首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Constitutive phycocyanin from cyanobacterium Fremyella diplosiphon (Calothrix sp. PCC 7601) grown in green light, has been isolated and crystallized. The crystals belong to the space group R3 with cell constants a = b = 180.26 A, c = 61.24 A, alpha = beta = 90 degrees, gamma = 120 degrees. The crystal structure has been determined by Patterson search techniques using the molecular model of C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. The asymmetric unit of the crystal cell consists of two (alpha beta)-monomers related by a local dyad. Three asymmetric units are arranged around a crystallographic triad and form an (alpha beta)6-hexamer, the functional unit in the native antenna rod. The initial structure has been refined in a cyclic manner by energy-restrained crystallographic refinement and modelling until the conventional crystallographic R-factor converged at 18.1% with data to a resolution of 1.66 A. The molecular structure resembles closely the C-phycocyanins of Mastigocladus laminosus and A. quadruplicatum. The conformation and configuration of the alpha-84 and beta-84 chromophores is very similar to the corresponding chromophores in the trimeric C-phycocyanin of M. laminosus, whereas the beta-155 chromophore differs in configuration with C(4)-Z, C(10)-Z and C(15)-Z compared to C(4)-Z, C(10)-Z, C(15)-Z,E. The stereochemistry of the beta-155 chiral centres is C(2)-RC(3)-R and C(31)-S, respectively, whereas alpha-84 and beta-84 have C(2)-RC(3)-R and C(31)-R. The amino acid sequences of constitutive and inducible phycocyanin differ mainly in residues located on the surface of the beta-subunits that mediate the inter-hexameric contacts.  相似文献   

2.
Thermophilic mutants were isolated from mesophilic Bacillus subtilis and Bacillus pumilus by plating large numbers of cells and incubating them for several days at a temperature about 10 degrees C above the upper growth temperature limit for the parent mesophiles. Under these conditions we found thermophilic mutant strains that were able to grow at temperatures between 50 degrees C and 70 degrees C at a frequency of less than 10(-10). The persistence of auxotrophic and antibiotic resistance markers in the thermophilic mutants confirmed their mesophilic origin. Transformation of genetic markers between thermophilic mutants and mesophilic parents was demonstrated at frequencies of 10(-3) to 10(-2) for single markers and about 10(-7) for two unlinked markers. With the same procedure we were able to transfer the thermophilic trait from the mutant strains of Bacillus to the mesophilic parental strains at a frequency of about 10(-7), suggesting that the thermophilic trait is a phenotypic consequence of mutations in two unlinked genes.  相似文献   

3.
The crystal structure of the light-harvesting phycobiliprotein, c-phycocyanin from the thermophilic cyanobacterium Synechochoccus vulcanus has been determined by molecular replacement to 2.5 A resolution. The crystal belongs to space group R32 with cell parameters a=b=188.43 A, c=61.28 A, alpha=beta=90 degrees, gamma=120 degrees, with one (alphabeta) monomer in the asymmetric unit. The structure has been refined to a crystallographic R factor of 20.2 % (R-free factor is 24.4 %), for all data to 2.5 A. The crystals were grown from phycocyanin (alphabeta)(3) trimers that form (alphabeta)(6) hexamers in the crystals, in a fashion similar to other phycocyanins. Comparison of the primary, tertiary and quaternary structures of the S. vulcanus phycocyanin structure with phycocyanins from both the mesophilic Fremyella diplsiphon and the thermophilic Mastigocladus laminosus were performed. We show that each level of assembly of oligomeric phycocyanin, which leads to the formation of the phycobilisome structure, can be stabilized in thermophilic organisms by amino acid residue substitutions. Each substitution can form additional ionic interactions at critical positions of each association interface. In addition, a significant shift in the position of ring D of the B155 phycocyanobilin cofactor in the S. vulcanus phycocyanin, enables the formation of important polar interactions at both the (alphabeta) monomer and (alphabeta)(6) hexamer association interfaces.  相似文献   

