperature was found to be a significant factor in the removal of lignin than the reaction time. In addition, the saccharification results showed an enzymatic digestibility of > 90% when 40 FPU/g cellulose was used. The ethanol concentration reached 24.15 g/L in 24 h. This paper reports a total process for bioethanol production from agricultural biomass and an efficient pretreatment of lignocellulosic material.  相似文献   

8.
Solid substrate fermentation of wheat straw to fungal protein   总被引:2,自引:0,他引:2  
Steam-treated wheat straw at a 70% (w/w) moisture level was subjected to solid substrate fermentation (SSF) with Trichoderma reesei (Riga, USSR) or a mixed culture of T. reesei and Endomycopsis fibuliger (R-574) in fermentation equipment of various design: some with mixing, some with stationary layers, including a mixedlayer 1.5-m(3) pilot plant scale fermenter. The best protein productivity was obtained in stationary layer fermenters with a product containing 13% protein. The main limitations of lignocellulose SSF, such as hindrance of fungal growth, limiting accessibility and availability of substrate, and difficulty in moisture and heat control, were analyzed. The technological parameters of SSF, submerged fermentation, and alternate lignocellulose conversion processes were compared. The SSF had lower overall efficiency but higher product concentration per reaction volume than other conversion schemes.  相似文献   

9.
The effects of ethanol and Trichoderma reesei cellulase on the saccharification and fermentation processes as well as the tolerance of the cellulase complex for ethanol have been investigated. The studies were conducted with respect to their usefulness in the process of simulataneous saccharification and fermentation of cellulose to ethanol. The following results were obtained. (1) Fermentative activity of Kluyveromyces fragilis yeasts was gradually depressed with increasing intial ethanol concentrations and temperature of fermentation between 35–46°C. (2) Crude cellulase preparation introduced to the culture broth to a final enzyme activity of 0.5 to 2.0 FPU/ml had not distinct effect on the biomass production, ethanol yield, and glucose uptake by yeasts in 48 h fermentation at 43°C. On the other hand, only a negligible decrease in the cellulase complex activity was observed during fermentation process. (3) Saccharification of wheat straw was inhibited by at least 1% w/v ethanol. (4) The enzymes of the cellulase system showed a high stability to exposure to ethanol for 48 h at 43°C.  相似文献   

10.
A novel two-stage bioreactor has been designed for a combined submerged (SF) and solid substrate fermentation (SSF) of wheat straw. The straw was pretreated with steam, and cellulases from the culture fluid of Trichoderma reesei were adsorbed on it for increased bioconvertibility. SSF was conducted in the top part of the bioreactor by inoculating the straw with a 36-h mycelial culture of T. reesei, or Coriolus versicolor. In the bottom part of the fermenter, Endomycopsis fibuliger was grown in SF. The SF liquor was recirculated through the SSF stage at 24 h intervals to remove glucose and other metabolites that may inhibit growth, and to maintain optimum moisture level and temperature. The removed glucose and other metabolites provided nutrients for the yeast in the SF stage. The combined fermentation resulted in overall higher biomass yield, increased bioconversion, increased cellulase production, and increased digestibility compared with single SSF or SF.  相似文献   

11.
Wheat straw consists of 48.57 ± 0.30% cellulose and 27.70 ± 0.12% hemicellulose on dry solid (DS) basis and has the potential to serve as a low cost feedstock for production of ethanol. Dilute acid pretreatment at varied temperature and enzymatic saccharification were evaluated for conversion of wheat straw cellulose and hemicellulose to monomeric sugars. The maximum yield of monomeric sugars from wheat straw (7.83%, w/v, DS) by dilute H2SO4 (0.75%, v/v) pretreatment and enzymatic saccharification (45 °C, pH 5.0, 72 h) using cellulase, β-glucosidase, xylanase and esterase was 565 ± 10 mg/g. Under this condition, no measurable quantities of furfural and hydroxymethyl furfural were produced. The yield of ethanol (per litre) from acid pretreated enzyme saccharified wheat straw (78.3 g) hydrolyzate by recombinant Escherichia coli strain FBR5 was 19 ± 1 g with a yield of 0.24 g/g DS. Detoxification of the acid and enzyme treated wheat straw hydrolyzate by overliming reduced the fermentation time from 118 to 39 h in the case of separate hydrolysis and fermentation (35 °C, pH 6.5), and increased the ethanol yield from 13 ± 2 to 17 ± 0 g/l and decreased the fermentation time from 136 to 112 h in the case of simultaneous saccharification and fermentation (35 °C, pH 6.0).  相似文献   

12.

