首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic transformation of Ginkgo biloba by Agrobacterium tumefaciens   总被引:3,自引:0,他引:3  
A reproducible protocol has been established for the transformation of Ginkgo biloba by Agrobacterium tumefaciens . Embryos were co-cultivated with Agrobacterium tumefaciens GV3101 (pGV2260) carrying the binary vector pTHW136, which contained the gus reporter gene and the nptII selectable gene, encoding the enzymes β -glucuronidase (GUS) and neomycin phophotransferase II, respectively. Transient GUS activity has been used to screen the effects of different factors on the transfer of DNA into embryos (age of embryos, infection method, composition of co-cultivation medium). Then, experimental conditions have been defined to obtain transgenic kanamycin-resistant G. biloba calluses expressing GUS activity. The highest rate of transformation (45%) was reached using 1.5-month-old embryos co-cultivated on a medium lacking mineral elements. The integration of gus and nptII genes in calluses was confirmed by polymerase chain reaction analysis and Southern blot analysis.  相似文献   

2.
3.
Dube T  Thomson JA 《Plasmid》2003,50(1):1-11
The ability of the plasmid pTF-FC2 to transfer genes into plants was investigated. Using this plasmid as the backbone two plasmids were constructed namely pTD1 and pDER-bar. These plasmids contained, as plant selectable markers, the nptII and the bar genes, respectively. The nptII gene was flanked by the right and left borders and the bar gene was not. Transgenic plants were obtained through the co-cultivation of tobacco leaf discs with the Agrobacterium tumefaciens strain LBA4404(pAL4404)(pDER-bar). Molecular and genetic analysis indicated that the bar gene had been stably integrated into the plant genome and had been inherited in a Mendelian fashion. Integration was shown to be polar and unidirectional and in some cases the entire plasmid was found to have integrated into the plant genome. Interestingly, no plants were generated from tobacco leaf discs that were co-cultivated with the strain C58C1(pMP90)(pTD1).  相似文献   

4.
Methods to avoid the presence of selectable marker genes (SMG) in transgenic plants are available but not implemented in many crop species. We assessed the efficiency of simple marker-free Agrobacterium-mediated transformation techniques in alfalfa: regeneration without selection, or marker-less, and co-transformation with two vectors, one containing the SMG and one containing a non-selected gene. To easily estimate the efficiency of marker-less transformation, the nptII and the GUS markers were used as non-selected genes. After Agrobacterium treatment, somatic embryos were regenerated without selection. The percentage of transgenic embryos was determined by a second cycle of regeneration using the embryos as starting material, in the presence of kanamycin, by PCR screening of T1 progenies, and by the GUS test. In two experiments, from 0 to 1.7% of the somatic embryos were transgenic. Co-transformation was performed with two vectors, one with the hemL SMG and one with the unselected nptII gene, each carried by a different culture of Agrobacterium. Only 15 putative co-transformed plants were regenerated from two experiments, with an average co-transformation percentage of 3.7. Southern blot hybridizations and/or T(1) progeny segregation were used to confirm transgene integration, and qPCR was also used to estimate the T-DNA copy number. In the T(1) progenies obtained by crossing with a non-transgenic pollinator, marker-free segregants were obtained. Both marker-free approaches showed very low efficiency.  相似文献   

5.
6.
Yan H  Rommens CM 《Plant physiology》2007,143(2):570-578
Agrobacterium T-DNAs were used to deliver transposable Dissociation (Ds) elements into the nuclei of potato (Solanum tuberosum) cells. A double-selection system was applied to enrich for plants that only contained a transposed Ds element. This system consisted of a positive selection for the neomycin phosphotransferase (nptII) gene positioned within Ds followed by a negative selection against stable integration of the cytosine deaminase (codA) gene-containing T-DNA. Sixteen of 29 transgenic plants were found to contain a transposed element while lacking any superfluous T-DNA sequences. The occurrence of this genotype indicates that Ds elements can transpose from relatively short extrachromosomal DNA molecules into the plant genome. The frequency of single-copy Ds transformation was determined at 0.3%, which is only about 2.5-fold lower than the potato transformation frequency for backbone-free and single-copy T-DNAs. Because of the generally high expression levels of genes positioned within transposed elements, the new transformation method may find broad applicability to crops that are accessible to Agrobacterium T-DNA transfer.  相似文献   

