首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The feasibility of using nitrogen and oxygenisotope ratios of nitrate (NO3 ) forelucidating sources and transformations ofriverine nitrate was evaluated in a comparativestudy of 16 watersheds in the northeastern U.S.A. Stream water was sampled repeatedly at theoutlets of the watersheds between January andDecember 1999 for determining concentrations,15N values, and 18Ovalues of riverine nitrate.In conjunction with information about land useand nitrogen fluxes,15Nnitrate and18Onitrate values providedmainly information about sources of riverinenitrate. In predominantly forested watersheds,riverine nitrate had mean concentrations ofless than 0.4 mg NO3 -N L–1,15Nnitrate values of lessthan +5, and 18Onitratevalues between +12 and +19. This indicatesthat riverine nitrate was almost exclusivelyderived from soil nitrification processes withpotentially minor nitrate contributions fromatmospheric deposition in some catchments. Inwatersheds with significant agricultural andurban land use, concentrations of riverinenitrate were as high as 2.6 mg NO3 -NL–1 with 15Nnitratevalues between +5 and +8 and18Onitrate values generallybelow +15. Correlations between nitrateconcentrations, 15Nnitratevalues, and N fluxes suggest that nitrate inwaste water constituted a major, and nitrate inmanure a minor additional source of riverinenitrate. Atmospheric nitrate deposition ornitrate-containing fertilizers were not asignificant source of riverine nitrate inwatersheds with significant agricultural andurban land use. Although complementary studiesindicate that in-stream denitrification wassignificant in all rivers, the isotopiccomposition of riverine nitrate sampled at theoutlet of the 16 watersheds did not provideevidence for denitrification in the form ofelevated 15Nnitrate and18Onitrate values. Relativelylow isotopic enrichment factors for nitrogenand oxygen during in-stream denitrification andcontinuous admixture of nitrate from theabove-described sources are thought to beresponsible for this finding.  相似文献   

2.
The effect of pH and transmembrane pH on the efficiency of the proton pump of the mitochondrialbc 1 complex bothin situ and in the reconstituted state was studied. In both cases the H+/e ratio for vectorial proton translocation by thebc 1 complex respiring at the steady state, under conditions in which the transmembrane pH difference (pH) represents the only component of the proton motive force (p), was significantly lower than that measured under level flow conditions. The latter amounts, at neutral pH, to 1 (2 including the scalar H+ release). In the reconstituted system steady-state pH was modulated by changing the intravesicular buffer as well as the intra/extra-liposomal pH. Under these conditions the H+/e ratio varied inversely with the pH. The data presented show that pH exerts a critical control on the proton pump of thebc 1 complex. Increasing the external pH above neutrality caused a decrease of the level flowH +/e ratio. This effect is explained in terms of proton/electron linkage inb cytochromes.  相似文献   

3.
The carbon isotope composition of an animals breath reveals the composition of the nutrients that it catabolizes for energy. Here we describe the use of Keeling plots, a method widely applied in ecosystem ecology, to measure the 13C of respired CO2 of small vertebrates. We measured the 13C of Rufous Hummingbirds (Selasphorus rufus) in the laboratory and of Mourning (Zenaida macroura) and White-winged (Z. asiatica) Doves in the field. In the laboratory, when hummingbirds were fed a sucrose based C3 diet, the 13C of respired CO2 was not significantly different from that of their diet (13CC3 diet). The 13C of respired CO2 for C3 fasted birds was slightly, albeit significantly, depleted in 13C relative to 13CC3 diet. Six hours after birds were shifted to a sucrose based C4 diet, the isotopic composition of their breath revealed that birds were catabolizing a mixture of nutrients derived from both the C3 and the C4 diet. In the field, the 13C of respired CO2 from Mourning and White-winged Doves reflected that of their diets: the CAM saguaro cactus (Carnegeia gigantea) and C3 seeds, respectively. Keeling plots are an easy, effective and inexpensive method to measure 13C of respired CO2 in the lab and the field.  相似文献   