Background

Integration of second-generation (2G) bioethanol production with existing first-generation (1G) production may facilitate commercial production of ethanol from cellulosic material. Since 2G hydrolysates have a low sugar concentration and 1G streams often have to be diluted prior to fermentation, mixing of streams is beneficial. Improved ethanol concentrations in the 2G production process lowers energy demand in distillation, improves overall energy efficiency and thus lower production cost. There is also a potential to reach higher ethanol yields, which is required in economically feasible ethanol production. Integrated process scenarios with addition of saccharified wheat meal (SWM) or fermented wheat meal (FWM) were investigated in simultaneous saccharification and (co-)fermentation (SSF or SSCF) of steam-pretreated wheat straw, while the possibility of recovering the valuable protein-rich fibre residue from the wheat was also studied.

Results

The addition of SWM to SSF of steam-pretreated wheat straw, using commercially used dried baker’s yeast, S. cerevisiae, resulted in ethanol concentrations of about 60 g/L, equivalent to ethanol yields of about 90% of the theoretical. The addition of FWM in batch mode SSF was toxic to baker’s yeast, due to the ethanol content of FWM, resulting in a very low yield and high accumulation of glucose. The addition of FWM in fed-batch mode still caused a slight accumulation of glucose, but the ethanol concentration was fairly high, 51.2 g/L, corresponding to an ethanol yield of 90%, based on the amount of glucose added.In batch mode of SSCF using the xylose-fermenting, genetically modified S. cerevisiae strain KE6-12, no improvement was observed in ethanol yield or concentration, compared with baker’s yeast, despite the increased xylose utilization, probably due to the considerable increase in glycerol production. A slight increase in xylose consumption was seen when glucose from SWM was fed at a low feed rate, after 48 hours, compared with batch SSCF. However, the ethanol yield and concentration remained in the same range as in batch mode.

Conclusion

Ethanol concentrations of about 6% (w/v) were obtained, which will result in a significant reduction in the cost of downstream processing, compared with SSF of the lignocellulosic substrate alone. As an additional benefit, it is also possible to recover the protein-rich residue from the SWM in the process configurations presented, providing a valuable co-product.
  相似文献   

13.
Pretreatment of bagasse by autohydrolysis at 200 degrees C for 4 min and explosive defibration resulted in the solubilization of 90% of the hemicellulose (a heteroxylan) and in the production of a pulp that was highly susceptible to hydrolysis by cellulases from Trichoderma reesei C-30 and QM 9414, and by a comercial preparation, Meicelase. Saccharification yields of 50% resulted after 24 h at 50 degrees C (pH 5.0) in enzymic digests containing 10% (w/v) bagasse pulps and 20 filter paper cellulase units (FPU). Saccharifications could be increased to more than 80% at 24 h by the addition of exogenous beta-glucosidase from Aspergillus niger. The crystallinity of cellulose in bagasse remained unchanged following autohydrolysis-explosion and did not appear to hinder the rate or extent of hydrolysis of cellulose. Autohydrolysis-exploded pulps extracted with alkali or ethanol to remove lignin resulted in lowere conversions of cellulose (28-36% after 25 h) than unextracted pulps. Alkali extracted pulps arising from autohydrolysis times of more than 10 min at 200 degrees C were less susceptible to enzymic hydrolysis than unextracted pulps and alkali-extracted pulps arising from short autohydrolysis times (e.g., 2 min at 200 degrees C). Autohydrolysis-explosion was as effective a pretreatment method as 0.25M NaOH (70 degrees C/2 h) both yielded pulps that resulted in high cellulose conversions with T. reesei cellulase preparations and Meicelase. Supplementation of T. reesei C-30 cellulose preparations with A. niger beta-glucosidases was effective in promoting the conversion of cellulose into glucose. A ration of FPU to beta-glucosidase of 1:1.25 was the minimum requirement to achieve more than 80% conversion of cellulose into glucose within 24 h. Other factors which influenced the extent of saccharification of autohydrolysis-exploded bagasse pulps were the enzyme-substrate ratio, the substrate concentration, and the saccharification mode.  相似文献   