7.
Transformation of rice mediated by Agrobacterium tumefaciens   总被引:48,自引:0,他引:48  
Hiei  Yukoh  Komari  Toshihiko  Kubo  Tomoaki 《Plant molecular biology》1997,35(1-2):205-218
Agrobacterium tumefaciens has been routinely utilized in gene transfer to dicotyledonous plants, but monocotyledonous plants including important cereals were thought to be recalcitrant to this technology as they were outside the host range of crown gall. Various challenges to infect monocotyledons including rice with Agrobacterium had been made in many laboratories, but the results were not conclusive until recently. Efficient transformation protocols mediated by Agrobacterium were reported for rice in 1994 and 1996. A key point in the protocols was the fact that tissues consisting of actively dividing, embryonic cells, such as immature embryos and calli induced from scutella, were co-cultivated with Agrobacterium in the presence of acetosyringonc, which is a potent inducer of the virulence genes. It is now clear that Agrobacterium is capable of transferring DNA to monocotyledons if tissues containing competent cells are infected. The studies of transformation of rice suggested that numerous factors including genotype of plants, types and ages of tissues inoculated, kind of vectors, strains of Agrobacterium, selection marker genes and selective agents, and various conditions of tissue culture, are of critical importance. Advantages of the Agrobacterium-mediated transformation in rice, like on dicotyledons, include the transfer of pieces of DNA with defined ends with minimal rearrangements, the transfer of relatively large segments of DNA, the integration of small numbers of copies of genes into plant chromosomes, and high quality and fertility of transgenic plants. Delivery of foreign DNA to rice plants via A. tumefaciens is a routine technique in a growing number of laboratories. This technique will allow the genetic improvement of diverse varieties of rice, as well as studies of many aspects of the molecular biology of rice.  相似文献   

8.
Transgenic Robinia pseudoacacia plants were obtained by Agrobacterium tumefaciens mediated gene transfer. Agrobacterium strain LBA4404 harbouring a binary vector that contained the chimeric neomycin phosphotransferase II (NPTII) and beta-glucuronidase (GUS) genes was co-cultivated with hypocotyl segments of in vitro raised seedlings of Robinia. Parameters important for high efficiency regeneration and transformation rates included type of explant, pre-conditioning of explants and appropriate length of co-cultivation period with Agrobacterium. A transformation frequency 16.67% was obtained by 48 hr of pre-conditioning followed by 48 hr of co-cultivation. Transformed tissue was selected by the ability to grow on kanamycin containing medium. Successful regeneration was followed after histochemical GUS assay for the detection of transgenic tissue. This transformation procedure has the potential to expand the range of genetic variation in Robinia.  相似文献   

9.
We have developed a procedure for opium poppy ( Papaver somniferum ) transformation using Agrobacterium tumefaciens -mediated gene delivery. Hypocotyl-derived cell suspension cultures of P. somniferum were cocultivated with A. tumefaciens strain GV3101(pMP90) harbouring either the binary vector pTHW136 or the binary vector pO35SSAM. The former contained the uidA reporter gene and the nptII selectable gene, encoding the enzymes β -glucuronidase and neomycin phosphotransferase II, respectively. The latter contained the sam1 gene encoding the enzyme S -adenosyl-L-methionine (SAM) synthetase and the nptII gene. Putatively transformed cell lines were selected on media supplemented with paromomycin. Integration of the foreign genes was confirmed by Southern blot analysis with and without PCR amplification prior to hybridization. SAM synthetase activity was measured in extracts of 5 transformed cell lines. One of them expressed a significant overactivity while two others had a lower activity than the control cell line, leading us to question the possible partial cosuppression of both the resident and the foreign sam genes. To our knowledge, this is the first report of Agrobacterium tumefaciens -mediated transformation of Papaver somniferum cell suspension cultures.  相似文献   

