首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DNA polymorphism patterns linked to the A-globin gene were analyzed in healthy Japanese using four different restriction endonucleases. The chromosomes with the A-globin gene were mapped through an evaluation of the presence of seven different restriction sites (HincII 5 to ; HindIII in G and A; HincII in, and 3 to, 1; AvaII in ; Bam-HI 3 to ). Among 36 chromosomes analyzed, 20 chromosomes had a haplotype of [+–––––+]. Among 55 individuals examined, 7 possessed a homozygous haplotye of [+–––––+]. All Japanese with the AT-globin gene had a subhaplotype of [–++–+] 5 to the -globin gene. Their major haplotypes were [–++–+–+] and [–++–++–]. It was expected that the presence of the AT-globin gene in Japanese may be deduced from subhaplotypes 5 to the -globin gene.  相似文献   

2.
Summary Voltage jump-current relaxation experiments have been performed with valinomycin-doped membranes of mixtures of 1,2-dipentadecylmethylidene-glycero-3-phosphorylcholine (PC) and charged-phosphatidic acid (PA). Both relaxation processes predicted by a simple carrier model could be resolved which allowed the calculation of the rate constants of the Rb+ transport. The dependence of the rate constants on the membrane composition indicates that (i) the lipids in the mixed membranes are homogeneously distributed and that (ii) no major difference exists between the composition of the membrane and that of the torus. The analysis of the stationary conductance data, however, shows that the valinomycin content of the mixed membranes depends strongly on their lipid composition. Addition of Ca++ ions to a 11 mixture induces a phase separation into PA domains of very low conductivity and PC-enriched regions of high conductivity. Half saturation is reached atc ca=5×10–4 m. At 10–2 m Ca++ in the aqueous phase, the rate constants clearly indicate that all PA molecules are electrically passivated and only pure PC domains contribute to the membrane current. A detailed picture is thus derived of the coupling of a model transport system to the externally triggered membrane reorganization.  相似文献   

3.
Summary The histochemical activities of succinic dehydrogenase (SDH) and Ca++-activated ATPase (pHs 7.4 and 9.4) were studied in the larval tail musculature of Rana japonica, Rana catesbeiana and Rana ornativentris. The ATPase reaction product was detected by both light and electron microscopy. Red and white muscle fibres, as distinguished by SDH, showed high and low Ca++-ATPase reaction, respectively, at pHs 7.4, 9.4 and following preincubation in cold K2-EDTA solution. The ultrastructural investigation of CA++-ATPase reaction at pH 7.4 by the Ca++-citrophosphate technique demonstrated electron-dense reaction product in association with A, I and Z bands, intermyofibrillar (SR) compartment and the mitochondrial inner chamber. However, Pb++ precipitation technique demonstrated Mg++-activated myosin ATPase activity at pH 9.2 ultrastructurally. The present histochemical data suggest that the anuran larval tail red muscle fibres are possible slow, and emphasize a possible lack of correlation between the speed of contraction with their ATPase activity. Moreover, red muscle fibres of the anuran tail musculature are not equivalent to Type I fibres of higher chordates.  相似文献   

4.
Summary Rapid mixing-vesicle ion flux and planar lipid bilayer-single channel measurements have shown that a high-conductance, ligand-gated Ca2+ release channel is present in heavy, junctional-derived membrane fractions of skeletal and cardiac muscle sarcoplasmic reticulum. Using the release channel-specific probe, ryanodine, a 30S protein complex composed of polypeptides of Mr 400 000 has been isolated from cardiac and skeletal muscle. Reconstitution of the complex into planar lipid bilayers has revealed a Ca2+ conductance with properties characteristic of the native Ca2+ release channel.  相似文献   