14.
The saccharification of the polysaccharides of barley, oat, and wheat straws and Solka Floc was studied using the extracellular enzyme system synthesized by mutant strain NTG III/6 of the fungus Penicillium pinophilum 87160iii. The enzymes obtained in cultures containing Solka Floc or barley straw as the carbon source were compared. Solka Floc at 10% (w/v) concentration was hydrolyzed to the extent of 70% in 72 h at 50 degrees C using a reaction mixture containing 7 filter paper units/mL of cellulase induced on Solka Floc, but hydrolysis was increased to 90% when the enzyme induced on barley straw was used. Under the same conditions, the polysaccharides in barley, oat, and wheat straws were hydrolyzed, respectively, in 72 h, to the extent of 42-48%, 62%, and 52%, but hydrolysis was increased to 93%, 100%, and 92%, respectively, after treatment of the substrates with alkaline-H(2)O(2) reagent at room temperature.  相似文献   

15.
Native aspen (Populus tremuloides) was pretreated using sulfuric acid and sodium bisulfite (SPORL) and dilute sulfuric acid alone (DA). Simultaneous enzymatic saccharification and fermentation (SSF) was conducted at 18% solids using commercial enzymes with cellulase loadings ranging from 6 to 15 FPU/g glucan and Saccharomyces cerevisiae Y5. Compared with DA pretreatment, the SPORL pretreatment reduced the energy required for wood chip size-reduction, and reduced mixing energy of the resultant substrate for solid liquefaction. Approximately 60% more ethanol was produced from the solid SPORL substrate (211 L/ton wood at 59 g/L with SSF efficiency of 76%) than from the solid DA substrate (133 L/ton wood at 35 g/L with SSF efficiency 47%) at a cellulase loading of 10 FPU/g glucan after 120 h. When the cellulase loading was increased to 15 FPU/g glucan on the DA substrate, the ethanol yield still remained lower than the SPORL substrate at 10 FPU/g glucan.  相似文献   

16.
The present study describes the usage of dried leafy biomass of mango (Mangifera indica) containing 26.3% (w/w) cellulose, 54.4% (w/w) hemicellulose, and 16.9% (w/w) lignin, as a substrate for bioethanol production from Zymomonas mobilis and Candida shehatae. The substrate was subjected to two different pretreatment strategies, namely, wet oxidation and an organosolv process. An ethanol concentration (1.21 g/L) was obtained with Z. mobilis in a shake-flask simultaneous saccharification and fermentation (SSF) trial using 1% (w/v) wet oxidation pretreated mango leaves along with mixed enzymatic consortium of Bacillus subtilis cellulase and recombinant hemicellulase (GH43), whereas C. shehatae gave a slightly higher (8%) ethanol titer of 1.31 g/L. Employing 1% (w/v) organosolv pretreated mango leaves and using Z. mobilis and C. shehatae separately in the SSF, the ethanol titers of 1.33 g/L and 1.52 g/L, respectively, were obtained. The SSF experiments performed with 5% (w/v) organosolv-pretreated substrate along with C. shehatae as fermentative organism gave a significantly enhanced ethanol titer value of 8.11 g/L using the shake flask and 12.33 g/L at the bioreactor level. From the bioreactor, 94.4% (v/v) ethanol was recovered by rotary evaporator with 21% purification efficiency.  相似文献   