4.
We analysed the stable isotope composition of emitted N2O in a one-year field experiment (June 1998 to April 1999) in unfertilized controls, and after adding nitrogen by applying slurry or mineral N (calcium ammonium nitrate). Emitted N2O was analysed every 2–4 weeks, with additional daily sampling for 10 days after each fertilizer application. In supplementary soil incubations, the isotopic composition of N2O was measured under defined conditions, favouring either denitrification or nitrification. Soil incubated for 48 h under conditions favouring nitrification emitted very little N2O (0.024 mol gdw –1) and still produced N2O from denitrification. Under denitrifying incubation conditions, much more N2O was formed (0.91 mol gdw –1 after 48 h). The isotope ratios of N2O emitted from denitrification stabilized at 15N = –40.8 ± 5.7 and 18O = 2.7 ± 6.3. In the field experiment, the N2O isotope data showed no clear seasonal trends or treatment effects. Annual means weighted by time and emission rate were 15N = –8.6 and 18O = 34.7 after slurry application, 15N = –4.6 and 18O = 24.0 after mineral fertilizer application and 15N = –6.4 and 18O = 35.6 in the control plots, respectively. So, in all treatments the emitted N2O was 15N-depleted compared to ambient air N2O (15N = 11.4 ± 11.6, 18O = 36.9 ± 10.7). Isotope analyses of the emitted N2O under field conditions per se allowed no unequivocal identification of the main N2O producing process. However, additional data on soil conditions and from laboratory experiments point to denitrification as the predominant N2O source. We concluded (1) that the isotope ratios of N2O emitted from the field soil were not only influenced by the source processes, but also by microbial reduction of N2O to N2 and (2) that N2O emission rates had to exceed 3.4 mol N2O m–2 h–1 to obtain reliable N2O isotope data.  相似文献   

5.
The calcareous prairies of Louisiana have been threatened by the encroachment of woody plants, primarily eastern red cedar (Juniperus virginiana). The restoration and management of these rare plant communities require a thorough understanding of the soils supporting them. The knowledge of whether eastern red cedar encroachment has altered these soils is also of interest. We studied the depth distribution, at contrasting vegetation types (prairie, transition, forest) and landscape positions, of 15N, total N, organic C, C/N ratio, Ca, Mg, K and pH of three relict prairie-forest associations in north central Louisiana, USA. The effect of vegetation type was significant for soil 15N and Ca. Plant leaf samples from prairie, transition, and forest showed similar 15N signals, and mean values ranged between –1.6 and –1.1. The order of soil 15N enrichment of the 0–10cm depth relative to corresponding leaves was forest soil> transition soil>prairie soil. The forest soil was significantly enriched with 15N compared with the prairie soil and transition soil. Except for C/N ratio, all the soil properties significantly decreased with depth while 15N increased with depth. Significant differences in C/N ratio, Ca and Mg were associated with landscape position. The change in soil pH due to woody encroachment was restricted to the 0–10cm depth. The results suggest that the prairie soil was distinctly different from the forest soil and that the vegetation at transition (encroaching woody plants) was altering the surface soil pH towards forest-like conditions.  相似文献   

6.
Given a uniform N source, the 15N of barley shoots provided a genotypic range within treatments and a separation between control and salt-stress treatments as great as did 13C*. Plant 15N has been represented in the literature as a bioassay of external source 15N and used to infer soil N sources, thus precluding consideration of the plant as a major cause in determining its own 815N. We believe this to be the first report of plant 15N as a genetic trait. No mechanistic model is needed for use of 15N as a trait in controlled studies; however, a qualitative model is suggested for further testing.Symbol 15N (or 13C) the difference between: (1) the ratio of heavy to light isotopes of the element in a sample and (2) that of its reference standard  相似文献   

7.
Measurement of nitrogen isotopic composition (15N) of plants and soil nitrogen might allow the characteristics of N transformation in an ecosystem to be detected. We tested the measurement of 15N for its ability to provide a picture of N dynamics at the ecosystem level by doing a simple comparison of 15N between soil N pools and plants, and by using an existing model. 15N of plants and soil N was measured together with foliar nitrate reductase activity (NRA) and the foliar NO3 pool at two sites with different nitrification rates in a temperature forest in Japan. 15N of plants was similar to that of soil NO3 in the high-nitrification site. Because of high foliar NRA and the large foliar NO3 pool at this site, we concluded that plant 15N indicated a great reliance of plants on soil NO3 there. However, many 15N of soil N overlapped each other at the other site, and 15N could not provide definitive evidence of the N source. The existing model was verified by measured 15N of soil inorganic N and it explained the variations of plant 15N between the two sites in the context of relative importance of nitrification, but more information about isotopic fractionations during plant N uptake is required for quantitative discussions about the plant N source. The model applied here can provide a basis to compare 15N signatures from different ecosystems and to understand N dynamics.  相似文献   

