首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novel N9-arenethenyl purines, optimized potent dual Src/Abl tyrosine kinase inhibitors, are described. The key structural feature is a trans vinyl linkage at N9 on the purine core which projects hydrophobic substituents into the selectivity pocket at the rear of the ATP site. Their synthesis was achieved through a Horner–Wadsworth–Emmons reaction of N9-phosphorylmethylpurines and substituted benzaldehydes or Heck reactions between 9-vinyl purines and aryl halides. Most compounds are potent inhibitors of both Src and Abl kinase, and several possess good oral bioavailability.  相似文献   

2.
The goal of this review is to highlight the wide range of biological activities displayed by purines, with particular emphasis on new purine-based agents which find potential application as chemical-biology tools and/or therapeutic agents. The expanding interest in the biological properties of polyfunctionalized purine derivatives issues, in large part, from the development of rapid high-throughput screening essays for new protein targets, and the corresponding development of efficient synthetic methodology adapted to the construction of highly diverse purine libraries. Purine-based compounds have found new applications as inducers of interferon and lineage-committed cell dedifferentiation, agonists and antagonists of adenosine receptors, ligands of corticotropin-releasing hormone receptors, and as inhibitors of HSP90, Src kinase, p38alpha MAP kinase, sulfotransferases, phosphodiesterases, and Cdks. The scope of application of purines in biology is most certainly far from being exhausted. Testing purine derivatives against the multitude of biological targets for which small molecule probes have not yet been found should thus be a natural reflex.  相似文献   

3.
We report here the discovery of novel purine derivatives with potent and selective inhibitory activity against c-Src tyrosine kinase by adopting a strategy integrating focused combinatorial library design, virtual screening, chemical synthesis, and bioassay. Thirty two compounds were selected and synthesized. All compounds showed potent inhibitory activity against c-Src kinase with IC50 values ranging from 3.14 μM to 0.02 μM. Compound 5i was identified as one of the most potent agent with an IC50 120 times lower than those of the hits. The high hit rate (100%) and the potency of the new Src kinase inhibitors demonstrated the efficiency of the strategy for the focused library design and virtual screening. The novel active chemical entities reported here should be good leads for further development of purine-based anticancer drugs targeting Src tyrosine kinase.  相似文献   

4.
Csk phosphorylates Src family members at a key regulatory tyrosine in the C-terminal tail and suppresses their activities. It is not known whether Csk activity is regulated. To examine the features of Csk required for Src suppression, we expressed Csk mutants in a cell line with a disrupted csk gene. Expression of wild-type Csk suppressed Src, but Csk with mutations in the SH2, SH3, and catalytic domains did not suppress Src. An SH3 deletion mutant of Csk was fully active against in vitro substrates, but two SH2 domain mutants were essentially inactive. Whereas Src repressed by Csk was predominantly perinuclear, the activated Src in cells lacking Csk was localized to structures resembling podosomes. Activated mutant Src was also in podosomes, even in the presence of Csk. When Src was not active, Csk was diffusely located in the cytosol, but when Src was active, Csk colocalized with activated Src to podosomes. Csk also localizes to podosomes of cells transformed by an activated Src that lacks the major tyrosine autophosphorylation site, suggesting that the relocalization of Csk is not a consequence of the binding of the Csk SH2 domain to phosphorylated Src. A catalytically inactive Csk mutant also localized with Src to podosomes, but SH3 and SH2 domain mutants did not, suggesting that the SH3 and SH2 domains are both necessary to target Csk to places where Src is active. The failure of the catalytically active SH3 mutant of Csk to regulate Src may be due to its inability to colocalize with active Src.  相似文献   

