首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uptake of ammonium, nitrate and phosphate by laboratory-grown young sporophytes of Laminaria abyssalis was measured in a perturbed system (batch mode) at 18 °C and 35 ± 5 µE m–2 s–1 photon flux density. Uptake of all appeared to follow saturation-type nutrient uptake kinetics. The NO inf3 sup– (K s = 14.0 µM, V max = 5.0 µmol h–1 g–1 dry wt) and NH inf4 sup+ (K s = 4.6 µM, V max= 2.0 µmol h–1 g–1 dry wt) were taken up simultaneously, although NH inf4 sup+ was taken up more rapidly. Values of K 3 and V max for phosphate were, respectively, 2.21 µM and 0.83 µmol h–1 g–1 dry wt. Nitrate and phosphate were both consumed in similar rates (V max /Ks 0.37) at low concentrations. NH inf4 sup+ , thus, might be a more efficient form of N fertilizer if artificial enrichment of seawater is used.  相似文献   

2.
We demonstrate in this work that HCO inf3 sup– uptake in the marine macroalga Ulva sp. features functional resemblances to anion transport mediated by anion exchangers of mammalian cell membranes. The evidence is based on (i) competitive inhibition of photosynthesis by the classical red-blood-cell anion-exchange blockers 4,4-dinitrostilbene-2,2-disulfonate and 4-nitro-4-isothiocyanostilbene-2,2-disulfonate under conditions where HCO inf3 sup– , but not CO2, was the inorganic carbon form taken up; (ii) inhibition of HCO inf3 uptake by pyridoxal phospate, indicating the involvement of lysine residues in the binding/translocation of HCO inf3 sup– ; and (iii) inhibition of HCO inf3 sup– (but not of CO2) uptake by exofacial trypsin treatments, indicating the functional involvement of a plasmalemma protein. It is suggested that HCO inf3 sup– uptake mediated by such a putative anion transporter can be a fundamental step in providing inorganic carbon for the CO2-concentrating system of marine marcoalgae in an environment where the HCO inf3 sup– concentration is high, but the CO2 concentration and rates of uncatalyzed HCO inf3 sup– dehydration are low.Abbreviations CI ionorganic carbon - DIDS 4,4-diisothiocyanostilbene-2,2-disulfonate - DNDS 4,4-dinitrostilbene-2,2-disulfonate - NIDS 4-nitro-4-isothiocyanostilbene-2,2-disulfonate - PLP pyridoxal phosphate - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase  相似文献   

3.
W. E. Robe  H. Griffiths 《Oecologia》1994,100(4):368-378
The decline and disappearance of Littorella uniflora from oligotrophic waters which have become eutrophic has been associated with shading or reduced CO2 supply. However NO inf3 sup– concentrations can reach very high levels (100–2000 mmol m–3 compared with <1–3 in oligotrophic habitats). To investigate the impact of NO inf3 sup– loading alone, plants were grown under three NO inf3 sup– regimes (very low, near-natural and high). The interactive effects of NO inf3 sup– and photon flux density (low and high regimes) on N assimilation and accumulation, CO2 concentrating mechanisms, C3 photosynthesis and growth were also examined. The results were unexpected. Increased NO inf3 sup– supply had very little effect on photosynthetic capacity, crassulacean acid metabolism (CAM) or lacunal CO2 concentrations ([CO2]i), although there was considerable plasticity with respect to light regime. In contrast, increased NO inf3 sup– supply resulted in a marked accumulation of NO inf3 sup– , free amino acids and soluble protein in shoots and roots (up to 25 mol m–3, 30 mol m–3 and 9 mg g–1 fresh weight respectively in roots), while fresh weight and relative growth rate were reduced. Total N content even under the very low NO inf3 sup– regime (1.6–2.3%) was mid-range for aquatic and terrestrial species (and 3.1–4.3% under the high NO inf3 sup– regime). These findings, together with field data, suggest that L. uniflora is not growth limited by low NO inf3 sup– supply in natural oligotophic habitats, due not to an efficient photosynthetic nitrogen use but to a slow growth rate, a low N requirement and to the use of storage to avoid N stress. However the increased NO inf3 sup– concentrations in eutrophic environments seem likely have detrimental effects on the long-term survival of L. uniflora, possibly as a consequence of N accumulation.  相似文献   

