首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Neomycin/bovine serum albumin/gold was used as a probe to detect the binding sites of aminoglycosides on the thin sections of the cochlea embedded in Spurr. The binding sites were mainly located on the stereocilia, the cuticular plate of hair cells, the head plates of Deiters' cells, fibrous structures in pillar cells, in the spiral limbus and tectorial membrane and basilar membrane, plasma membranes, mitochondria and the chromatin of various kinds of cells. Triphosphoinositide, acidic glycosaminoglycans, and RNA were considered to be responsible for the binding activity.  相似文献   

2.
A polymyxin-B/bovine-serum-albumin/gold complex was used as a probe to detect the binding sites of polymyxin B on thin sections of cochlea embedded in Spurr's resin. The binding sites were found to be mainly located on the stereocilia, the cuticular plate of hair cells, the head plate of Deiters' cells, the tonofilaments in pillar cells and Deiters' cells, fibrous structures in the spiral limbus, the tectorial membrane and the basilar membrane and neural elements such as nerve endings, fibers, and the myelin sheath. The mitochondria, plasma membrane, and chromatin of the nuclei of the cells observed also exhibited binding. Our results suggest that phospholipids, glycoconjugates, cytoskeletal proteins and nucleic acids are responsible for this binding activity.  相似文献   

3.
Summary A polymyxin-B/bovine-serum-albumin/gold complex was used as a probe to detect the binding sites of polymyxin B on thin sections of cochlea embedded in Spurr's resin. The binding sites were found to be mainly located on the stereocilia, the cuticular plate of hair cells, the head plate of Deiters' cells, the tonofilaments in pillar cells and Deiters' cells, fibrous structures in the spiral limbus, the tectorial membrane and the basilar membrane and neural elements such as nerve endings, fibers, and the myelin sheath. The mitochondria, plasma mimbrane, and chromatin of the nuclei of the cells observed also exhibited binding. Our results suggest that phospholipids, glycoconjugates, cytoskeletal proteins and nucleic acids are responsible for this binding activity.  相似文献   

4.
The activation energies for binding of tritiated cytochalasin D to HEp-2 cells and isolated plasma membrane were determined by Arrhenius plots. The higher value for intact cells (24 kcal/mol) compared to the plasma membrane fraction (4 kcal/mol at greater than 11.5 degrees C, 18 kcal/mol at less than 11.5 degrees C) was taken as evidence that [3H]cytochalasin D must penetrate the plasma membrane in order to reach its binding sites. The data support the conclusion that binding sites for [3H]cytochalasin D are intracellular, on the cytoplasmic face of the plasma membrane (rather than within the lipid bilayer), and on microsomes (endomembranes).  相似文献   

5.
Incubation of human erythrocytes oxidized by iron catalysts, ADP/Fe3+ or xanthine/xanthine oxidase/Fe3+, with autologous IgG resulted in IgG binding as detected by enzyme immunoassay using protein A-beta-galactosidase conjugate. The binding of autologous IgG to ADP/Fe3(+)-treated erythrocytes maximized when the cells were treated with 1.8:0.1 mM ADP/Fe3+, and declined when treated above this concentration, suggesting that autologous IgG binds to moderately but not to excessively oxidized erythrocytes. The antibody involved in the binding was anti-Band 3, the autoantibody known to bind to aged erythrocytes, because isolated anti-Band 3 bound to the oxidized cells, but anti-Band 3-depleted autologous IgG did not. In addition, purified Band 3 inhibited the autologous IgG binding. Anti-alpha-galactosyl IgG, another natural antibody which has been reported to bind to aged erythrocytes, did not bind to the oxidized cells. Oxidation of membrane lipids, SH-groups of membrane proteins, and Hb of these cells was slight, but the cells contained an increased amount of membrane-bound native Hb, indicating that the oxidized cell membrane has an altered property. alpha-Tocopherol prevented the lipid oxidation and the subsequent IgG binding. Reduction of the oxidized erythrocytes with dithiothreitol resulted in a loss of the IgG binding. These results suggest that anti-Band 3 binding sites (Band 3 senescent antigen) are formed on moderately oxidized erythrocytes as a result of oxidation of membrane protein SH-groups which can be mediated by the membrane lipid oxidation and that formation of the anti-Band 3 binding sites on the oxidized cells is an essentially reversible membrane event which is linked to oxidation and restoration of the protein SH-groups.  相似文献   