5.
目的:探讨癌基因Src在体外培养骨肉瘤细胞侵袭伪足形成中的作用。方法:构建Src sh RNA慢病毒表达载体,在HEK293T细胞中包装慢病毒,感染HT-1080骨肉瘤细胞,经嘌呤霉素加压筛选,获得稳定沉默Src基因的骨肉瘤细胞系HT-1080-sh Src;实时定量PCR和Western Blot法检测基因沉默效率;采用原位明胶酶谱法检测侵袭伪足形成;采用侵袭小室实验检测下调Src基因表达对HT-1080细胞侵袭力的影响。结果:成功构建稳定沉默Src基因的骨肉瘤细胞系HT-1080-sh Src及对照细胞系HT-1080-shluc,经实时定量PCR和Western Blot检测,与对照细胞系相比,HT-1080-sh Src细胞中Src基因表达下调3倍以上;下调HT-1080细胞中Src基因表达能显著抑制HT-1080细胞侵袭伪足形成及其对细胞外基质的降解能力;下调Src基因表达能显著抑制骨肉瘤细胞侵袭力。结论:癌基因Src参与调节骨肉瘤细胞HT-1080侵袭伪足形成,促进肿瘤侵袭、转移。  相似文献   

6.
Src42A is one of the two Src homologs in Drosophila. Src42A protein accumulates at sites of cell-cell or cell-matrix adhesion. Anti-Engrailed antibody staining of Src42A protein-null mutant embryos indicated that Src42A is essential for proper cell-cell matching during dorsal closure. Src42A, which is functionally redundant to Src64, was found to interact genetically with shotgun, a gene encoding E-cadherin, and armadillo, a Drosophila beta-catenin. Immunoprecipitation and a pull-down assay indicated that Src42A forms a ternary complex with E-cadherin and Armadillo, and that Src42A binds to Armadillo repeats via a 14 amino acid region, which contains the major autophosphorylation site. The leading edge of Src mutant embryos exhibiting the dorsal open phenotype was frequently kinked and associated with significant reduction in E-cadherin, Armadillo and F-actin accumulation, suggesting that not only Src signaling but also Src-dependent adherens-junction stabilization would appear likely to be essential for normal dorsal closure. Src42A and Src64 were required for Armadillo tyrosine residue phosphorylation but Src activity may not be directly involved in Armadillo tyrosine residue phosphorylation at the adherens junction.  相似文献   

7.
The protein-tyrosine phosphatase SHP-1 is a negative regulator of multiple signal transduction pathways. We observed that SHP-1 effectively antagonized Src-dependent phosphorylations in HEK293 cells. This occurred by dephosphorylation of Src substrates, because Src activity was unaffected in the presence of SHP-1. One reason for efficient dephosphorylation was activation of SHP-1 by Src. Recombinant SHP-1 had elevated activity subsequent to phosphorylation by Src in vitro, and SHP-1 variants with mutated phosphorylation sites in the C terminus, SHP-1 Y538F, and SHP-1 Y538F,Y566F were less active toward Src-generated phosphoproteins in intact cells. A second reason for efficient dephosphorylation is the substrate selectivity of SHP-1. Pull-down experiments with different GST-SHP-1 fusion proteins revealed efficient interaction of Src-generated phosphoproteins with the SHP-1 catalytic domain rather than with the SH2 domains. Phosphopeptides that correspond to good Src substrates were efficiently dephosphorylated by SHP-1 in vitro. Phosphorylated "optimal Src substrate" AEEEIpYGEFEA (where pY is phosphotyrosine) and a phosphopeptide corresponding to a recently identified Src phosphorylation site in p120 catenin, DDLDpY(296)GMMSD, were excellent SHP-1 substrates. Docking of these phosphopeptides into the catalytic domain of SHP-1 by molecular modeling was consistent with the biochemical data and explains the efficient interaction. Acidic residues N-terminal of the phosphotyrosine seem to be of major importance for efficient substrate interaction. Residues C-terminal of the phosphotyrosine probably contribute to the substrate selectivity of SHP-1. We propose that activation of SHP-1 by Src and complementary substrate specificities of SHP-1 and Src may lead to very transient Src signals in the presence of SHP-1.  相似文献   