10.
Vigna mungo is one of the large-seeded grain legumes that has not yet been transformed. We report here for the first time the production of morphologically normal and fertile transgenic plants from cotyledonary-node explants inoculated with Agrobacterium tumefaciens carrying binary vector pCAMBIA2301, the latter of which contains a neomycin phosphotransferase ( nptII) gene and a beta-glucuronidase (GUS) gene ( uidA) interrupted with an intron. The transformed green shoots, selected and rooted on medium containing kanamycin, tested positive for nptII and uidA genes by polymerase chain reaction (PCR) analysis. These shoots were established in soil and grown to maturity to collect the seeds. Mechanical wounding of the explants prior to inoculation with Agrobacterium, time lag in regeneration due to removal of the cotyledons from explants and a second round of selection at the rooting stage were found to be critical for transformation. Analysis of T(0) plants showed the expression and integration of uidA into the plant genome. GUS activity in leaves, roots, flowers, anthers and pollen grains was detected by histochemical assay. PCR analysis of T(1) progeny revealed a Mendelian transgene inheritance pattern. The transformation frequency was 1%, and 6-8 weeks were required for the generation of transgenics.  相似文献   

11.
Different approaches to producing transgenic grapevines based on regeneration via embryogenesis were investigated. Embryogenic callus was initiated from anther tissue of Vitis vinifera cv. Sultana and three embryogenic culture types (embryogenic callus, tissue type I; proliferating embryos, tissue type II; and a suspension) were established. The three culture types were incolucaled with Agrobacterium tumefaciens harbouring a binary vector which contained a uidA reporter gene and either a hpt or nptII selectable marker gene or the cultures were bombarded with microprojectiles carrying a uidA/nptII binary vector. Transgenic plants were produced only from Agrobacterium transformation experiments. Transformed embryos were selected with kanamycin or hygromycin antibiotics and recovered with the highest efficiency from inoculated type I cultures. Southern analysis of genomic DNA extracted from ten transgenic plants showed that the number of T-DNA insertions in the genome ranged from 1 to at least 4. Evidence for methylation of the T-DNA at cytosine and adenine residues in transgenic plants was found by Southern analysis of DNA digested with two isoschizomer pairs of restriction endonucleases. No evidence for genotype alterations or somatic meiosis was found when DNA from 80 somatic embryos and seven plants regenerated from embryogenic culture were analysed at six sequence-tagged sites which are heterozygous in cv. Sultana. Expression of the uidA gene in in vitro grown leaves of transgenic plants was most often high and uniform but GUS staining was occasionally observed to be low and/or patchy. Transgenic plants and all plants regenerated from embryogenic culture produced red veined, lobed leaves which are uncharacteristic of the accepted ampelographic phenotype of Sultana. It is suggested that this phenotype may represent a juvenile growth stage.  相似文献   

12.
An efficient and reproducible procedure for the transformation of white spruce (Picea glauca [Moench] Voss) embryogenic tissues was developed using A. tumefaciens-mediated gene transfer. Rapidly dividing white spruce embryogenic tissues were co-cultivated with disarmed A. tumefaciens strains containing additional copies of the virulence regions from plasmid PToK47. The plasmid pBi121, containing the neomycin phosphotransferase II (nptII) gene providing kanamycin resistance as a selectable marker and the beta-glucuronidase (uidA) reporter gene, was used as binary vector. The highest frequency of transformation (15 transformed tissues g(-1) FW of treated embryogenic tissue) was obtained with 5-d-old tissues grown in liquid medium and co-cultivated with Agrobacterium for 2 d in the same medium but containing 50 microM acetosyringone. Recovery of kanamycin-resistant tissues was improved when tissues were first grown for 10 d on a timentin-containing medium (400 mg l(-1)), to prevent bacterial overgrowth, before application of the selection pressure. After 6 weeks on kanamycin-selection medium, resistant tissues were obtained and showed stable uidA expression. The presence of the transgenes was demonstrated by PCR analysis and their integration into the genome was confirmed by Southern hybridization. Transgenic plants were regenerated from transformed tissues within 4 months after co-culture.  相似文献   