6.
The activation energies for binding of tritiated cytochalasin D to HEp-2 cells and isolated plasma membrane were determined by Arrhenius plots. The higher value for intact cells (24 kcal/mol) compared to the plasma membrane fraction (4 kcal/mol at > 11.5 °C, 18 kcal/mol at < 11.5 °C) was taken as evidence that [3H]cytochalasin D must penetrate the plasma membrane in order to reach its binding sites. The data support the conclusion that binding sites for [3H]cytochalasin D are intracellular, on the cytoplasmic face of the plasma membrane (rather than within the lipid bilayer), and on microsomes (endomembranes).  相似文献   

7.
The presence of mosaicism in the organization of concanavalin agglutinin (Con A) binding sites on murine egg cells was first reported 30 year ago. This discovery has triggered extensive studies into the roles of glycoproteins in gamete interactions in animals. This report comprises the first account of the existence of the mosaicism in higher plants. The distribution of Con A binding sites on both egg cells and central cells of tobacco (Nicotiana tabacum) was found to be polar and apparently determined by the location of the nucleus of the cell. On central cells, Con A binding sites were distributed on the section of the plasma membrane surface near the nucleus. By contrast, the binding sites on egg cells were concentrated away from the nucleus. Therefore, polarity of the plasma membrane component of female cells was confirmed for the first time. It is proposed that such polarized ConA binding sites could be involved in sperm recognition.  相似文献   

8.
The first step in the transport of cyanocobalamin (CN-B(12)) by cells of Escherichia coli was shown previously to consist of binding of the B(12) to specific receptor sites located on the outer membrane of the cell envelope. In this paper, evidence is presented that these B(12) receptor sites also function as the receptors for the E colicins, and that there is competition between B(12) and the E colicins for occupancy of these sites. The cell strains used were E. coli KBT001, a methionine/B(12) auxotroph, and B(12) transport mutants derived from strain KBT001. Colicins E1 and E3 inhibited binding of B(12) to the outer membrane B(12) receptor sites, and CN-B(12) protected cells against these colicins. Half-maximal protection was given by CN-B(12) concentrations in the range of 1 to 6 nM, depending upon the colicin concentration used. Colicin E1 competitively inhibited the binding of (57)Co-labeled CN-B(12) to isolated outer membrane particles. Functional colicin E receptor sites were found in cell envelopes from cells of only those strains that possessed intact B(12) receptors. Colicin K did not inhibit the binding of B(12) to the outer membrane receptor sites, and no evidence was found for any identity between the B(12) and colicin K receptors. However, both colicin K and colicin E1 inhibited the secondary phase of B(12) transport, which is believed to consist of the energy-coupled movement of B(12) across the inner membrane.  相似文献   

9.
J Fischer 《Histochemistry》1987,87(5):479-482
High amount of N-acetyl-D-galactosamine specific lectin binding sites were detected on the canalicular membranes of human parietal cells. Our present model investigations on mice showed that the intracellular distribution of the terminal N-acetyl-D-galactosamine containing glycoprotein highly depends on the actual functional state of the parietal cells. In the normal gastric mucosa 40%-60% of parietal cells react positively after staining with horseradish peroxidase or biotin labelled Dolichos biflorus lectin. Ultrastructurally lectin binding sites occur mainly on the basolateral membrane infoldings in fed animals, while they are present exclusively on the canalicular membranes of fasting mice, suggesting that the alternative appearance of lectin binding sites on the opposite membrane areas of parietal cells is tightly coupled to their main function, to H+ secretion.  相似文献   

10.
Specific binding of fluoresceinated succinyl-concanavalin A, wheat germ agglutinin, and ricin to untreated and trypsinized bloodstream forms of Trypanosoma brucei rhodesiense was quantitated by flow cytofluorimetry, and sites of lectin binding were identified by fluorescence microscopy. All three lectins only bound to the flagellar pocket of untreated parasites. When parasites were trypsinized to remove the variant surface glycoprotein coat, new lectin binding sites were exposed, and specific binding of all three lectins increased significantly. New specific binding sites for succinyl-concanavalin A and wheat germ agglutinin were present along both the free flagellum and flagellar adhesion zone and were uniformly distributed on the parasite surface. However, ricin did not bind uniformly on the surface and did not stain the free flagellum of trypsinized cells. Ricin only bound to the flagellar adhesion zone of trypsinized cells and of cells that had been treated with formaldehyde prior to staining. Electron microscopy of cells exposed to ricin-colloidal gold complexes revealed that that ricin binding was restricted to the anterior membrane of the flagellar pocket of untrypsinized cells and to this portion of the flagellar pocket and the cell body membrane in the flagellar adhesion zone of trypsinized cells. Evidence that these membranes constitute a functionally important membrane microdomain is reviewed.  相似文献   