8.
The G protein-coupled sst2 somatostatin receptor acts as a negative cell growth regulator. Sst2 transmits antimitogenic signaling by recruiting and activating the tyrosine phosphatase SHP-1. We now identified Src and SHP-2 as sst2-associated molecules and demonstrated their role in sst2 signaling. Surface plasmon resonance and mutation analyses revealed that SHP-2 directly associated with phosphorylated tyrosine 228 and 312, which are located in sst2 ITIMs (immunoreceptor tyrosine-based inhibitory motifs). This interaction was required for somatostatin-induced SHP-1 recruitment and activation and consequent inhibition of cell proliferation. Src interacted with sst2 and somatostatin promoted a transient Gbetagamma-dependent Src activation concomitant with sst2 tyrosine hyperphosphorylation and SHP-2 activation. These steps were abrogated with catalytically inactive Src. Both catalytically inactive Src and SHP-2 mutants abolished somatostatin-induced SHP-1 activation and cell growth inhibition. Sst2-Src-SHP-2 complex formation was dynamic. Somatostatin further induced sst2 tyrosine dephosphorylation and complex dissociation accompanied by Src and SHP-2 inhibition. These steps were defective in cells expressing a catalytically inactive Src mutant. All these data suggest that Src acts upstream of SHP-2 in sst2 signaling and provide evidence for a functional role for Src and SHP-2 downstream of an inhibitory G protein-coupled receptor.  相似文献   

9.
Src class protein-tyrosine kinases bind to and phosphorylate the nicotinic acetylcholine receptor of skeletal muscle. This study provided evidence for the functional importance of Src kinases in regulating the nicotinic acetylcholine receptor at the neuromuscular junction. Three Src class kinases, Fyn, Fyk, and Src, each formed a complex with the endplate-specific cytoskeletal protein rapsyn. In addition, cellular phosphorylation by each kinase was stimulated by rapsyn in heterologous transfected cells. Several lines of evidence supported rapsyn as a substrate for Src kinases. Most importantly, rapsyn regulation of Fyn, Fyk, and Src resulted in phosphorylation of the nicotinic acetylcholine receptor beta and delta subunits and anchoring of the receptor to the cytoskeleton. Both nicotinic acetylcholine receptor phosphorylation and cytoskeletal anchoring were blocked by the Src kinase-selective inhibitor herbimycin A. Rapsyn alone also induced a modest increase in nicotinic acetylcholine receptor phosphorylation and cytoskeletal translocation. However, inhibition by herbimycin A and a catalytically inactive dominant negative Src demonstrated that the effects of rapsyn were mediated by endogenous Src kinases. These data support the importance of Src class kinases for stabilization of the nicotinic acetylcholine receptor at the endplate during synaptic differentiation at the neuromuscular junction.  相似文献   

10.

Background

Src, a non-receptor tyrosine kinase is elevated in cancer with expression and activity correlated with cell proliferation, adhesion, survival, motility, metastasis and angiogenesis. There is limited data on Src expression and subcellular localization in breast cancer and no information about expression in racial/ethnic groups.