17.
Cassava is a starch-containing root crop that is widely used as a raw material in a variety of industrial applications, most recently in the production of fuel ethanol. In the present study, ethanol production from raw (uncooked) cassava flour by simultaneous saccharification and fermentation (SSF) using a preparation consisting of multiple enzyme activities from Aspergillus kawachii FS005 was investigated. The multi-activity preparation was obtained from a novel submerged fermentation broth of A. kawachii FS005 grown on unmilled crude barley as a carbon source. The preparation was found to consist of glucoamylase, acid-stable α-amylase, acid carboxypeptidase, acid protease, cellulase and xylanase activities, and exhibited glucose and free amino nitrogen (FAN) production rates of 37.7 and 118.7 mg/l/h, respectively, during A. kawachii FS005-mediated saccharification of uncooked raw cassava flour. Ethanol production from 18.2% (w/v) dry uncooked solids of raw cassava flour by SSF with the multi-activity enzyme preparation yielded 9.0% (v/v) of ethanol and 92.3% fermentation efficiency. A feasibility study for ethanol production by SSF with a two-step mash using raw cassava flour and the multi-activity enzyme preparation manufactured on-site was verified on a pilot plant scale. The enzyme preparation obtained from the A. kawachii FS005 culture broth exhibited glucose and FAN production rates of 41.1 and 135.5 mg/l/h, respectively. SSF performed in a mash volume of about 1,612 l containing 20.6% (w/v) dry raw cassava solids and 106 l of on-site manufactured A. kawachii FS005 culture broth yielded 10.3% (v/v) ethanol and a fermentation efficiency of 92.7%.  相似文献   

18.
Economic optimization of the production of ethanol by simultaneous saccharification and fermentation (SSF) requires knowledge about the influence of substrate and enzyme concentration on yield and productivity. Although SSF has been investigated extensively, the optimal conditions for SSF of softwoods have yet not been determined. In this study, SO2-impregnated and steam-pretreated spruce was used as substrate for the production of ethanol by SSF. Commercial enzymes were used in combination with the yeast Saccharomyces cerevisiae. The effects of the concentration of substrate (2% to 10% w/w) and of cellulases (5 to 32 FPU/g cellulose) were investigated. SSF was found to be sensitive to contamination because lactic acid was produced. The ethanol yield increased with increasing cellulase loading. The highest ethanol yield, 68% of the theoretical based on the glucose and mannose present in the original wood, was obtained at 5% substrate concentration. This yield corresponds to 82% of the theoretical based on the cellulose and soluble glucose and mannose present at the start of SSF. A higher substrate concentration caused inefficient fermentation, whereas a lower substrate concentration, 2%, resulted in increased formation of lactic acid, which lowered the yield. Compared with separate hydrolysis and fermentation, SSF gave a higher yield and doubled the productivity.  相似文献   

19.
To improve process economics of the lignocellulose to ethanol process a reactor system for enzymatic liquefaction and saccharification at high-solids concentrations was developed. The technology is based on free fall mixing employing a horizontally placed drum with a horizontal rotating shaft mounted with paddlers for mixing. Enzymatic liquefaction and saccharification of pretreated wheat straw was tested with up to 40% (w/w) initial DM. In less than 10 h, the structure of the material was changed from intact straw particles (length 1-5 cm) into a paste/liquid that could be pumped. Tests revealed no significant effect of mixing speed in the range 3.3-11.5 rpm on the glucose conversion after 24 h and ethanol yield after subsequent fermentation for 48 h. Low-power inputs for mixing are therefore possible. Liquefaction and saccharification for 96 h using an enzyme loading of 7 FPU/g.DM and 40% DM resulted in a glucose concentration of 86 g/kg. Experiments conducted at 2%-40% (w/w) initial DM revealed that cellulose and hemicellulose conversion decreased almost linearly with increasing DM. Performing the experiments as simultaneous saccharification and fermentation also revealed a decrease in ethanol yield at increasing initial DM. Saccharomyces cerevisiae was capable of fermenting hydrolysates up to 40% DM. The highest ethanol concentration, 48 g/kg, was obtained using 35% (w/w) DM. Liquefaction of biomass with this reactor system unlocks the possibility of 10% (w/w) ethanol in the fermentation broth in future lignocellulose to ethanol plants.  相似文献   

20.
Pretreated sunflower stalks saccharified with a Trichoderma reesei Rut-C 30 cellulase showed 57.8% saccharification. Enzyme hydrolysate concentrated to 40 g/l reducing sugars was fermented under optimum conditions of fermentation time (24 h), pH (5.0), temperature (30 degrees C) and inoculum size (3% v/v) and, showed a maximum ethanol yield of 0.444 g/g ethanol. Ethanol production scaled up in a 1 l and a 15 l fermenter under optimum conditions revealed maximum ethanol yields of 0.439 and 0.437 g/g respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号