5.
Summary Ca2+-activated K+ channels from rat brain synaptosomal membranes were incorporated into planar lipid bilayers, and the effects of aminoglycoside antibiotics on the single channel conductance (258±13 pS at 100mm K+) were investigated. Aminoglycosides reduced the single channel conductance from the cis (cytoplasmic) side in a dose- and voltage-dependent manner. Voltage dependence of the blockade indicated an interaction between positively charged amino residues of aminoglycoside antibiotics and a binding site located within the electric field of the ion-conducting pathway. The order of blocking potency was consistent with that of the number of amino residues of aminoglycosides (neomycin (6)>dibekacin (5)>ribostamycin (4)=kanamycin (4)), while the electrical distance (z=0.46–0.49) of the binding site kept almost constant for each drug. Thesezs were almost the same with those (0.46–0.51) of alkyldiamine blockers with two amino residues (total net charge of +2) and approximately twice of those (0.25–0.26) of alkylmonoamine blockers (total net charge of +1). Assuming that amino residues of aminoglycosides and alkylamines shared the same binding site located at 25% voltage drop from the cytoplasmic surface of the channel, the site would have to be at least large enough to accommodate one diamino sugar residue of the aminoglycoside in order to simultaneously interact with two positively charged amino groups. Dose- and voltage-dependent blockade of the channel by gallamine, an extremely bulky trivalent organic cation, supported the picture that the channel has a wide mouth on the cytoplasmic side and its pore region, where voltage drop occurs, may also be quite wide and nonselective, suddenly tapering to a constriction where most charged cations block the channel by occluding the K+-conducting pathway.  相似文献   

6.
Summary A highly enriched preparation of basolateral membrane vesicles was isolated from rabbit distal colon surface epithelial cells employing the method described by Wiener, Turnheim and van Os (Weiner, H., Turnheim, K., van Os, C.H. (1989)J. Membrane Biol.110:147–162) and incorporated into planar lipid bilayers. With very few exceptions, the channel activity observed was that of a high conductance, Ca2+-activated K+ channel. This channel is highly selective for K+ over Na+ and Cl, displays voltage-gating similar to maxi K(Ca) channels found in other cell membranes, and kinetic analyses are consistent with the notion that K+ diffusion through the channel involves either the binding of a single K+ ion to a site within the channel or single-filling (multi-ion occupancy). Channel activity is inhibited by the venom from the scorpionLeiurus quinquestriatus, Ba2+, quinine, and trifluoperazine. The possible role of this channel in the function of these cells is discussed.  相似文献   

7.
We previously proposed specific interaction of Lex (Gal1 4[Fuc1 3]-GlcNAc1 3Gal) with Lex as a basis of cell adhesion in pre-implantation embryos and in aggregation of F9 teratocarcinoma cells, based on several lines of evidence (Eggenset al., J Biol Chem (1989)264:9476–9484). We now present additional evidence for this concept, based on autoaggregation studies of plastic beads coated with glycosphingolipids (GSLs) bearing Lex or other epitopes, and affinity chromatography on Lex-columns of multivalent lactofucopentaose III (Lex oligosaccharide) conjugated with lysyllysine. Comparative adhesion studies of Lex-expressing tumour cellsvs their Lex-non-expressing variants showed that only Lex-expressing cells adhere to Lex-coated plates and are involved in tumour cell aggregation, in analogy to F9 cell aggregation. The major carrier of Lex determinant in F9 cells is not GSL but rather polylactosaminoglycan (embryoglycan), and we demonstrated autoaggregation of purified embryoglycan in the presence of Ca2+, and reversible dissociation in the absence of Ca2+ (addition of EDTA). Defucosylated embryoglycan did not show autoaggregation under the same conditions. Thus, Lex-Lex interaction has been demonstrated on a lactosaminoglycan basis as well as a GSL basis. A molecular model of Lex-Lex interaction based on minimum energy conformation with involvement of Ca2+ is presented.Abbreviations BSA bovine serum albumin - CHO carbohydrate - DMEM Dulbecco's modified Eagle's medium - EDTA ethylenediaminetetraacetic acid - GP glycopeptide - GSL glycosphingolipid - LAG lactosaminoglycan - Lex Gal1 4[Fuc-1 3]GlcNAc1 R - LFP lacto-N-fucopentaose - LysLys-OH lysyllysinol - Mr relative molecular weight - PBS phosphate-buffered saline - PG paragloboside (Gal1 4GlcNAc1 3Gal1 4Glc1 1Cer) - TBS Tris-buffered saline (10mM Tris-HCl, pH 7.4, containing 0.15M NaCl) - TC tumour cell  相似文献   