4.
Net daily budgets of dissolved oxygen (O2), dissolved inorganic carbon (DIC), dissolved inorganic nitrogen (DIN = NH4++NO2+NO3) and soluble reactive phosphorus (SRP) were determined in a pond colonised by Ulva spp. This pond received wastewater from a land-based fish farm and was used as a phytotreatment plant. Three consecutive 24-h cycles of measurements were performed with 8–14 samplings per day. Water samples were collected at the inlet and outlet of the pond and budgets were estimated from differences between inlet and outlet loadings. The first cycle was started when Ulva biomass was 8 kg m−2, as wet weight. The second cycle was performed after the harvest of ~20% of the macroalgal biomass and the third after the harvest of another ~20% of the remaining biomass. Ulva removal was very fast (<1 h) and samplings for cycles 2 and 3 were started two hours after harvesting, so that the whole experiment lasted ~80 h. When Ulva biomass was at its maximum, the aquatic system was heterotrophic with an O2 demand of 519 mol d−1 and a net regeneration of DIC (2686 mol d−1), NH4+ (49 mol d−1) and SRP (2.5 mol d−1). The DIC to O2 ratio was an indicator of persistent anaerobic metabolism. Following the first harvest intervention, this system displayed a prompt response and shifted toward a lower O2 demand (from −519 to −13 mol d−1), with a lesser regeneration degree of NH4+ (11.4 mol d−1) and DIC (1066 mol d−1). After the second Ulva removal the net budget of SRP became negative (−1.0 mol d−1). By integrating these results over the three days cycle we estimated that in order to operate an efficient nutrient control and maintain macroalgal mats in a healthy status the optimal Ulva biomass should be well below ~4 kg m−2 as wet weight. Above this threshold, self-limitation would render most of the algal mat unable to exploit light and nutrients. An efficient removal of nitrogen and phosphorus could be attained through the management of macroalgal biomass only with an optimisation of recipient surface to nutrient loading ratio.  相似文献   

5.
Pond cultivation of the subtropical, euryhaline macroscopic red algaGracilaria tenuisipitata var.liui Zhanget Xia was carried out in brackish seawater (6–7) in the Gryt archipelago on the east coast of Sweden, using four outdoor tanks of 30–40 m3. Growth rate and nutrient uptake in batch culture were measured with the aim of estimating the water purification capacity ofG. tenuisipitata in outdoor conditions. Its ability to withstand epiphytic infections was also studied. An average growth rate of 4 biomass increase per day was recorded during two seasons with a maximum growth rate of 9 d–1. The initial biomass was usually 1 kgFW m–3 (FW, fresh weight). The nutrient uptake capacity was on average ca. 1 g Ni kgFW–1 d–1 and 0.08 g Pi kgFW–1 d–1 and the uptake rates for NH4 +-N were higher than those for NO3 -N. Both the growth rate and the nutrient uptake rate were highest at the highest water temperature. Co-cultivation with rainbow trout (Oncorhynchus mykiss) was tested: with trout fodder as the only nutrient inputG. tenuistipitata could grow and maintain low levels of Ni and Pi with optimum efficiency at a trout: alga ratio of 1:1 (w:w). Epiphytic growth of filamentous green and brown algae was limited, probably as a result of the high pH values caused by inorganic carbon uptake byG. tenuistipitata. The growth ofEnteromorpha intestinalis, the only significant epiphyte, was completely inhibited and the majority of plants died by a few days treatment with 100 µg 1–1 Cu2+, a concentration that did not severely affectG. tenuistipitata. We conclude thatG. tenuistipitata can be cultivated in outdoor ponds in southern Sweden during 5–6 months of the year using aerated or unaerated batch cultures and that wastewater from trout cultivation may be used as a nutrient source, resulting in purification with respect to N and P.  相似文献   