8.
We present the results of a 5-year examination of variation in the stable carbon isotope composition () of three C3 graminoid species from a Sandhills prairie: Agropyron smithii, Carex heliophila and Stipa comata. Although consistent species-specific patterns for mean were seen, there was also significant and substantial among-year and within-season variation in . A smaller contribution to variation in came from topographic variation among sampling sites. Effects of species, year, season and topography contribute to variation in in an additive manner. An association between climate and exists that is consistent with previous work suggesting that reflects the interplay between photosynthetic gas exchange and plant water relations. Within the growing season, the time over which integrates plant response to the environment ranges from days to months.  相似文献   

9.
In order to assess the ability of Porites corals to accurately record environmental variations, high-resolution (weekly/biweekly) coral 18O records were obtained from four coral colonies from the northern Gulf of Aqaba, which grew at depths of 7, 19, 29, and 42 m along one transect. Adjacent to each colony, hourly temperatures, biweekly salinities, and monthly 18O of seawater were continuously recorded over a period of 14 months (April 1999 to June 2000). Contrary to water temperature, which shows a regular and strong seasonal variation and change with depth, seawater 18O exhibits a weak seasonality and little change with depth. Positive correlations between seawater 18O and salinity were observed. The two parameters were related to each other by the equation 18O Seawater (, VSMOW) = 0.281 × Salinity – 9.14. The high-resolution coral 18O records from this study show a regular pattern of seasonality and are able to capture fine details of the weekly average temperature records. They resolve more than 95% of the weekly average temperature range. On the other hand, attenuation and amplification of coral seasonal amplitudes were recorded in deep, slow-growing corals, which were not related to environmental effects (temperature and/or seawater 18O) or sampling resolution. We propose that these result from a combined effect of subannual variations in extension rate and variable rates of spine thickening of skeletal structures within the tissue layer. However, no smoothing or distortion of the isotopic signals was observed due to calcification within the tissue layer in shallow-water, fast-growing corals. The calculations from coral 18O calibrations against the in situ measurements show that temperature (T) is related to coral 18O ( c ) and seawater 18O ( w ) by the equation T (°C) = –5.38 ( c w ) –1.08. Our results demonstrate that coral 18O from the northern Gulf of Aqaba is a reliable recorder of temperature variations, and that there is a minor contribution of seawater 18O to this proxy, which could be ignored.  相似文献   

10.
Akhter  J.  Mahmood  K.  Tasneem  M.A.  Naqvi  M.H.  Malik  K.A. 《Plant and Soil》2003,249(2):263-269
Water-use efficiency (WUE) of Leptochloa fusca (L.) Kunth (Kallar grass) and Sporobolus arabicus Boiss. was determined under different soil moisture regimes. Plants grown in lysimeters were subjected to three soil moisture regimes, viz. well-watered (100%), medium-watered (75%), and low-watered (50%) of total available water (TAW). The soil moisture was restored on alternate days by adding the required volume of water on the basis of neutron moisture meter readings taken from neutron access tubes installed in each lysimeter. The grasses were harvested after suitable intervals (4 months) to obtain maximum biomass. Leaf samples collected at each harvest were analyzed for carbon-isotope discrimination (13C) with an isotope ratio (13C/12C) mass spectrometer. Results indicated significant differences in WUE of both grasses subjected to different water regimes. Sporobolus arabicus showed higher WUE than Kallar grass. However, Kallar grass showed better value of yield response factor (k y = 0.649) compared with Sporobolus (k y = 1.06) over the entire season. The data confirm that these grasses can be grown successfully in water-limited environments by selecting an optimum soil moisture level for maximum biomass production. The mean carbon-isotope discrimination (13C) of Kallar grass (–14.4) and Sporobolus (–12.8) confirm that both are C4 plants. The carbon-isotope discrimination () was significantly and negatively correlated with WUE of the two species studied. The results of the present study confirm that 13C or of leaves can be used as good predictor of WUE in some C4 plants.  相似文献   