8.
Summary The activity of ALA-dehydratase from corn seedlings is affected by Mn++, Fe++, Pb++, Cu++, Zn++ and Sn+4 ions, in vivo Mn++ and Fe++ are ativators while Pb++ and Sn+4 are inhibitors; in vitro Cu++ and Zn++ are inhibitors. The kinetic parameters (Vmax and KM) support the hypothesis that Mn, Fe, Sn and Pb ions act on the biosynthesis of the enzyme and Zn and Cu ions on the enzyme-substrate affinity. Some related metal-organic compounds interrere in vivo on the ALA-dehydratase activity modifying the kinetic parameters, therefore the enzyme biogenesis and/or enzyme-sustrat affinity are affected.  相似文献   

9.
Natural abundance of 15N in tropical plants with emphasis on tree legumes   总被引:6,自引:0,他引:6  
Natural abundance of 15N ( 15N) of leaves harvested from tropical plants in Brazil and Thailand was analyzed. The 15N values of non-N2-fixing trees in Brazil were +4.5±1.9, which is lower than those of soil nitrogen (+8.0±2.2). In contrast, mimosa and kudzu had very low 15N values (–1.4+0.5). The 15N values of Panicum maximum and leguminous trees, except Leucaena leucocephala, were similar to those of non-N2-fixing trees, suggesting that the contribution of fixed N in these plants is negligible. The 15N values of non-N2-fixing trees in Thailand were +4.9±2.0. Leucaena leucocephala, Sesbania grandiflora, Casuarina spp. and Cycas spp. had low 15N values, close to the value of atmospheric N2 (0), pointing to a major contribution of N2 fixation in these plants. Cassia spp. and Tamarindus indica had high 15N values, which confirms that these species are non-nodulating legumes. The 15N values of Acacia spp. and Gliricidia sepium and other potentially nodulating tree legumes were, on average, slightly lower than those of non-N2-fixing trees, indicating a small contribution of N2 fixation in these legumes.  相似文献   

10.
Large conductance (approximately 210 pS), K+-selective channels were identified in excised, insideout patches obtained from the apical membranes of both ciliated and nonciliated epithelial cells grown as monolayers from the primary culture of rabbit oviduct. The open probability of channels showing stable gating was increased at positive membrane potentials and was sensitive to the concentration of free calcium ions at the cytosolic surface of the patch ([Ca2+] i ). In these respects, the channel resembled maxi K+ channels found in a number of other cell types. The distributions of dwell-times in the open state were most consistently described by two exponential components. Four exponential components were fitted to the distributions of dwelltimes in the closed state. Depolarizations and [Ca2+] i increases had similar effects on the distribution of open dwell-times, causing increases in the two open time constants ( o1 and o2) and the fraction of events accounted for by the longer component of the distribution. In contrast, calcium ions and voltage had distinct effects on the distribution of closed dwelltimes. While the three shorter closed time constants ( c1, c2 and c3) were reduced by depolarizing membrane potentials, increases in [Ca2+] i caused decreases in the longer time constants ( c3 and c4). It is concluded that oviduct large conductance Ca2+-activated K+ channels can enter at least two major open states and four closed states.A.F.J. was supported by a research fellowship from the Japan Society for the Promotion of Science and received a grant for laboratory expenses from the Ministry of Education, Science and Culture, Japan. The authors wish to thank Dr. Shigetoshi Oiki for valuable discussion of the analysis of gating kinetics and Dr. Jeman Kim (Kyoto Pharmaceutical University) for making the transmission electron micrographs.  相似文献   