6.
Summary The effects of short- and long-term exposure to a range in concentration of sea salts on the kinetics of NH inf4 sup+ uptake by Spartina alterniflora were examined in a laboratory culture experiment. Long-term exposure to increasing salinity up to 50 g/L resulted in a progressive increase in the apparent Km but did not significantly affect Vmax (mean Vmax=4.23±1.97 mole·g–1·h–1). The apparent Km increased in a nonlinear fashion from a mean of 2.66±1.10 mole/L at a salinity of 5 g/L to a mean of 17.56±4.10 mole/L at a salinity of 50 g/L. These results suggest that the long-term effect of exposure to total salt concentrations within the range 5–50 g/L was a competitive inhibition of NH inf4 sup+ uptake in S. alterniflora. No significant NH inf4 sup+ uptake was observed in S. alterniflora exposed to 65 g/L sea salts. Short-term exposure to rapid changes in salinity significantly affected both Vmax and Km. Reduction of solution salinity from 35 to 5 g/L did not change Vmax but reduced Km by 71%. However, exposing plants grown at 5 g/L salinity to 35 resulted in an decrease in Vmax of approximately 50%. Exposure of plants grown at 35 g/L to a total sea salt concentration of 50 g/L for 48h completely inhibited uptake of NH inf4 sup+ . For both experiments, increasing salinity led to an increase in the apparent Km similar to that found in response to long-term exposure. Our data are consistent with a conceptual model of changes in the productivity of S. alterniflora in the salt marsh as a function of environmental modification of NH inf4 sup+ uptake kinetics.  相似文献   

7.
Summary A double-chambered bioreactor based on a composite immobilized-cell gel layer/microporous membrane structure was applied to the continuous denitrification of high-nitrate water. Immobilized denitrifying bacteria (Pseudomonas denitrificans) were provided with separate flows of nitrate and carbon (C) nutrient, with no contamination of the treated water by cell leakage from the gel. Using acetate (7.5 mm) as a C source and a C/N ratio of 3 (mol/mol), specific denitrification rates ranging from 15 to 25 g NO inf3 sup– · h–1 · – cm–2 membrane surface (50–85 g NO inf3 sup– · h–1 · cm–3 gel) were obtained. The denitrifying activity remained stable for several months. At the flow rate used (10 cm3 · h–1), the effluents contained noticeable amounts of NO inf2 sup– ions but the treated water remained uncontaminated by the carbon nutrient. Most NO inf2 sup– ions disappeared from the treated water in a second reactor connected in series. When fed with an unchlorinated sludge supernatant as C nutrient, immobilized bacteria performed efficient denitrification of water for only 3 weeks. Diffusion experiments showed that acetate ions diffused much less rapidly than NO inf3 sup– or NO inf2 sup– ions through the composite structure. Further developments of the system are considered.  相似文献   

8.
Kübler  Janet E.  Raven  John A. 《Hydrobiologia》1996,326(1):401-406
Palmaria palmata, which is able to use HCO inf3 sup– as a carbon source for photosynthesis, and Lomentaria articulata, which is dependent on diffusive uptake of dissolved CO2, were grown under constant light and light with sunflecks designed to model wave-induced fluctuations of near-shore underwater light. Both species exhibited significantly increased stable carbon isotope discrimination (more negative values of 13C relative to PDB) when grown with sunflecks. More negative 13C values were associated with decreased growth rate of P. palmata but not of L. articulata. The contrasting effects of sunflecks on the carbon-use characteristics of the two species are discussed in terms of the energetic cost of HCO inf3 sup– use and the susceptibility of CO2 diffusion-dependent species to photoinhibition.  相似文献   

9.
Summary Geotrichum candidum (isolate 1–9) pathogenic on citrus fruits, appears to lack siderophore production. Iron uptake byG. candidum is mediated by two distinct iron-regulated, energy-and temperature-dependent transport systems that require sulfhydryl groups. One system exhibits specificity for either ferric or ferrous iron, whereas the other exhibits specificity for ferrioxamine-B-mediated iron uptake and presumably other hydroxamate siderophores. Radioactive iron uptake from59FeCl3 showed an optimum at pH 6 and 35° C, and Michaelis-Menten kinetics (apparentK m = 3 m,V max = 0.054 nmol · mg–1 · min–1). The maximal rate of Fe2+ uptake was higher than Fe3+ (V max = 0.25 nmol · mg–1 · min–1) but theK m was identical. Reduction of ferric to ferrous iron prior to transport could not be detected. The ferrioxamine B system exhibits an optimum at pH 6 and 40° C and saturation kinetics (K m = 2 M,V max = 0.22 nmol · mg–1 · min–1). The two systems were distinguished as two separate entities by negative reciprocal competition, and on the basis of differential response to temperature and phenazine methosulfate. Mössbauer studies revealed that cells fed with either57FeCl3 or57FeCl2 accumulated unknown ferric and ferrous binding metabolites.  相似文献   