11.
Specific binding of fluoresceinated succinyl-concanavalin A, wheat germ agglutinin, and ricin to untreated and trypsinized bloodstream forms of Trypanosoma brucei rhodesiense was quantitated by flow cytofluorimetry, and sites of lectin binding were identified by fluorescence microscopy. All three lectins only bound to the flagellar pocket of untreated parasites. When parasites were trypsinized to remove the variant surface glycoprotein coat, new lectin binding sites were exposed, and specific binding of all three lectins increased significantly. New specific binding sites for succinyl-concanavalin A and wheat germ agglutinin were present along both the free flagellum and flagellar adhesion zone and were uniformly distributed on the parasite surface. However, ricin did not bind uniformly on the surface and did not stain the free flagellum of trypsinized cells. Ricin only bound to the flagellar adhesion zone of trypsinized cells and of cells that had been treated with formaldehyde prior to staining. Electron microscopy of cells exposed to ricin-colloidal gold complexes revealed that that ricin binding was restricted to the anterior membrane of the flagellar pocket of untrypsinized cells and to this portion of the flagellar pocket and the cell body membrane in the flagellar adhesion zone of trypsinized cells. Evidence that these membranes constitute a functionally important membrane microdomain is reviewed.  相似文献   

12.
The human erythrocyte membrane binds insulin through high-affinity, low-capacity binding sites (dissociation constant Kd1 2.45 X 10(-9)M; capacity n1 207 fmol/mg protein) and low-affinity, high-capacity binding sites (Kd2 0.63 X 10(-6) M; n2 37 pmol/mg protein). Treatment of the erythrocyte membrane or the intact cells with the physiological concentration of insulin, which is within the range of Kd value of the high-affinity sites, results in a significant reduction of the membrane microviscosity and the filtration time of the intact cells. Use of supraphysiological concentrations of the hormone reverses the effect of the lower concentration of insulin on the membrane microviscosity and the filtration time.  相似文献   

13.
Analyses of insulin binding to human erythrocytes and to resealed right-side-out and inside-out erythrocyte membrane vesicles have revealed that high affinity insulin binding receptors are present on both sides of the erythrocyte membranes. Insulin binding to human erythrocytes was examined with the use of a binding assay designed to minimize the potential errors arising from the low binding capacity of this cell type and from non-specific binding in the assay. Scatchard analysis of equilibrium binding to the cells revealed a class of high affinity sites with a dissociation constant (Kd) of (1.5 +/- 0.5) X 10(-8) M and a maximum binding capacity of 50 +/- 5 sites per cell. Interestingly, both resealed right-side-out and inside-out membrane vesicles exhibited nearly identical specific sites for insulin binding. At the high affinity binding sites, for both right-side-out and inside-out vesicles, the dissociation constant (Kd) was (1.5 +/- 0.5) X 10(-8) M, and the maximum binding capacity was 17 +/- 3 sites per cell equivalent. These findings suggest that insulin receptors are present on both sides of the plasma membrane and are consistent with the participation of the erythrocyte insulin receptors in an endocytic/recycling pathway which mediates receptor-ligand internalization/externalization.  相似文献   

14.
Beta-adrenergic receptors were characterized by measuring the specific binding of 3H-dihydroalprenolol (DHA) on intact isolated rat peritoneal mast cells (RPMC) and on perigranular membranes derived from purified RPMC granules. The specific binding of 3H-DHA reaches an equilibrium within 30 min at 5 degrees C and is linear with cell number. Scatchard analysis reveals two populations of binding sites on intact cells: with KD = 10.6 +/- 2.6 and 129 +/- 4.7 nM and Bmax of 186 +/- 38 and 1200 +/- 415 fmol/10(6) cells, respectively. Each cell contains 120 X 10(3) high-affinity binding sites and 720 X 10(3) low-affinity binding sites. There appears to be neither alpha-adrenergic nor muscarinic cholinergic receptors on the RPMC. Specific binding of 3H-DHA also occurred to isolated granules with perigranular membranes. The binding was saturable with a single population of binding sites with an affinity (KD) of 7.0 +/- 0.45 nM. Maximum binding (Bmax) was calculated at 56.6 +/- 1.9 fmol/10(9) granules. Subfractionation of granule components demonstrated that the specific binding sites appear to be localized exclusively on the perigranular membrane.  相似文献   