11.
Oxidative injury and antioxidant responses were investigated in two banana genotypes (Musa AAA Berangan and Musa AA Mas) subjected to 40 % PEG-induced water stress. PEG treatment resulted in oxidative injury, as expressed in increased lipid peroxidation and reduced membrane stability index, in both cultivars; however, greater oxidative injury was detected in Mas. Under PEG treatment, catalase activity and glutathione reductase activity were enhanced in both cultivars, but were higher in Mas. Ascorbate peroxidase activity was enhanced in Berangan under water stress, but was unaffected in Mas. Meanwhile, superoxide dismutase activity was inhibited in both cultivars under water stress, but higher activity was detected in Berangan. Higher ascorbate peroxidase and superoxide dismutase activities were associated with greater protection against water stress-induced oxidative injury.  相似文献   

12.
Summary In Paramecium cells Ca++-stimulated triggering of the exocytosis of secretory vesicles (trichocysts) was achieved by ionophores X-537 A or A 23187. Under triggering conditions electron dense deposits were present in some resting trichocysts and regularly in discharging trichocysts; upon subsequent fixation deposits occurred on the trichocyst membrane (on the inner side or within the membrane) and on the inner lamellar sheath from where deposits seemed to radiate into the secretory materials. Similar results were obtained with glutardialdehyde fixation alone which also triggers exocytosis but only at low concentrations. Element analysis by energy dispersive x-ray microanalysis ascertained the presence of Ca and P in deposits occurring in trichocysts. Those resting trichocysts which were devoid of deposits did not contain Ca or P enriched. Hence, an abrupt Ca++-influx into individual trichocysts just before exocytosis seems to be involved in the triggering mechanism, possibly in combination with the sudden activation of an ATPase systemlocalized at those sites of the trichocysts which primarily contain the deposits. When paramecia were treated only with Ca++ and then fixed with OsO4 plus oxalate or merely with glutardialdehyde, electron scattering deposits were formed also on the inner side of the cell membrane and within the ciliary shaft (but rarely in trichocysts). Deposits obtained on cilia (including ciliary granule plaques) also contained Ca, P and S. Cells contain osmiophilic calcium-storing vacuoles which were selectively rich in Ca and S but devoid of P.  相似文献   

13.
Evidence indicates that, in addition to the Ltype Ca2+ channel blockade, Ca2+antagonists target other functions including the Ca2+pumps. This study was conducted to test the possibility that the reported inhibition of heart sarcolemmal (SL) and sarcoplasmic reticular (SR) Ca2+pumps by verapamil and diltiazem could be due to druginduced depression of phosphatidylethanolamine (PE) Nmethylation which modulates these Ca2+transport systems. Three catalytic sites individually responsible for the synthesis of PE monomethyl (site I), dimethyl (site II) and trimethyl (phosphatidylcholine (PC), site III) derivates were examined in SL and SR membranes by employing different concentrations of SadenosylLmethionine (AdoMet). Total methyl group incorporation into SL PE, in vitro, was significantly depressed by 10–6–10–3 M verapamil or diltiazem at site III. The catalytic activity of site I was inhibited by 10–3 M verapamil only, whereas the site II activity was not affected by these drugs. The inhibition induced by verapamil or diltiazem (10–5 M) was associated with a depression of the Vmax value without any change in the apparent affinity for AdoMet. Both drugs decreased the SR as well as mitochondrial PE Nmethylation at site III. A selective depression of site III activity was also observed in SL isolated from hearts of rats treated with verapamil in vivo. Furthermore, administration of [3H-methyl]methionine following the treatment of animals with verapamil, reduced the synthesis of PC by Nmethyltransferase. Verapamil also depressed the N-methylation-dependent positive inotropic effect induced by methionine in the isolated Langendorff heart. Both agents depressed the SL Ca2+pump and although diltiazem also inhibited the SR Ca2+pump, verapamil exerted a stimulatory effect. In addition, verapamil decreased SR Ca2+-release. These results suggest that verapamil and diltiazem alter the cardiac PE Nmethyltransferase system. This action is apparently additional to the drugs' effect on Ltype Ca2+ channels and may serve as a biochemical mechanism for the drugs' inhibition of the cardiac Ca2+pumps and altered cardiac function.  相似文献   