10.
The acquisition of inorganic carbon by four red macroalgae   总被引:6,自引:0,他引:6  
Photosynthesis was studied in four species of red marine macroalgae: Palmaria palmata, Laurencia pinnatifida, Lomentaria articulata and Delesseria sanguinea. The rate of O2 evolution for submersed photosynthesis was measured as a function of incident photon flux density at normal pH and inorganic carbon concentration (pH 8.0, 2 mol m–3), and as a function of inorganic carbon concentration at pH 8.0 at saturating and at limiting photon flux density. The rate of CO2 uptake was measured for emersed photosynthesis as a function of CO2 partial pressure at saturating photon flux density. Previous pH-drift results suggest that Palmaria and Laurencia are able to use HCO inf3 sup– as well as CO2 whereas Lomentaria and Delesseria are restricted to CO2. None of the algae are saturated by 2 mol m–3 inorganic carbon at high light (400 mol m–2 s–1) but are saturated at low light (35 mol m–2 s–1). The inorganic C concentration at which half the light-saturated rate of O2 evolution is achieved is higher for Palmaria and Laurencia (1.51 and 1.85 mol m–3) than for Lomentaria and Delesseria (0.772 and 0.841 mol m–3). The lower values for the latter two species could reflect their putative restriction to CO2. If expressed in terms of CO2, the half-saturation values yield 7.2 and 7.8 mmol m–3 respectively, which are very similar to values obtained previously during pH-drift experiments but at lower concentrations of HCO inf3 sup– , consistent with restriction to CO2. The photosynthetic conductance (m s–1), calculated from the initial slope for photosynthesis at low concentrations of inorganic carbon, correlates with the suggested ability to extract inorganic carbon based on pH-drift results. Calculations made assuming that CO2 is the only species diffusing across the boundary layer are consistent with boundary layer thicknesses of 20 and 19 m for Lomentaria and Delesseria respectively, which is feasible given the rapid water movement in the experiments. For Laurencia however, an unreasonably small boundary layer thickness of 6 m is necessary to explain the flux, which indicates co-diffusion by HCO inf3 sup– . In the apparent absence of external carbonic anhydrase, direct uptake of HCO inf3 sup– , rather than external conversion to CO2 is indicated in this species. In air, the CO2 concentration at which photosynthesis is half-maximal increases in the same order as the ability to raise pH in drift experiments. At 21 kPa the CO2 compensation partial pressures for Palmaria and Laurencia at 0.56 and 1.3 Pa are low enough to suggest a carbon-concentrating mechanism is operating, while those of Lomentaria at 1.8 Pa and particularly that of Delesseria at 4.5 Pa could be explained without a carbon-concentrating mechanism. The algae tested (all except Delesseria) showed more O2 evolution than could be accounted for with a photosynthetic quotient of 1.0 and uncatalysed conversion of HCO inf3 sup– to CO2 outside the cell in high light at pH 8.0 when high algal fresh weight per unit medium was used. These results are concordant with other data suggesting use of HCO inf3 sup– by Palmaria and Laurencia, but discordant with the rest of the available information in indicating use of HCO inf3 sup– by Lomentaria. The reason for this is unclear. The lightsaturated rate of O2 evolution on an algal area basis and the photon flux density needed to saturate photosynthesis were related partly to the habitat from which the seaweeds were collected, but more strongly to the ability to use HCO inf3 sup– . Values for the two users of HCO inf3 sup– , Palmaria (population used was intertidal; also occurs subtidally) and Laurencia (intertidal/shaded intertidal), were greater than for Lomentaria (shaded intertidal), which was greater than Delesseria (subtidal), both of which are believed to be restricted to CO2. In accordance with earlier 13C data and, for Delesseria, estimates of the achieved growth rates in situ, carbon is likely to be saturating and use of HCO inf3 sup– is unlikely to occur in the normal low-light habitats of Lomentaria and Delesseria. Analysis of N-use efficiencies show that they are closer to the low-CO2-affinity Laminariales than the high-CO2-affinity Fucaceae.  相似文献   