15.
G protein-coupled receptor kinases (GRKs) catalyze agonist-induced receptor phosphorylation on the membrane and initiate receptor desensitization. Previous in vitro studies have shown that the binding of GRK to membrane-associated G beta gamma subunits plays an important role in translocation of GRK2 from the cytoplasm to the plasma membrane. The current study investigated the role of the interaction of GRK2 with the activated delta-opioid receptor (DOR) and G beta gamma subunits in the membrane translocation and function of GRK2 using intact human embryonic kidney 293 cells. Our results showed that agonist treatment induced GRK2 binding to DOR, GRK2 translocation to the plasma membrane, and DOR phosphorylation in cells expressing the wild-type DOR but not the mutant DOR lacking the carboxyl terminus, which contains all three GRK2 phosphorylation sites. DORs with the GRK2 phosphorylation sites modified (M3) or with the acidic residues flanking phosphorylation sites mutated (E355Q/D364N) failed to be phosphorylated in response to agonist stimulation. Agonist-induced GRK2 membrane translocation and GRK-receptor association were observed in cells expressing M3 but not E355Q/D364N. Moreover, over-expression of G beta gamma subunits promoted GRK2 binding to DOR, whereas over-expression of transducin alpha or the carboxyl terminus of GRK2 blocked binding. Further study demonstrated that agonist stimulation induced the formation of a complex containing DOR, GRK2, and G beta gamma subunits in the cell and that agonist-stimulated formation of this complex is essential for the stable localization of GRK2 on the membrane and for its catalytic activity in vivo.  相似文献   

16.
Nucleoside transport in various types of animal cells is inhibited by the binding of nitrobenzylthioinosine (NBMPR) to a set of high-affinity sites on the plasma membrane. This work examined the binding of [3H]NBMPR to the nucleoside transporters of cultured Nil 8 hamster fibroblasts and of cells of a virus-transformed clone (Nil SV) derived from Nil 8. Experiments conducted with intact Nil 8 and Nil SV cells and with membrane preparations indicated that the two lines differed significantly in the cellular content of binding sites and only slightly in the affinities of these sites for NBMPR. Nil 8 and Nil SV cells possessed (4.2-8.0) X 10(5) and (2.0-4.0) X 10(6) sites per cell respectively, whereas the dissociation constants of site-bound NBMPR obtained with intact cells and with membrane preparations were similar, ranging from 0.29 to 1.5 nM. Dilazep, a potent inhibitor of nucleoside transport that is structurally unrelated to NBMPR, appeared to compete with NBMPR for binding to the high-affinity sites when tested under equilibrium conditions with Ki values for inhibition of NBMPR binding to Nil 8 and Nil SV cells respectively of 15 +/- 4 and 32 +/- 4 nM. The dissociation of NBMPR from the binding site--NBMPR complex of Nil SV membrane preparations was a first-order decay process with a rate constant of 0.68 +/- 0.26 min-1. The rate of dissociation of NBMPR from the binding-site complex of membrane preparations and intact cells was decreased significantly in the presence of dilazep and increased in the presence of the permeant uridine. These results suggest that the apparent competitive-inhibition kinetics obtained for dilazep under equilibrium conditions should not be interpreted as binding of dilazep to the same site as NBMPR but rather as binding of the two inhibitors to closely associated sites on the nucleoside transporter. Similarly, uridine also appears to bind to a site separate from the NBMPR-binding site.  相似文献   

17.
Rat PC12 pheochromocytoma and human A875 melanoma cells express nerve growth factor (NGF) receptors on their surfaces. Covalent crosslinking of bound 125I-NGF to PC12 or A875 intact cells or plasma membrane-enriched fractions resulted in labelling of a peptide doublet at Mr = 110,000 and a single labelled peptide at Mr = 200,000 for each of the cell and membrane preparations. However, a difference between equilibrium binding properties of NGF-receptor on PC12 and A875 cells was observed. PC12 cells exhibited biphasic binding properties with two apparent binding sites: KD = 5.2 nM sites and KD = 0.3 nM sites. The high-affinity PC12 binding sites were trypsin resistant, and 125I-NGF dissociated slowly from them. A875 cells exhibited sites with homogeneous properties (KD = 1.0 nM), all binding sites were trypsin sensitive, and 125I-NGF dissociated rapidly in the presence of unlabelled NGF. Membrane-enriched fractions from either cell type contained binding sites with a uniform low affinity (KD = 3 nM) that were trypsin sensitive, and 125I-NGF rapidly dissociated from them. Sixty to 80 percent of binding sites in membranes could be converted to the high-affinity, trypsin-resistant state by addition of wheat germ agglutinin (WGA). The loss of high-affinity, trypsin-resistant sites from PC12 cells during preparation of plasma membrane fractions does not appear to be the result of selective isolation of low-affinity sites or proteolytic degradation since there is a loss of 125I-NGF binding immediately after cell lysis which is not blocked by protease inhibitors. Also, high-affinity, trypsin-resistant binding sites are not found associated with other cell fractions. The differences between receptor properties on PC12 cells and on A875 cells apparently are the result of differences in the respective intracellular environments. Thus, significant structural homology exists between receptors on A875 and PC12 cells. Cell components other than the binding unit of the NGF receptor may be responsible for the different properties of receptor.  相似文献   