14.
Summary According to the model of Urry, the cation-permeable gramicidin channel is a dimeric helix formed by association of two peptide monomers linked at their amino ends. In this paper the channel properties of gramicidin analogs are described which have been obtained by chemical modification at the coupling site of the two half-channels. In these analogs the amino terminal-CHO group is replaced by-CO(CH2) n COOH(n=2, 3, 4, 5, 6). All analogs form conducting channels in black lipid membranes with the same general properties as found for gramicidin A. The observation that the channel-forming activity decreases with increasing pH is consistent with the notion that the half-channels are linked at the amino terminus. The channel lifetime of the different analogs varies between 2 msec and 50 sec, the longest lifetime being found for the compound withn=3. The single-channel conductance is always smaller than that of gramicidin A, but the reduction of depends on the nature of the permeable ion. Ion specificity was studied at 1m electrolyte by measuring the conductance for different permeable ions (Na+, K+, Cs+). The conductance ratio(Cs+)/(Na+) was found to vary between 2 and 10.5 for the different analogs.  相似文献   

15.
Holophosphorylase kinase was digested with Glu-C specific protease; from the peptide mixture calmodulin binding peptides were isolated by affinity chromatography and identified by N-terminal sequence analysis. Two peptides originating from the subunit, having a high tendency to form a positively charged amphiphilic helix and containing tryptophane, were synthesized. Additionally, a homologous region of the subunit and a peptide from the subunit present in a region deleted in the isoform were also selected for synthesis. Binding stoichiometry and affinity were determined by following the enhancement in tryptophane fluorescence occurring upon 1:1 complex formation between these peptides and calmodulin. Finally, Ca2+ binding to calmodulin in presence of peptides was measured. By this way, the peptides 542–566, 547–571, 660–677 and 597–614 have been found to bind specifically to calmodulin.Together with previously predicted and synthesized calmodulin binding peptides four calmodulin binding regions have been characterized on each the and subunits. It can be concluded that endogenous calmodulin can bind to two calmodulin binding regions in as well as to two regions in and . Exogenous calmodulin can bind to two regions in and in . A binding stoichiometry of 0.8mol of calmodulin/ protomer of phosphorylase kinase has been determined by inhibiting the ubiquitination of calmodulin with phosphorylase kinase. Phosphorylase kinase is half maximally activated by 23nM calmodulin which is in the affinity range of calmodulin binding peptides from to calmodulin. Therefore, binding of exogenous calmodulin to activates the enzyme. A model for switching endogenous calmodulin between , and and modulation of ATP binding to as well as Mg2+/ADP binding to by calmodulin is presented.  相似文献   

16.
In order to investigate the effect of transmembrane Ca2+ gradient on Gs mediated coupling of -AR and adenylyl cyclase, -AR from duck erythrocytes and Gs and adenylyl cyclase from bovine brain cortices were co-reconstituted into asolectin liposomes with different transmembrane Ca2+ gradient. These proteoliposomes were proven to be impermeable to water-soluble substances. The results obtained indicate that a physiological transmembrane Ca2– gradient (1000-fold) is essential for higher stimulation of adenylyl cyclase by hormone-activated -AR via coupling to Gs and can be further enhanced by the decrease of such Ca2+ gradient within certain range (100 fold) following Ca2+ influx into cells during signal transduction. Fluorescence polarization of DPH revealed that transmembrane Ca2+ gradient modulates adenylyl cyclase and its stimulation by hormones through mediating a change in lipid fluidity. Correspondent conformational changes of -AR were also detected from the fluorescence spectra and quenching of Acrylodan-labelled -AR in those proteoliposomes. It is suggested that a proper transmembrane Ca2+ gradient is essential for the optimal fluidity of the phospholipid bilayer in the proteoliposomes, which favors the formation of a suitable conformation of the reconstituted -AR and thus promotes the stimulation of adenylyl cyclase activities by hormone-activated -AR via Gs.Abbreviations ATP adenosine triphosphate - -AR -adrenergic receptors - AC adenylyl cyclase - DHA dihydroalprenolol - DPH diphenylhexatriene - [Ca2+]i Ca2+ concentration inside proteoliposomes - [Ca2+]o Ca2+ concentration outside proteoliposomes - cAMP cyclic adenosine monophosphate - DTT Dithiothreitol - FS fluorescein sulfonate - Gs Stimulatory GTP-binding protein - GTP guanosine triphosphate - GTPS guanosine 5-O-(3-thiotriphosphate) - kDa kilodalton - SDS sodium dodecyl sulfate - Tris N-tris(hydroxymethyl)aminomethane  相似文献   