Methodology/Principal Findings

The present study evaluated Src expression, activity, and subcellular localization in triple negative breast cancer (TNBC) and ERα positive breast cancer (ER+BC), cancer tissue and adjacent normal epithelial ducts, and Caucasian and African American cases. 79 paraffin embedded breast carcinoma cases were obtained from Tulane University Hospital between 2007–2009. 39 cases represented TNBC (33-African Americans, 4-Caucasians, 2-unknowns) and 40 cases represented ER+BC (21-African Americans, 16-Caucasians, 3-unknowns). Immunohistochemistry was used to measure staining distribution and intensity of total Src and activated phospho-SrcY416 (p-Y416Src) in carcinoma tissue and adjacent normal mammary ducts. In TNBC and ER+BC, total Src was significantly higher in cancer compared to adjacent normal ducts (P<0.0001) in both cell membrane and cytoplasm. In membranes, p-Y416Src was elevated in cancer compared to normal ducts. Total Src in the tumor cytoplasm was significantly higher in TNBC compared to ER+BC (P = 0.0028); conversely, p-Y416Src in the tumor cell membranes was higher in TNBC compared to ER+BC (P = 0.0106). Comparison between African American (n = 21) and Caucasian ER+BC (n = 16) revealed no significant difference in expression and localization of total Src and p-Y416Src. TNBC cases positive for lymph node metastasis showed elevated membrane p-Y416Src compared to lymph node negative TNBC (P = 0.027).

Conclusion/Significance

Total Src and p-Y416Src were expressed higher in cancer compared to adjacent normal ducts. Cytoplasmic total Src and membrane p-Y416Src were significantly higher in TNBC compared to ER+BC. TNBC cases with lymph node metastasis showed elevated membrane p-Y416Src. Taken together, Src was elevated in the membrane and cytoplasm of more aggressive TNBC.  相似文献   

11.
Our laboratory has conducted multiple functional proteomic analyses to characterize the components of protein kinase C (PKC)epsilon cardioprotective signaling complexes and found that activation of PKCepsilon induces dynamic modulation of these complexes. In addition, it is known that signal transduction within a complex involves the formation of modules, one of which has been shown to include PKCepsilon and Src tyrosine kinase in the rabbit heart. However, the cellular mechanisms that define the assembly of PKCepsilon modules remain largely unknown. To address this issue, the interactions between PKCepsilon and Src were studied. We used recombinant proteins of wild-type PKCepsilon (PKCepsilon-WT) and open conformation mutants of the kinase (PKCepsilon-AE5 and PKCepsilon-AN59), the regulatory and catalytic domains of PKCepsilon, along with glutathione-S-transferase (GST) fusion proteins of Src (GST-Src) and two domains of Src (GST-SH2 and GST-SH3). GST pulldown assays demonstrated that Src and PKCepsilon are binding partners and that the interaction between PKCepsilon and Src appears to involve multiple sites. This finding was supported for endogenous PKCepsilon and Src in the murine heart using immunofluorescence-based confocal microscopy and coimmunoprecipitation. Furthermore, PKCepsilon-WT and GST-Src interactions were significantly enhanced in the presence of phosphatidyl-L-serine, an activator of PKC, indicating that Src favors interaction with activated PKCepsilon. This finding was confirmed when the PKCepsilon-WT was replaced with PKCepsilon-AE5 or PKCepsilon-AN59, demonstrating that the conformation of PKCepsilon is a critical determinant of its interactions with Src. Together, these results illustrate that formation of a signaling module between PKCepsilon and Src involves specific domains within the two molecules and is governed by the molecular conformation of PKCepsilon.  相似文献   