11.
A fermentation medium based on millet (Pennisetum typhoides) flour hydrolysate and a four-phase feeding strategy for fed-batch production of baker's yeast,Saccharomyces cerevisiae, are presented. Millet flour was prepared by dry-milling and sieving of whole grain. A 25% (w/v) flour mash was liquefied with a thermostable 1,4--d-glucanohydrolase (EC 3.2.1.1) in the presence of 100 ppm Ca2+, at 80°C, pH 6.1–6.3, for 1 h. The liquefied mash was saccharified with 1,4--d-glucan glucohydrolase (EC 3.2.1.3) at 55°C, pH 5.5, for 2 h. An average of 75% of the flour was hydrolysed and about 82% of the hydrolysate was glucose. The feeding profile, which was based on a model with desired specific growth rate range of 0.18–0.23 h–1, biomass yield coefficient of 0.5 g g–1 and feed substrate concentration of 200 g L–1, was implemented manually using the millet flour hydrolysate in test experiments and glucose feed in control experiments. The fermentation off-gas was analyzed on-line by mass spectrometry for the calculation of carbon dioxide production rate, oxygen up-take rate and the respiratory quotient. Off-line determination of biomass, ethanol and glucose were done, respectively, by dry weight, gas chromatography and spectrophotometry. Cell mass concentrations of 49.9–51.9 g L–1 were achieved in all experiments within 27 h of which the last 15 h were in the fedbatch mode. The average biomass yields for the millet flour and glucose media were 0.48 and 0.49 g g–1, respectively. No significant differences were observed between the dough-leavening activities of the products of the test and the control media and a commercial preparation of instant active dry yeast. Millet flour hydrolysate was established to be a satisfactory low cost replacement for glucose in the production of baking quality yeast.Nomenclature C ox Dissolved oxygen concentration (mg L–1) - CPR Carbon dioxide production rate (mmol h–1) - C s0 Glucose concentration in the feed (g L–1) - C s Substrate concentration in the fermenter (g L–1) - C s.crit Critical substrate concentration (g L–1) - E Ethanol concentration (g L–1) - F s Substrate flow rate (g h–1) - i Sample number (–) - K e Constant in Equation 6 (g L–1) - K o Constant in Equation 7 (mg L–1) - K s Constant in Equation 5 (g L–1) - m Specific maintenance term (h–1) - OUR Oxygen up-take rate (mmol h–1) - q ox Specific oxygen up-take rate (h–1) - q ox.max Maximum specific oxygen up-take rate (h–1) - q p Specific product formation rate (h–1) - q s Specific substrate up-take rate (g g–1 h–1) - q s.max Maximum specific substrate up-take rate (g g–1 h–1) - RQ Respiratory quotient (–) - S Total substrate in the fermenter at timet (g) - S 0 Substrate mass fraction in the feed (g g–1) - t Fermentation time (h) - V Instantaneous volume of the broth in the fermenter (L) - V 0 Starting volume in the fermenter (L) - V si Volume of samplei (L) - x Biomass concentration in the fermenter (g L–1) - X 0 Total amount of initial biomass (g) - X t Total amount of biomass at timet (g) - Y p/s Product yield coefficient on substrate (–) - Y x/e Biomass yield coefficient on ethanol (–) - Y x/s Biomass yield coefficient on substrate (–) Greek letters Moles of carbon per mole of yeast (–) - Moles of hydrogen atom per mole of yeast (–) - Moles of oxygen atom per mole of yeast (–) - Moles of nitrogen atom per mole of yeast (–) - Specific growth rate (h–1) - crit Critical specific growth rate (h–1) - E Specific ethanol up-take rate (h–1) - max.E Maximum specific ethanol up-take rate (h–1)  相似文献   