17.
We have examined the effect of the Ca2+ (Mg2+)-ATPase inhibitors thapsigargin (TG) and vanadate on ATP-dependent 45Ca2+ uptake into IP3-sensitive Ca2+ pools in isolated microsomes from rat pancreatic acinar cells. The inhibitory effect of TG was biphasic. About 40–50% of total Ca2+ uptake was inhibited by TG up to 10 nm (apparent Ki4.2 nm, Ca2+ pool I). An additional increase of inhibition up to 85–90% of total Ca2+ uptake could be achieved at 15 to 20 nm of TG (apparent Ki12.1 nm, Ca2+ pool II). The rest was due to TG-insensitive contaminating plasma membranes and could be inhibited by vanadate (apparent Ki10 m). In the absence of TG, increasing concentrations of vanadate also showed two phases of inhibition of microsomal Ca2+ uptake. About 30–40% of total Ca2+ uptake was inhibited by 100 m of vanadate (apparent Ki18 m, Ca2+ pool II). The remaining 60–70% could be inhibited either by vanadate at concentrations up to 1 mm (apparent Ki300 m) or by TG up to 10 nm (Ca2+ pool I). The amount of IP3-induced Ca2+ release was constant at 25% over a wide range of Ca2+ filling. About 10–20% remained unreleasable by IP3. Reduction of IP3 releasable Ca2+ in the presence of inhibitors showed similar dose-response curves as Ca2+ uptake (apparent Ki 3.0 nm for IP3-induced Ca2+ release as compared to 4.2 nm for Ca2+ uptake at TG up to 10 nm) indicating that the highly TG-sensitive Ca2+ pump fills the IP3-sensitive Ca2+ pool I. At TG concentrations >10 nm which blocked Ca2+ pool II the apparent Ki values were 11.3 and 12.1 nm, respectively. For inhibition by vanadate up to 100 m the apparent Ki values were 18 m for Ca2+ uptake and 7 m for Ca2+ release (Ca2+ pool II). At vanadate concentrations up to 1 mm the apparent Ki values were 300 and 200 m, respectively (Ca2+ pool I). Both Ca2+ pools I and II also showed different sensitivities to IP3. Dose-response curves for IP3 in the absence of inhibitors (control) showed an apparent Km value for IP3 at 0.6 m. In the presence of TG (inhibition of Ca2+ pool I) the curve was shifted to the left with an apparent Km for IP3 at 0.08 m. In the presence of vanadate (inhibition of Ca2+ pool II), the apparent Km for IP3 was 2.1 m. These data allow the conclusion that there are at least three different Ca2+ uptake mechanisms present in pancreatic acinar cells: TG- and IP3 insensitive but highly vanadate-sensitive Ca2+ uptake occurs into membrane vesicles derived from plasma membranes. Two Ca2+ pools with different TG-, vanadate- and IP3-sensitivities are most likely located in the endoplasmic reticulum at different cell sites, which could have functional implications for hormonal stimulation of pancreatic acinar cells.This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 246. The authors wish to thank Dr. KlausDieter Preuß for valuable discussions and Mrs. Gabriele Mörschbächer for excellent secretarial help.  相似文献   