11.
Summary Foliar samples were obtained from symbiotic nitrogen-fixers and control plants (non-fixers) along elevational and primary successional gradients in volcanic sites in Hawai'i. Most control plants had negative 15N values (range-10.1 to +0.7), while most nitrogen-fixers were near 0. Foliar 15N in the native tree Metrosideros polymorpha did not vary with elevation (from sea level to tree-line), but it did increase substantially towards 0 on older soils. The soil in an 197-yr-old site had a 15N value of approximately-2, while in a 67000-yr-old site it was +3.6. We suggest that inputs of 15N-depleted nitrogen from precipitation coupled with very low nitrogen outputs cause the strongly negative 15N values in non-nitrogen-fixing plants on early successional sites.  相似文献   

12.
Annual N2-fixation in virgin forest ecosystems has been measured using a15N natural abundance (15N) procedure. This method was compared to a15N labelled fertilizer isotopic dilution method. For young alders (5–6 years old), 15N of leaves gave results in good agreement with the isotopic dilution of fertilizer method. Since 15N variability was expected according to plant physiology, for alder trees, leaves were collected at various heights after the end of the growing season, and, to take account of isotopic variations coming from derived inputs, 15N of leaves of a large number of other plants in the same are were measured to give control values. Following this procedure, the 15N method gave reliable evaluation of the nitrogen supply, by through N2-fixation, to alders, which were found to maintain high nitrogen fixing capacity in a sequence ranging from first stage of establishment of climactic formation. Moreover, the same method is reported to discriminate various origins ofAlnus glutinosa grown in natural conditions, possibly in relation to the genetic diversity of this species.  相似文献   

13.
In the area of Jumla region in Western Nepal, measurements of saturated leaf net photosynthetic rate (Psat), nitrogen content, leaf fluorescence, carbon isotopic composition, and water status were performed on woody coniferous (Pinus wallichiana, Picea smithiana, Abies spectabilis, Juniperus wallichiana, Taxus baccata), evergreen (Quercus semecarpifolia, Rhododendron campanulatum), and deciduous broadleaved species (Betula utilis, Populus ciliata, Sorbus cuspidata) spreading from 2 400 m up to the treeline at 4 200 m a.s.l. With the exception of J. wallichiana, Psat values were lower in coniferous than broadleaved species. Q. semecarpifolia, that in this area grows above the coniferous belt between 3 000 and 4 000 m, showed the highest Psat at saturating irradiance and the highest leaf N content. This N content was higher and Psat lower than those of evergreen oak species of tempe forests at middle and low altitudes. For all species, Psat and N content were linearly correlated, but instantaneous nitrogen use efficiency was lower than values measured in lowland and temperate plant communities. The values of carbon isotopic composition, estimated by 13C, showed the same range reported for temperate tree species. The ranking of 13C values for the different tree types was conifers < evergreen broadleaved13C were found along the altitudinal gradient. Quantum yield of photochemistry at saturating irradiance, measured by leaf fluorescence (F/Fm), was highest in J. wallichiana and lowest in T. baccata. Overall, photochemical efficiency was more strongly related to species than to altitude. Interestingly, changes of .F/Fm along the altitudinal gradient correlated well with the reported altitudinal distribution of the species.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

14.
The measurement of natural 15N abundance is a well-established technique for the identification and quantification of biological N2 fixation in plants. Associative N2 fixing bacteria have been isolated from sugarcane and reported to contribute potentially significant amounts of N to plant growth and development. It has not been established whether Australian commercial sugarcane receives significant input from biological N2 fixation, even though high populations of N2 fixing bacteria have been isolated from Australian commercial sugarcane fields and plants. In this study, 15N measurements were used as a primary measure to identify whether Australian commercial sugarcane was obtaining significant inputs of N via biological N2 fixation. Quantification of N input, via biological N2 fixation, was not possible since suitable non-N2 fixing reference plants were not present in commercial cane fields. The survey of Australian commercially grown sugarcane crops showed the majority had positive leaf 15N values (73% >3.00, 63% of which were >5.00), which was not indicative of biological N2 fixation being the major source of N for these crops. However, a small number of sites had low or negative leaf 15N values. These crops had received high N fertiliser applications in the weeks prior to sampling. Two possible pathways that could result in low 15N values for sugarcane leaves (other than N2 fixation) are proposed; high external N concentrations and foliar uptake of volatilised NH3. The leaf 15N value of sugarcane grown in aerated solution culture was shown to decrease by approximately 5 with increasing external N concentration (0.5–8.0 mM), with both NO3 and NH4 + nitrogen forms. Foliar uptake of atmospheric NH3 has been shown to result in depleted leaf 15N values in many plant species. Acid traps collected atmospheric N with negative 15N value (–24.45±0.90) from above a field recently surface fertilised with urea. The 15N of leaves of sugarcane plants either growing directly in the soil or isolated from soil in pots dropped by 3.00 in the same field after the fertiliser application. Both the high concentration of external N in the root zone (following the application of N-fertilisers) and/or subsequent foliar uptake of volatilised NH3 could have caused the depleted leaf 15N values measured in the sugarcane crops at these sites.  相似文献   