12.
Thomas Mock 《Hydrobiologia》2002,470(1-3):127-132
An in situ incubation technique used successfully to measure the photosynthetic carbon assimilation of internal algal assemblages within thick multiyear Arctic ice was developed and improved to measure the photosynthetic carbon assimilation within young sea ice only 50 cm thick (Eastern Weddell Sea, Antarctica). The light transmission was improved by the construction of a cylindrical frame instead of using a transparent acrylic-glass barrel. The new device enabled some of the first precise measurements of in situ photosynthetic carbon assimilation in newly formed Antarctic sea ice, which is an important component in the sea ice ecosystem of the Antarctic Ocean. The rates of carbon assimilation of the interior algal assemblage (top to 5 cm from bottom) was 0.25 mg C m–2 d–1 whereas the bottom algal community (lowest 5 cm) attained only 0.02 mg C m–2 d–1. Chl a specific production rates (PChl) for bottom algae (0.020 – 0.056 g C g chl a –1 h–1) revealed strong light limitation, whereas the interior algae (PChl = 0.7 – 1.2 g C g chl a –1 h–1) were probably more limited by low temperatures (< –5 °C) and high brine salinities.  相似文献   

13.
Rhodospirillum rubrum was grown continuously and photoheterotrophically under light limitation using a cylindrical photobioreactor in which the steady state biomass concentration was varied between 0.4 to 4 kg m–3 at a constant radiant incident flux of 100 W m–2. Kinetic and stoichiometric models for the growth are proposed. The biomass productivities, acetate consumption rate and the CO2 production rate can be quantitatively predicted to a high level of accuracy by the proposed model calculations. Nomenclature: C X, biomass concentration (kg m–3) D, dilution rate (h–1) Ea, mean mass absorption coefficient (m2 kg–1) I , total available radiant light energy (W m–2) K, half saturation constant for light (W m–2) R W, boundary radius defining the working illuminated volume (m) r X, local biomass volumetric rate (kg m–3 h–1) <r X>, mean volumetric growth rate (kg m–3 h–1) V W, illuminated working volume in the PBR (m–3). Greek letters: , working illuminated fraction (–) M, maximum quantum yield (–) bar, mean energetic yield (kg J–1).  相似文献   

14.
Photosynthetic activity by phytoplankton was measured during the ice-free seasons of 1984, 1985 and 1987 using the 14C radioassay in high altitude Emerald Lake (California). Relative quantum yield (B) and light-saturated chlorophyll-specific carbon uptake (Pm B) were calculated from the relationship of light and photosynthesis fitted to a hyperbolic tangent function. Temporal changes in Pm B showed no regular pattern. Seasonal patterns of B generally had peaks in the summer and autumn. Phytoplankton biomass (as measured by chlorophyll a) and light-saturated carbon uptake (Pm) had peaks in the summer and autumn which were associated with vertical mixing. Estimates of mean daily carbon production were similar among the three years: 57 mg C m–2 2 d–1 in 1984, 70 mg C m–2 2 d–1 in 1985 and 60 mg C m–2 d–1 in 1987. Primary productivity in Emerald Lake is low compared to other montane lakes of California and similar to high-altitude or high-latitude lakes in other regions.  相似文献   

15.
Three estuarine macroalgae (Ulva rotundata,Enteromorpha intestinalis, Gracilariagracilis) of economic potential were cultivated in the laboratory toassess their biofiltering capacities for ammonium in waste effluents from a seabass (Dicentrarchus labrax) cultivation tank. The studywasdeveloped to investigate the functioning of N nutrition of the three species.Atlow water flow (< 2 volumes d–1) the three species strippedefficiently the ammonium dissolved in the waste water from the fish tank, withaminimum biofiltering efficiency estimate of 61% in unstarved cultures ofG. gracilis at a water flow of 2 volumesd–1. Maximum velocity for ammonium uptake (89.0 molNH4 + g–1 dry wth–1) was found in U. rotundata,whereas G. gracilis showed the highest affinity for thisnutrient. The net ammonium uptake rate was significantly affected by the waterflow, being greatest at the highest flow assayed (2 volumesd–1). Variations of tissue N and C:N ratios during aflow-through experiment suggested that N was not limiting macroalgal growth.However, when ammonium was supplied at a flow rate of 0.5 volumesd–1, specially in a three-stage design, the marked reductionintissue N and the biomass C:N:P ratios suggested a more general nutrientdeficiency. A significant correlation was found between growth rates and the Nbiomass gained in the cultures. The three-stage design under low water flow(0.5volumes d–1) showed that the highest ammonium uptake rates (upto 80.9 mol NH4 + g–1 dry wtd–1 in U. rotundata) were found inthe first stage, with decreasing rates in the following ones. As a result, lowincrements or even losses of total N biomass in these stages were found,suggesting that ammonium was excreted from the algae. We conclude that thesespecies present a potential ability to biofilter the ammonium dissolved inwastewater from a D. labrax cultivation tank, suggesting thatscaling up the biofiltration designs, future practises using these macroalgaemay be implemented in the local fish farms, resulting in both environmental andeconomical advantages.  相似文献   