12.
Activation of the MAPK pathway mediates insulin-like growth factor-I (IGF-I)-dependent proliferation in vascular smooth muscle cells (SMC). Our previous studies have shown that IGF-I-induced Shc phosphorylation is necessary for sustained activation of MAPK and increased cell proliferation of SMCs, and both Shc and the tyrosine phosphatase SHP-2 must be recruited to the membrane protein SHPS-1 in order for Shc to be phosphorylated. These studies were undertaken to determine whether Src kinase activity is required to phosphorylate Shc in response to IGF-I in SMC and because SHP-2 binds to Src whether their interaction was also required for IGF-I-stimulated mitogenesis. Our results show that IGF-I induces activation of Src kinase and that is required for Shc phosphorylation and for optimal MAPK activation. We tested whether Shc is a substrate of c-Src in SMC by disrupting Src/Shc association using a peptide containing a YXXL (Tyr328) motif sequence derived from Src. The peptide blocked the binding of Src and Shc in vitro and in vivo. Cells expressing a mutant Src (Src-FF) that had Tyr328/Tyr358 substituted with phenylalanines (Src-FF) showed defective Src/Shc binding, impaired IGF-I-dependent Shc phorylation, and impaired mitogenesis. This supports the conclusion that Src phosphorylates Shc. IGF-I induced both Src/SHP-2 and Src/SHPS-1 association. SMCs expressing an SHP-2 mutant that had the polyproline-rich region of SH2 deleted (SHP-2Delta10) had disrupted SHP-2/Src association, impaired IGF-I-dependent Shc phosphorylation, and an attenuated mitogenic response. IGF-I-induced association of Src and SHPS-1 was also impaired in SHP-2Delata10-expressing cells, although SHP-2/SHPS-1 association was unaffected. Upon IGF-I stimulation, a complex assembles on SHPS-1 that contains SHP-2, c-Src, and Shc wherein Src phosphorylates Shc, a signaling step that is necessary for an optimal mitogenic response.  相似文献   

13.
Wang D  Huang XY  Cole PA 《Biochemistry》2001,40(7):2004-2010
Phosphorylation of a critical tail tyrosine residue in Src modulates its three-dimensional structure and protein tyrosine kinase activity. The protein tyrosine kinase Csk is responsible for catalyzing the phosphorylation of this key Src tyrosine residue, but the detailed molecular basis for Src recognition and catalysis is poorly understood. In this study, we investigate this phosphorylation event using purified recombinant Csk and Src proteins and mutants. It was shown that the apparent k(cat) and K(m) values for Csk phosphorylation of catalytically impaired Src (dSrc) are similar to the parameters for Csk-catalyzed phosphorylation of the Src family member Lck. The SH3 (Src homology 3) and SH2 (Src homology 2) domains of dSrc were fully dispensable with respect to rapid phosphorylation, indicating that the catalytic domain and tail of dSrc are sufficient for the high efficiency of dSrc as a substrate. Of the eight Src tail residues examined, only the fully conserved Glu (Y-3 position) and Gln (Y-1 position) investigated by alanine scanning mutagenesis caused large reductions (10--40-fold) in dSrc substrate efficiency. The Y-3 Glu requirement was stringent as conservative replacements with Asp or Gln were no better than Ala whereas replacement of the Y-1 Gln with Ile was readily tolerated. Interestingly, en bloc replacement of the tail with a seven amino acid consensus sequence derived from a peptide library analysis was no better than the wild-type sequence. Surprisingly, the dSrc Y527F protein, although not a Csk substrate, enhanced Csk-catalyzed phosphorylation of dSrc. These results and other data suggest that Src dimerization (or higher order oligomerization) is important for high-efficiency Csk-catalyzed phosphorylation of the Src tail.  相似文献   

14.
We have shown that the Na/K-ATPase and Src form a signaling receptor complex. Here we determined how alterations in the amount and properties of the Na/K-ATPase affect basal Src activity and ouabain-induced signal transduction. Several alpha1 subunit knockdown cell lines were generated by transfecting LLC-PK1 cells with a vector expressing alpha1-specific small interference RNA. Although the alpha1 knockdown resulted in significant decreases in Na/K-ATPase activity, it increased the basal Src activity and tyrosine phosphorylation of focal adhesion kinase, a Src effector. Concomitantly it also abolished ouabain-induced activation of Src and ERK1/2. When the knockdown cells were rescued by a rat alpha1, both Na/K-ATPase activity and the basal Src activity were restored. In addition, ouabain was able to stimulate Src and ERK1/2 in the rescued cells at a much higher concentration, consistent with the established differences in ouabain sensitivity between pig and rat alpha1. Finally both fluorescence resonance energy transfer analysis and co-immunoprecipitation assay indicated that the pumping-null rat alpha1 (D371E) mutant could also bind Src. Expression of this mutant restored the basal Src activity and focal adhesion kinase tyrosine phosphorylation. Taken together, the new findings suggest that LLC-PK1 cells contain a pool of Src-interacting Na/K-ATPase that not only regulates Src activity but also serves as a receptor for ouabain to activate protein kinases.  相似文献   