18.
The location of 125I-iodotyrosyl gastrin I binding sites in rat gastric mucosa was studied. Peptide specificity was demonstrated by competitive binding studies through the addition of a large dose of cold human gastrin I or cholecystokinin-octapeptide. Autoradiography of the stomach tissue was carried out by freeze-drying, embedding in Epon, wet-sectioning with ethylene glycol, and dry-mounting the emulsion film by means of the wire-loop method to prevent loss of the labeled substance. Specific binding sites for gastrin were found on parietal and chief cells, whereas few binding sites were seen on the surface mucous or mucous neck cells. Binding sites on the parietal cells were dispersed in the cytoplasm, while those on the chief cells were found near the basal plasma membrane.  相似文献   

19.
Identification of hexose transporter sites by cytochalasin B binding was conducted with a centrifugation assay. The determination of KD and Bmax values by LIGAND computer analysis provided binding data that are similar in primary astrocytes (238 nM and 14 pmol/mg protein) and neuroblastoma cells (179 nM and 13.6 pmol/mg protein). In contrast, only an insignificant number of transporter sites was detectable in C6 glioma cells, irrespective of whether membrane fractions were obtained by a two-phase polymer system or by a latex phagocytosis technique yielding inside-out plasma membranes. The latter membrane preparation was utilized to identify and quantitate the transporter molecules at the inner membrane surface of primary astrocytes, i.e., 160 nM (KD) and 5.8 pmol/mg protein (Bmax), respectively.  相似文献   

20.
Membrane receptors for D-Trp6-luteinizing hormone-releasing hormone (D-Trp6-LH-RH), somatostatin-14 (SS-14), and insulin-like growth factor I (IGF-I) were estimated in MXT mammary cancers of mice using sensitive multipoint micromethods. The receptors were characterized in untreated animals and following in vivo treatment with microcapsules of the agonist D-Trp6-LH-RH and the somatostatin analog RC-160, which strongly inhibited tumor growth. In the control group, D-Trp6-LH-RH was bound to the single class of saturable, specific, noncooperative receptor sites (Kd, = 29.3 +/- 8.48 x 10(-9) M; Bmax = 4.55 +/- 0.31 pmol/mg membrane protein). Treatment with D-Trp6-LH-RH alone or in combination with RC-160 produced down-regulation of membrane receptors for D-Trp6-LH-RH on MXT mammary tumor cells. RC-160 alone and ovariectomy were without effect on D-Trp6-LH-RH receptors. On the membrane surface of MXT mammary cells, we found one class of high affinity, specific, saturable binding sites for SS-14 (Kd = 4.4 +/- 1.9 x 10(-9) M; Bmax = 0.58 +/- 0.21 pmol/mg membrane protein). Treatment with RC-160 alone or combined with D-Trp6-LH-RH significantly increased both the dissociation binding constant (Kd = 18.6 +/- 3.5 x 10(-9) and 10.1 +/- 0.7 x 10(-9) M, respectively) and the binding capacity (Bmax = 13.98 +/- 1.7 and 21.00 +/- 4.0 pmol/mg membrane protein, respectively). We also found specific binding sites (Kd = 3.01 +/- 0.15 x 10(-9) M; Bmax = 2.24 +/- 0.96 pmol/mg membrane protein) for IGF-I in the membrane fractions of MXT mammary cancers. Chronic treatment with D-Trp6-LH-RH and RC-160 alone or in combination, as well as ovariectomy, significantly decreased the dissociation binding constant of IGF-I membrane receptors on MXT mammary cells. Our results strongly suggest an important role of LH-RH, SS-14, and IGF-I in the growth of MXT mammary carcinoma. Changes in characteristics of receptors after treatment with analogs of LH-RH and SS-14 along with tumor growth inhibition provide additional support for the direct effect of these peptides on tumor cells. A possible significance of these findings as applied to a clinical environment is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号