16.
The potential of three estuarine macroalgae (Ulvarotundata, Enteromorpa intestinalis andGracilaria gracilis) as biofilters for phosphate ineffluents of a sea bass (Dicentrarchus labrax) cultivationtank was studied. These seaweeds thrive in Cádiz Bay and were alsoselected because of their economic potential, so that environmental andeconomicadvantages may be achieved by future integrated aquaculture practices in thelocal fish farms. The study was designed to investigate the functioning of Pnutrition of the selected species. Maximum velocity of phosphate uptake (2.86mol PO4 g–1 dry wth–1) was found in U. rotundata.This species also showed the highest affinity for this nutrient. At low flowrates (< 2 volumes d–1), the three species efficientlyfiltered the phosphate dissolved in the waste water, with a minimum efficiencyof 60.7% in U. rotundata. Net phosphate uptake rate wassignificantly affected by the water flow, being greatest at the highest rateassayed (2 volumes d–1). The marked decrease in tissue P shownby the three species during a flow-through experiment suggested that growth wasP limited. However, due to the increase in biomass, total P biomass increasedinthe cultures. A significant correlation was found between growth rates and thenet P biomass gained in the cultures. A three-stage design under low water flow(0.5 volumes d–1) showed that the highest growth rates (up to0.14 d–1) and integrated phosphate uptake rates(up to 5.8 mol PO4 3– g–1dry wt d–1) were found in E.intestinalis in the first stage, with decreasing rates in thefollowing ones. As a result, phosphate become limiting and low increments oreven losses of total P biomass in these stages were found suggesting thatphosphate was excreted from the algae. The results show the potential abilityofthe three species to reduce substantially, at low water flow, the phosphateconcentration in waste waters from a D. labrax cultivationtank, and thus the quality of effluents from intensive aquaculture practices.  相似文献   

17.
Biomass and eicosapentaenoic acid (EPA) productivities were investigated in a flat panel airlift loop reactor ideally mixed by static mixers. Growth with ammonium, urea and nitrate as nitrogen source were performed at different aeration rates. Cultures grew on ammonium but the decay of pH strongly inhibited biomass increase. On urea biomass productivity reached 2.35 g L–1d–1at an aeration rate of 0.66 vvm (24 h light per day, 1000 mol photon m–2s–1). Aeration rates between 0.33 vvm and 0.66 vvm and maximal productivities on urea were linearly dependent. Productivity on nitrate never exceeded 1.37 g L–1d–1. In the range of maximum productivity photosynthesis efficiency of 10.6% was reached at low irradiance (250 mol photon m–2s–1). Photosynthesis efficiency decreased to 4.8% at 1000 mol photon m–2s–1. At these high irradiances the flat panel airlift reactor showed a 35% higher volume productivity than the bubble column. At continuous culture conditions the influence of CO2concentration in the supply air was tested. Highest productivities were reached at 1.25% (v/v) CO2where the continuous culture yielded 1.04 g L–1d–1(16 h light per day, 1000 mol photon m–2s–1). The average EPA content amounted to 5.0% of cell dry weight, that resulted in EPA productivities of 52 mg L–1d–1(continuous culture, 16 h light per day) or 118 mg L–1d–1(batch culture, 24 h light per day).  相似文献   