15.
The interaction of unsubstituted purine with polyuridylic acid in D2O solution at neutral pD has been studied by high resolution proton magnetic resonance spectroscopy. The poly U proton resonances were shifted to higher fields by the added purine, indicating that purine binds to the uracil bases of the polymer by base stacking. Severe broadening of the purine proton resonances was also observed, providing strong evidence for the intercalation of purine between adjacent uracil bases of the polymer. The line widths of the poly U proton resonances were not noticeably broadened in the presence of purine; thus, the binding of purine to poly U does not result in a more rigid or ordered structure for the polymer.  相似文献   

16.
《Free radical research》2013,47(10):1210-1217
Abstract

While ischemic preconditioning (IPC) and other cardioprotective interventions have been proposed to protect the heart from ischemia/reperfusion (I/R) injury by inhibiting mitochondrial complex I activity upon reperfusion, the exact mechanism underlying the modulation of complex I activity remains elusive. This study was aimed to test the hypothesis that IPC modulates complex I activity at reperfusion by activating mitochondrial Src tyrosine kinase, and induces cardioprotection against I/R injury. Isolated rat hearts were preconditioned by three cycles of 5-min ischemia and 5-min reperfusion prior to 30-min index ischemia followed by 2 h of reperfusion. Mitochondrial Src phosphorylation (Tyr416) was dramatically decreased during I/R, implying inactivation of Src tyrosine kinase by I/R. IPC increased mitochondrial Src phosphorylation upon reperfusion and this was inhibited by the selective Src tyrosine kinase inhibitor PP2. IPC's anti-infarct effect was inhibited by the selective Src tyrosine kinase inhibitor PP2. Complex I activity was significantly increased upon reperfusion, an effect that was prevented by IPC in a Src tyrosine kinase-dependent manner. In support, Src and phospho-Src were found in complex I. Furthermore, IPC prevented hypoxia/reoxygenation-induced mitochondrial reactive oxygen species (ROS) generation and cellular injury in rat cardiomyocytes, which was revoked by PP2. Finally, IPC reduced LDH release induced by both hypoxia/reoxygenation and simulated ischemia/reperfusion, an effect that was reversed by PP2 and Src siRNA. These data suggest that mitochondrial Src tyrosine kinase accounts for the inhibitory action of IPC on complex I and mitochondrial ROS generation, and thereby plays a role in the cardioprotective effect of IPC.  相似文献   

17.
Prabha CR  Mohan Rao Ch 《FEBS letters》2004,570(1-3):69-72
We investigated the effect of aldosterone on Src kinase. In the kidney cell line, M-1 aldosterone leads to a >2-fold transient activation of Src kinase seen as early as 2 min after aldosterone administration. Maximal Src kinase activation was measured at an aldosterone concentration of 1 nM. In parallel to activation, autophosphorylation at Tyr-416 of Src kinase increased. Src kinase activation was blocked by spironolactone. Aldosterone led to increased association of Src with HSP84. Furthermore, rapamycin blocked aldosterone-induced Src activation. We conclude that Src activation by aldosterone is mediated through the mineralocorticoid receptor and HSP84.  相似文献   