15.
F1-ATPases are large multimeric proteins that can be isolated from the membrane bound system that catalyzes the phosphorylation of ADP by inorganic phosphate in bacteria, plants, and mitochondria. They can be visualized in electron micrographs of the inner mitochondrial membranes where they appear as large protruding spheres 90 Å in diameter. The purified F1-ATPases have a molecular weight of 320,000 to 400,000 daltons and are composed of five non-identical subunits (, , , and ). The stoichiometry of these subunits in the complex is still unknown but compositions of the type 33 and 22222 were found to be consistent with some of the available experimental data. This review discusses the recent data and the experimental approaches utilized for the structural characterization of F1-ATPases.  相似文献   

16.
Summary Foliar 13C-abundance (13C) was analyzed in the dominant trees of a temperate deciduous forest in east Tennessee (Walker Branch Watershed) to investigate the variation in foliar 13C as a function of time (within-year and between years), space (canopy height, watershed topography and habitat) and species (deciduous and coniferous taxa). Various hypotheses were tested by analyzing (i) samples collected from the field during the growing season and (ii) foliar tissues maintained in an archived collection. The 13C-value for leaves from the tops of trees was 2 to 3%. more positive than for leaves sampled at lower heights in the canopy. Quercus prinus leaves sampled just prior to autumn leaf fall had significantly more negative 13C-values than those sampled during midsummer. On the more xeric ridges, needles of Pinus spp. had more positive 13C-values than leaves from deciduous species. Foliar 13C-values differed significantly as a function of topography. Deciduous leaves from xeric sites (ridges and slopes) had more positive 13C-values than those from mesic (riparian and cove) environments. On the more xeric sites, foliar 13C was significantly more positive in 1988 (a dry year) relative to that in 1989 (a year with above-normal precipitation). In contrast, leaf 13C in trees from mesic valley bottoms did not differ significantly among years with disparate precipitation. Patterns in foliar 13C indicated a higher ratio of net CO2 assimilation to transpiration (A/E) for trees in more xeric versus mesic habitats, and for trees in xeric habitats during years of drought versus years of normal precipitation. However, A/E (units of mmol CO2 fixed/mol H2O transpired) calculated on the basis of 13C-values for leaves from the more xeric sites was higher in a wet year (6.6±1.2) versus a dry year (3.4±0.4). This difference was attributed to higher transpiration (and therefore lower A/E) in the year with lower relative humidity and higher average daily temperature. The calculated A/E values for the forest in 1988–89, based on 13C, were within ±55% of estimates made over a 17 day period at this site in 1984 using micrometeorological methods.  相似文献   

17.
In this paper we analysed autotrophic sources of the carbon ( 13C) and the trophic position ( 15N) of Leporinus friderici in the influence area of Corumbá Reservoir, Brazil. We collected samples of muscles of fish from different sizes riparian vegetation, C4 grasses, zooplankton, periphyton and particulate organic carbon (POC). There were significant differences for the carbon isotope proportion found in muscles of L.friderici in the different size groups analysed. The highest values of 13C recorded for middle sized individuals is attributed to the large contribution of C4 plants in their diet. Small individuals sampled upstream also receive similar contribution from C4 plants. In contrast the same size group sampled downstream from the reservoir, has a much smaller of C4 plants. The 13C negative character of small individuals from downstream is due to the larger contribution of C3 plants (except periphyton). At larger sizes we found intermediate 13C values. The 15N proportions we found for each size group were not significantly different, however we found decreasing mean values with increasing size. The trophic level calculated from the dietary data was higher than that found with the 13C concentration in the muscle, except for small individuals, when the values were equal.  相似文献   