13.
Wei Tang  Ron Sederoff  Ross Whetten 《Planta》2001,213(6):981-989
Embryos of 24 open-pollinated families of loblolly pine (Pinus teade L.) were used as explants to conduct in vitro regeneration. Then, Agrobacterium tumefaciens strain GV3101 harboring the plasmid pPCV6NFHygGUSINT was used to transform mature zygotic embryos of seven families of loblolly pine. The frequency of transformation varied among families infected with A. tumefaciens. The highest frequency (100%) of transient beta-glucuronidase (GUS)-expressing embryos was obtained from family 11-1029 with over 300 blue spots per embryo. Expression of the GUS reporter gene was observed in cotyledons, hypocotyls, and radicles of co-cultivated mature zygotic embryos, as well as in callus and shoots derived from co-cultivated mature zygotic embryos. Ninety transgenic plants were regenerated from hygromycin-resistant callus derived from families W03. 8-1082 and 11-1029. and 19 transgenic plantlets were established in soil. The presence of the GUS gene in the plant genome was confirmed by polymerase chain reaction. Southern blot, and plant DNA/T-DNA junction analysis. These results suggest that an efficient A. tumefaciens-mediated transformation protocol for stable integration of foreign genes into loblolly pine has been developed and that this transformation system could be useful for future studies on transferring economically important genes to loblolly pine.  相似文献   

14.
Phosphinothricin resistant plants of two rapeseed (Brassica napus L. var. oleifera DC.) spring industrial cultivars were obtained by Agrobacterium tumefaciens leaf disk transformation. Vector constructions contained the promoterless coding sequence of phosphinothricin acetyltransferase (bar) gene located between two inverted lox-sites (elements of Cre/lox recombination system of P1 phage) and selective neomycinphosphotransferase II gene (nptII). Integration of the alien genes was confirmed by the PCR analyses. Stable and linked inheritance of foreign genes in T1 and T2 progeny was shown.  相似文献   

15.
高羊茅和黑麦草农杆菌介导转化体系的研究   总被引:2,自引:0,他引:2  
利用C58C1农杆菌菌系(携带的表达载体上含GUS基因和nptII基因)感染4个草坪草品种追寻者、爱神特、腾跃和守门员成熟胚来源的愈伤组织,共培养后部分愈伤组织进行X-Gluc组织化学染色检测,其余愈伤组织在含G418 10-25 mg/L的MS改良培养上先后筛选抗性愈伤组织和分化抗性再生植株,对移栽成活的144棵抗性再生植株分别进行了ELISA检测、PCR检测和组织化学染色检测。愈伤组织阶段X-Gluc染色检测结果表明,4个草坪草品种GUS基因瞬间表达率8.6%~46.9%,爱神特愈伤组织对农杆菌侵染最为敏感,其次是腾跃和守门员,追寻者最不敏感;ELISA检测结果表明,45株呈现阳性,证明nptII基因已转入草坪草并已表达;PCR检测结果与ELISA检测结果一致,表明nptII基因确实已经整合到了草坪草基因组中,且没有发生沉默现象;转基因植株X-Gluc染色检测结果表明,GUS基因在43株中得到了稳定表达,在2株中发生了沉默现象。4个草坪草品种抗性再生植株分化率0~43.5%,转化率0~21.5 %。结果还表明,GUS基因瞬间表达率与稳定转化率在草坪草上很不一致,不能作为衡量基因型转化效果的指标。  相似文献   

16.
Thlaspi caerulescens L. is well known as a Zn/Cd hyperaccumulator. The genetic manipulation of T. caerulescens through transgenic technology can modify plant features for use in phytoremediation. Here, we describe the efficient transformation of T. caerulescens using Agrobacterium tumefaciens strain EHA105 harboring a binary vector pBI121 with the nptII gene as a selectable marker, the gus gene as a reporter and a foreign catalase gene. Based on the optimal concentration of growth regulators, the shoot cluster regeneration system via callus phase provided the basis of the genetic transformation in T. caerulescens. The key variables in transformation were examined, such as co-cultivation period and bacterial suspension density. Optimizing factors for T-DNA delivery resulted in kanamycin-resistant transgenic shoots with transformation efficiency more than 20%, proven by histochemical GUS assay and PCR analysis. Southern analysis of nptII and RT-PCR of catalase gene demonstrated that the foreign genes were integrated in the genome of transformed plantlets. Moreover, the activity of catalase enzyme in transgenic plants was obviously higher than in wild-type plants. This method offers new prospects for the genetic engineering of this important hyperaccumulator species.  相似文献   