4.
Thermal stability of Escherichia coli Fpg protein was studied using far-UV circular dichroism and intrinsic fluorescence. Experimental data indicate that Fpg irreversibly aggregates under heating above 35 degrees C. Heat aggregation is preceded by tertiary conformational changes of Fpg. However, the secondary structure of the fraction that does not aggregate remains unchanged up to approximately 60 degrees C. The kinetics of heat aggregation occurs with an activation enthalpy of approximately 21 kcal/mol. The fraction of monomers forming aggregates decreases with increasing urea concentration, with essentially no aggregation observed above approximately 3 M urea, suggesting that heat aggregation results from hydrophobic association of partially unfolded proteins. With increasing urea concentration, Fpg unfolds in a two-state reversible transition, with a stability of approximately 3.6 kcal/mol at 25 degrees C. An excellent correlation is observed between the unfolded fraction and loss of activity of Fpg. A simple kinetic scheme that describes both the rates and the extent of aggregation at each temperature is presented.  相似文献   

5.
By means of small angle X-ray scattering, an aggregation of beef pancreas Trp-tRNA synthetase (EC 6.1.1.2) was observed at physiological temperatures. A Trp-tRNA synthetase preparation which is homogeneous after PAGE in beta-ME-SDS was found to be heterogeneous in particle sizes even at low (4-8 degrees C) temperature. At heating up to 30-45 degrees C, the oligomer sizes increased as well as its proportion depending on the incubation time and temperature; very large aggregates were observed 10 times exceeding the sizes of initial particles. Cooling to 20 degrees C caused no disaggregation due to disulphide bond formation between associated subunits of Trp-tRNA synthetase. A hypothesis is proposed that the aggregation of bovine Trp-tRNA synthetase evaluated in vitro and not observed earlier with any aminoacyl-tRNA synthetases of unicellular organisms might serve as one of the mechanisms of its compartmentation in pancreas.  相似文献   

6.
Smeller L  Rubens P  Heremans K 《Biochemistry》1999,38(12):3816-3820
This work demonstrates that pressure-induced partially unfolded states play a very important role in the aggregation of proteins. The high-pressure unfolding of horse heart metmyoglobin results in an intermediate form that shows a strong tendency to aggregate after pressure release. These aggregates are similar to those that are usually observed upon temperature denaturation. Infrared spectra in the amide I region indicate the formation of an intermolecular antiparallel beta-sheet stabilized by hydrogen bonding. The formation of the aggregates is temperature-dependent. Below 30 degrees C, no aggregation is taking place as seen from the infrared spectra. At 45 and 60 degrees C, two types of aggregates are formed: one that can be dissociated by moderate pressures and one that is pressure-insensitive. When precompressed at 5 degrees C, temperature-induced aggregation takes place at lower temperature (38 degrees C) than without pressure pretreatment (74 degrees C).  相似文献   

7.
A high molecular weight 'cryogel' was obtained as insoluble complexes by cold incubation at near-freezing temperatures from heparinized plasma of patients with rheumatoid arthritis. After the cryogel was solubilized at 37 degrees C, 1:1 complex of fibrinogen and fibronectin was purified at room temperature by affinity chromatography on a gelatin-Sepharose 4B. Hydrodynamic properties of the complex were investigated as a function of temperature and NaCl concentration using a dynamic light scattering. The diffusion coefficients of the complex at 20 degrees C decreased with increasing of NaCl concentration as free fibronectin. The complex appears to be a more compact form at low ionic concentration, which is associated with conformational changes of fibronectin. The diffusion coefficient of the complex at 20 degrees C in 0.05 M TrisHCl(pII7.4) containing 0.5 M NaCl was estimated as 8.5 x 10(-8) cm2s-1. The complex did not dissociate over the temperature range from 20 to 37 degrees C. The diffusion coefficients of the complex decreased significantly at 12 degrees C and 40 degrees C. The thermal denaturation of fibrinogen molecule in the complex was observed at 40 degrees C. The CONTIN analysis of the light scattering data showed that the complex associated to form higher aggregates at 15 degrees C, but not at near-freezing temperature. The equilibrium between the complex and higher aggregates appeared reversible.  相似文献   