18.
We have determined the 18O and 13C values of azooxanthellate (Lophelia pertusa) and zooxanthellate (Porites lutea) corals at a micrometer scale using an ion microprobe (SIMS—secondary ion mass spectrometry). In P. lutea, centers of calcification are small (10 to 15 m) and difficult to locate during measurements. In L. pertusa, they are large (50 m) and arranged in lines of centers of calcification. Our results show that centers of calcification in L. pertusa have a restricted range of variation in 18O [-2.8±0.3 (PDB)], and a larger range in 13C [14.3 to 10.9 (PDB)]. Surrounding skeletal fibers exhibit large isotopic variation both for C and O (up to 12), and 13C and 18O are positively correlated. The C and O isotopic compositions of the center of calcification deviate from this linear trend at the lightest 18O values of the surrounding fibers. Ion microprobe results on P. lutea demonstrate also a large range of variation for the 18O values (up to 10). No correlation is found with C isotopes that exhibit, in comparison with L. pertusa, a small range of variation (2). This variation of 18O at a micrometer scale is probably the result of two processes: (1) an isotopic equilibrium calcification with 1 pH unit variation in the calcification fluid as indicated by direct measurements of coelenteron pH in the coral Galaxea fascicularis (Al-Horani et al. 2003) and (2) a kinetic fractionation. The 13C apparent disequilibrium in P. lutea may be the result of mixing between metabolic CO2 (respiration) and dissolved inorganic carbon (DIC) coming directly from seawater.  相似文献   

19.
Summary Carbon isotope composition, photosynthetic gas exchange, and nitrogen content were measured in leaves of three varieties of Metrosideros polymorpha growing in sites presenting a variety of precipitation, temperature and edaphic regimes. The eight populations studied could be divided into two groups on the basis of their mean foliar 13C values, one group consisting of three populations with mean 13C values ca.-26 and another group with 13C values ca.-28. Less negative 13C values appeared to be associated with reduced physiological availability of soil moisture resulting from hypoxic conditions at a poorly drained high elevation bog site and from low precipitation at a welldrained, low elevation leeward site. Gas exchange measurements indicated that foliar 13C and intrinsic wateruse efficiency were positively correlated. Maximum photosynthetic rates were nearly constant while maximum stomatal conductance varied substantially in individuals with foliar 13C ranging from-29 to-24. In contrast with the patterns of 13C observed, leaf nitrogen content appeared to be genetically determined and independent of site characteristics. Photosynthetic nitrogenuse efficiency was nearly constant over the range of 13C observed, suggesting that a compromise between intrinsic water- and N-use efficiency did not occur. In one population variations in foliar 13C and gas exchange with leaf cohort age, caused the ratio of intercellular to atmospheric partial pressure of CO2 predicted from gas exchange and that calculated from 13C to be in close agreement only in the two youngest cohorts of fully expanded leaves. The results indicated that with suitable precautions concerning measurement protocol, foliar 13C and gas exchange measurements were reliable indicators of potential resource use efficiency by M. polymorpha along environmental gradients.  相似文献   

20.
The major pentasaccharides Fuc(1-2)[GalNAc(1-3)]Gal(1-4)[Fuc(1-3)]Glc and Fuc(1-2) [Gal(1-3)]Gal(1-4)[Fuc(1-3)]Glc, which are normally present in the urine of bloodgroup A Leb and B Leb healthy subjects, were each found to be contaminated by a minor component when analysed by1H-NMR. The determination of these structures, Fuc(1-2) [GalNAc(1-3)]Gal(1-3)[Fuc(1-4)]Glc and Fuc(1-2) [Gal(1-3)]Gal(1-3)[Fuc(1-4)]Glc, was based on the results of methylation analysis and1H/13C-NMR spectroscopy.Abbreviations HPLC high performance liquid chromatography - GLC gas liquid chromatography - NMR nuclear magnetic resonance - COSY correlation spectroscopy - Gal d-galactopyranose - GalNAc 2-acetamido-2-deoxy-d-galactopyranose - Glc d-glucopyranose - Fuc l-fucopyranose - LNDFH I lacto-N-difucohexaose I (Leb determinant  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号