18.
Miniature heat balance-sap flow gauges were used to measure water flows in small-diameter roots (3–4 mm) in the undisturbed soil of a mature beech–oak–spruce mixed stand. By relating sap flow to the surface area of all branch fine roots distal to the gauge, we were able to calculate real time water uptake rates per root surface area (Js) for individual fine root systems of 0.5–1.0 m in length. Study aims were (i) to quantify root water uptake of mature trees under field conditions with respect to average rates, and diurnal and seasonal changes of Js, and (ii) to investigate the relationship between uptake and soil moisture θ, atmospheric saturation deficit D, and radiation I. On most days, water uptake followed the diurnal course of D with a mid-day peak and low night flow. Neighbouring roots of the same species differed up to 10-fold in their daily totals of Js (<100–2000 g m−2 d−1) indicating a large spatial heterogeneity in uptake. Beech, oak and spruce roots revealed different seasonal patterns of water uptake although they were extracting water from the same soil volume. Multiple regression analyses on the influence of D, I and θ on root water uptake showed that D was the single most influential environmental factor in beech and oak (variable selection in 77% and 79% of the investigated roots), whereas D was less important in spruce roots (50% variable selection). A comparison of root water uptake with synchronous leaf transpiration (porometer data) indicated that average water fluxes per surface area in the beech and oak trees were about 2.5 and 5.5 times smaller on the uptake side (roots) than on the loss side (leaves) given that all branch roots <2 mm were equally participating in uptake. Beech fine roots showed maximal uptake rates on mid-summer days in the range of 48–205 g m−2 h−1 (i.e. 0.7–3.2 mmol m−2 s−1), oak of 12–160 g m−2 h−1 (0.2–2.5 mmol m−2 s−1). Maximal transpiration rates ranged from 3 to 5 and from 5 to 6 mmol m−2 s−1 for sun canopy leaves of beech and oak, respectively. We conclude that instantaneous rates of root water uptake in beech, oak and spruce trees are above all controlled by atmospheric factors. The effects of different root conductivities, soil moisture, and soil hydraulic properties become increasingly important if time spans longer than a week are considered.  相似文献   

19.
Feeding rate inhibition in crowded Daphnia pulex   总被引:2,自引:2,他引:0  
Feeding rates of Daphnia pulex fed a range of levels of the alga Chlamydomonas reinhardi of 15 °C are strongly density-dependent. At lower densities, Daphnia (30 1–1) fed at higher rates than crowded (270 1–1) Daphnia which manifest a relatively depressed saturation feeding response. At 30 individuals/liter, Daphnia consumed 8.5 – 15.7 × 104 cells d–1h–1 (on a volume basis, 12.1 – 22.2 × 106 m3), at 270 L–1 3.7 – 3.9 × 104 (5.2 – 5.5 = 106 m3 cells d–1h–1 when feeding on algae at 80 000 cells ml–1 (11.3 × 106 m3 ml–1). The feeding rate data best fit an Ivlev feeding function. An autoallelopath might be causing the repression. Water preconditioned with crowded Daphnia completely repressed feeding in uncrowded Daphnia after six hours.  相似文献   

20.
Spirulina platensis (= Arthrospira fusiformis) was isolated from Lake Chitu, a saline, alkaline lake in Ethiopia, where it forms an almost unialgal population. Optimum growth conditions were studied in a turbidostat. Cultures grown in modified Zarrouk's medium and exposed to a range of light intensities (20–500 µmol photons m–2s–1) showed a maximum specific growth rate (µmax) of 1.78 d–1. Quantum yield for growth (µ) was 3.8% at the optimum light for growth of 330 µmol photons m–2s–1, and ranged from 2.8 to 9.4%. With increase in irradiance, the chlorophyll a concentration decreased, and the carotenoids/chlorophyll a ratio increased by a factor of 2.4. The phosphorus to carbon ratio (P/C) showed some variation, while the nitrogen to carbon ratio (N/C) remained relatively constant, thus causing fluctuations in the N:P ratio (7–11) of cells. An optimum N:P ratio of about 7 was attained in cells growing at the optimum light for growth. Results from the continuous culture experiments agreed well with maximum values of photosynthetic efficiency given in the literature for natural populations of S. platensis in the soda lakes of East Africa, Lake Arenguade (Ethiopia), and Lake Simbi (Kenya).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号