18.
Utilization of 2,6-diaminopurine by Salmonella typhimurium   总被引:2,自引:0,他引:2       下载免费PDF全文
The pathway for the utilization of 2,6-diaminopurine (DAP) as an exogenous purine source in Salmonella typhimurium was examined. In strains able to use DAP as a purine source, mutant derivatives lacking either purine nucleoside phosphorylase or adenosine deaminase activity lost the ability to do so. The implied pathway of DAP utilization was via its conversion to DAP ribonucleoside by purine nucleoside phosphorylase, followed by deamination to guanosine by adenosine deaminase. Guanosine can then enter the established purine salvage pathways. In the course of defining this pathway, purine auxotrophs able to utilize DAP as sole purine source were isolated and partially characterized. These mutants fell into several classes, including (i) strains that only required an exogenous source of guanine nucleotides (e.g., guaA and guaB strains); (ii) strains that had a purF genetic lesion (i.e., were defective in alpha-5-phosphoribosyl 1-pyrophosphate amidotransferase activity); and (iii) strains that had constitutive levels of purine nucleoside phosphorylase. Selection among purine auxotrophs blocked in the de novo synthesis of inosine 5'-monophosphate, for efficient growth on DAP as sole source of purine nucleotides, readily yielded mutants which were defective in the regulation of their deoxyribonucleoside-catabolizing enzymes (e.g., deoR mutants).  相似文献   

19.
To elucidate the regulatory mechanism of cell transformation induced by c-Src tyrosine kinase, we performed a proteomic analysis of tyrosine phosphorylated proteins that interact with c-Src and/or its negative regulator Csk. The c-Src interacting proteins were affinity-purified from Src transformed cells using the Src SH2 domain as a ligand. LC-MS/MS analysis of the purified proteins identified general Src substrates, such as focal adhesion kinase and paxillin, and ZO-1/2 as a transformation-dependent Src target. The Csk binding proteins were analyzed by a tandem affinity purification method. In addition to the previously identified Csk binding proteins, including Cbp/PAG, paxillin, and caveolin-1, we found that ZO-1/2 could also serve as a major Csk binding protein. ZO-2 was phosphorylated concurrently with Src transformation and specifically bound to Csk in a Csk SH2 dependent manner. These results suggest novel roles for ZO proteins as Src/Csk scaffolds potentially involved in the regulation of Src transformation.  相似文献   

20.
Procedures for assaying the rate of purine de novo synthesis in cultured fibroblast cells have been compared. These were (i) the incorporation of [(14)C]-glycine or [(14)C]formate in alpha-N-formylglycinamide ribonucleotide (an intermediate in the purine synthetic pathway) and (ii) the incorporation of [(14)C]-formate into newly synthesised cellular purines and purines excreted by the cell into the medium. Fibroblast cells, derived from patients with a deficiency of hypoxanthine phosphoribosyltransferase (HPRT-) (EC 2.4.2.8) and increased rates of purine de novo synthesis, were compared with fibroblasts from healthy subjects (HPRT+). Fetal calf serum, which was used to supplement the assay and cell growth medium, was found to contain sufficient quantities of the purine base hypoxanthine to inhibit purine de novo synthesis in HPRT+ cells. This inhibition was the basis of differentiation between HPRT- and HPRT+ cells. In the absence of added purine base, both cell types had similar capacities for purine de novo synthesis. This result contrasts with the increased rates of purine de novo synthesis reported for a number of human HPRT- cells in culture but conforms recent studies made on human HPRT- lymphoblast cells. The intracellular concentration and utilisation of 5-phosphoribosyl-1-pyrophosphate (P-Rib-PP), a substrate and potential controlling factor for purine de novo synthesis, were determined in HPRT- and HPRT+ cells. The rate of utilisation of P-Rib-PP in the salvage of free purine bases was far greater than that in purine de novo synthesis. Although HPRT- cells had a 3-fold increase in P-Rib-PP content, the rate of P-Rib-PP generation was similar to HPRT+ cells. Thus, in fibroblasts, the concentration of P-Rib-PP appears to be critical in the control of de novo purine synthesis and its preferential utilisation in the HPRT reaction limits its availability for purine de novo synthesis. In vivo, HPRT+ cells, in contrast to HPRT- cells, may be operating purine de novo synthesis at a reduced rate because of their ability to reutilise hypoxanthine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号