18.
Summary In mammals hepatic glycogenolysis is controlled by several hormones using cyclicAMP, Ca2+ and/or diacylglycerol as intracellular messengers. In contrast, in teleost fish, lungfish and amphibians fewer hormones promote hepatic glycogenolysis, and cyclicAMP is the sole intra-cellular messenger. This suggests that the -adrenergic mechanism became associated with the liver after amphibians separated from the vertebrate line. Reptiles separated later, and the aim of this study is to elucidate the hormonal control of hepatic glycogenolysis in a reptile,Amphibolurus nuchalis, and especially to determine which adrenergic receptor system is operative.InA. nuchalis liver pieces cultured in vitro, adrenaline and glucagon stimulated glycogen breakdown and glucose release, glycogen phosphorylase activity and accumulation of cyclicAMP in the tissue. Neurohypophysial peptides did not affect these parameters. These actions of adrenaline were completely blocked by the -adrenergic antagonist, propranolol and slightly reduced by the -adrenergic antagonist, phentolamine. Removal of Ca2+ from the medium and addition of the Ca2+ chelator, EGTA, did not block the actions of adrenaline, and the Ca2+ ionophore A23187 did not mimic these actions.The -adrenegic ligand [125I]-iodocyanopindolol (ICP) bound specifically to an isolated membrane preparation fromA. nuchalis liver with a calculated KD of 100 pM and a Bmax of 37.6 fmol·mg protein–1. The adrenergic ligands propranolol, isoprenaline, adrenaline, noradrenaline, phenylephrine and phentolamine displaced ICP with KD's of 20 nM, 1 M, 4.5 M, 32 M, 35 M and 500 M, respectively. The 2-adrenergic ligand yohimbine did not bind specifically to the membrane, but at 1 nM and 100 pM, specific binding of the 1-adrenergic ligand prazosin was 45% of total with a mean of 11.3 fmoles·mg protein–1 specifically bound.These findings indicate that the glycogenolytic actions of adrenaline are mediated primarily via -adrenergic receptors inA. nuchalis, but that -adrenergic receptors may also play some role in the control of hepatic metabolism.  相似文献   

19.
Summary The basis for the ability of -dihydrograyanotoxin II (-2HG-II) to promote Na+ conductance in axons was sought. The apparent binding of tritiated -2HG-II to neural and other preparations was studied, using equilibrium dialysis, with lobster axon membranes,Torpedo electroplax, housefly head, and rat brain, liver and kidney. In every case the binding was nonsaturating and was suggested to involve nonspecific partitioning into the tissue. Supporting evidence was the similarity of extent of binding in all tissues and its relative insensitivity to neuropharmacological agents. -2HG-II did not affect the Na+ conductance of phospholipid bilayers, nor did it permit transport of22Na into a bulk organic phase. It was concluded that -2HG-II did not bind to the sodium gate, but possibly to a sodium permease present at a frequency of less than one per 2 of cell membrane.  相似文献   

20.
R. Huc  A. Ferhi  J. M. Guehl 《Oecologia》1994,99(3-4):297-305
Leaf gas exchange rates, predawn wp and daily minimum wm leaf water potentials were measured during a wet-to-dry season transition in pioneer (Jacaranda copaia, Goupia glabra andCarapa guianensis) and late stage rainforest tree species (Dicorynia guianensis andEperua falcata) growing in common conditions in artificial stands in French Guiana. Carbon isotope discrimination () was assessed by measuring the stable carbon isotope composition of the cellulose fraction of wood cores. The values were 2.7 higher in the pioneer species than in the late stage species. The calculated time integratedC i values derived from the values averaged 281 mol mol–1 in the pioneers and 240 mol mol–1 in the late stage species. The corresponding time-integrated values of intrinsinc water-use efficiency [ratio CO2 assimilation rate (A)/leaf conductance (g)] ranged from 37 to 47 mmol mol–1 in the pioneers and the values were 64 and 74 mmol mol–1 for the two late stage species. The high values were associated—at least inJ. copaia—with high maximumg values and with high plant intrinsinc specific hydraulic conductance [Cg/(wmwp], which could reflect a high competitive ability for water and nutrient uptake in the absence of soil drought in the pioneers. A further clear discriminating trait of the pioneer species was the very sensitive stomatal response to drought in the soil, which might be associated with a high vulnerability to cavitation in these species. From a methodological point of view, the results show the relevance of for distinguishing ecophysiological functional types among rainforest trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号