17.
Reporter genes have been used as a powerful tool to analyze cis-regulatory elements responsible for temporal and spatial expression in the early development of sea urchin. However, here we show that the transgenes introduced into the sea urchin embryos undergo suppression in larval stage. The transgene silencing could be one of major obstacle in the analysis of regulatory regions in the late stages of development. We previously demonstrated that a DNA fragment (ArsI) located in the upstream region of sea urchin (Hemicentrotus pulcherrimus) arylsulfatase gene has the property of an insulator. We show that tandem ArsI prevents silencing of a transgene in sea urchin larvae when the ArsI is fused to the 5′ end of the reporter gene. Furthermore, we demonstrate that DNA of the reporter gene introduced into the sea urchin eggs is methylated during development and that the ArsI protects the transgene from the DNA methylation.  相似文献   

18.
Yao J  Pang Y  Qi H  Wan B  Zhao X  Kong W  Sun X  Tang K 《Transgenic research》2003,12(6):715-722
Tobacco leaf discs were transformed with a plasmid, pBIPTA, containing the selectable marker neomycin phosphotransferase gene (nptII) and Pinellia ternata agglutinin gene (pta) via Agrobacterium tumefaciens-mediated transformation. Thirty-two independent transgenic tobacco plants were regenerated. PCR and Southern blot analyses confirmed that the pta gene had integrated into the plant genome and northern blot analysis revealed transgene expression at various levels in transgenic plants. Genetic analysis confirmed Mendelian segregation of the transgene in T1 progeny. Insect bioassays showed that transgenic plants expressing PTA inhibited significantly the growth of peach potato aphid (Myzus persicae Sulzer). This is the first report that transgenic plants expressing pta confer enhanced resistance to aphids. Our study indicates that the pta gene can be used as a supplement to the snowdrop (Galanthus nivalis) lectin gene (gna) in the control of aphids, a sap-sucking insect pest causing significant yield losses of crops.  相似文献   

19.
20.
Tang W 《Plant cell reports》2003,21(6):555-562
Additional virulence (vir) genes in Agrobacterium tumefaciens and sonication were investigated for their impact on transformation efficiency in loblolly pine (Pinus taeda L.). Mature zygotic embryos of loblolly pine were co-cultivated with disarmed A. tumefaciens strain EHA105 containing either plasmid vector pCAMBIA1301 or vector pCAMBIA1301 with an additional 15.8-kb fragment carrying extra copies of the Vir B, Vir C, and Vir G regions from the supervirulent plasmid pTOK47. pCAMBIA1301 contains hygromycin resistance and the beta-glucuronidase (GUS) reporter gene. Expression of GUS was observed after 3-6 days of co-cultivation, with peak expression at approximately 21 days. The highest numbers of GUS-expressing areas were visible up to 21 days after co-cultivation, declining rapidly thereafter. Both transient and stable transformation efficiencies increased when the explants were sonicated before co-cultivation and/or the additional virB, virC, and virG genes were included with the pCAMBIA1301 plasmid T-DNA. Use of the plasmid with additional vir genes and sonication dramatically enhanced the efficiency of Agrobacterium-mediated gene transfer not only in transient expression but also in the recovery of hygromycin-resistant lines. Stably transformed cultures and transgenic plants were produced from embryos transformed with A. tumefaciens EHA105 carrying pCAMBIA1301 or pCAMBIA1301+pTOK47 in the three families of loblolly pine. The presence of the introduced GUS and hygromycin phosphotransferase genes in the transgenic plants was confirmed by polymerase chain reaction and Southern hybridization analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号