8.
Two temperature-sensitive (ts) mutants of the M protein of vesicular stomatitis virus (tsG31 and tsG33) are defective in viral assembly, but the exact nature of this defect is not known. When infected cells are switched from nonpermissive (40 degrees C) to permissive (32 degrees C) temperatures in the presence of cycloheximide, tsG33 virus release increased by 100-fold, whereas tsG31 release increased only by 10-fold. Thus, the tsG33 defect is more reversible than that of tsG31. Therefore, we investigated how the altered synthesis and cellular distribution of tsG33 M protein correlates with the viral assembly defect. At 32 degrees C tsG33 M protein is stained diffusely in the cell cytoplasm and later at the budding sites. In contrast, at 40 degrees C the mutant M protein formed unusual aggregates mostly located in the perinuclear regions of virus-infected cells and partially colocalized with G protein in this region. In temperature shift-down experiments, M can be disaggregated and used to some extent for nucleocapsid coiling and budding, which correlates with the virus titer increase. M aggregates also formed after shift-up from 32 to 40 degrees C, indicating a complete dependence of M aggregation on the temperature. Biochemical analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting revealed that at 40 degrees C M protein is detected exclusively in pellet fractions (nuclear and cytoskeleton components), whereas at 32 degrees C M protein is mainly in the cytoplasmic soluble fractions. Furthermore, when the temperature is raised from 32 to 40 degrees C, the distribution of M protein tends to shift from the soluble to the pellet and cytoskeletal fractions. Electron micrographs of immunoperoxidase-labeled M protein showed that at 40 degrees C M aggregates are often associated with the outer nuclear membranes as well as with vesicular structures. No nucleocapsid coiling was observed in these cells, whereas coiling and budding were seen at 32 degrees C in cells where M protein was partly associated with the plasma membrane. We suggest that the tsG33 M protein mutation may produce a reversible conformational alteration which causes M protein to aggregate at 40 degrees C, therefore inhibiting the proper association of M protein with nucleocapsids and budding membranes.  相似文献   

9.
J Bentz  N Düzgüne?  S Nir 《Biochemistry》1985,24(4):1064-1072
The effect of temperature and divalent cation binding (Ca2+, Sr2+, Ba2+) on the kinetic rate constants of aggregation and fusion of large phosphatidylserine liposomes is measured for the first time. Fusion is monitored by the Tb3+/dipicolinate assay. Fusion rate constants increase with temperature (15-35 degrees C) in a roughly linear fashion. These rate constants are not otherwise sensitive to whether the temperature is above or below the phase transition temperature of the Ba2+ or Sr2+ complex of phosphatidylserine, as measured by differential scanning calorimetry. Hence, the isothermal transition of the acyl chains from liquid-crystalline to gel phase induced by the cations is not the driving force of the initial fusion event. The aggregation rate constants increase with temperature, and it is the temperature dependence of the energetics of close approach of the liposomes which underlies this increase. On the other hand, the aggregation becomes more reversible at higher temperatures, which has also been observed with monovalent cation induced liposome aggregation where there is no fusion. Calculations on several cases show that the potential energy minimum holding the liposome dimer aggregates together is approximately 5-6 kT deep. This result implies that the aggregation step is highly reversible; i.e., if fusion were not occurring, no stable aggregates would form.  相似文献   

10.
The structure of AcP from the hyperthermophilic archaeon Sulfolobus solfataricus has been determined by (1)H-NMR spectroscopy and X-ray crystallography. Solution and crystal structures (1.27 A resolution, R-factor 13.7%) were obtained on the full-length protein and on an N-truncated form lacking the first 12 residues, respectively. The overall Sso AcP fold, starting at residue 13, displays the same betaalphabetabetaalphabeta topology previously described for other members of the AcP family from mesophilic sources. The unstructured N-terminal tail may be crucial for the unusual aggregation mechanism of Sso AcP previously reported. Sso AcP catalytic activity is reduced at room temperature but rises at its working temperature to values comparable to those displayed by its mesophilic counterparts at 25-37 degrees C. Such a reduced activity can result from protein rigidity and from the active site stiffening due the presence of a salt bridge between the C-terminal carboxylate and the active site arginine. Sso AcP is characterized by a melting temperature, Tm, of 100.8 degrees C and an unfolding free energy, DeltaG(U-F)H2O, at 28 degrees C and 81 degrees C of 48.7 and 20.6 kJ mol(-1), respectively. The kinetic and structural data indicate that mesophilic and hyperthermophilic AcP's display similar enzymatic activities and conformational stabilities at their working conditions. Structural analysis of the factor responsible for Sso AcP thermostability with respect to mesophilic AcP's revealed the importance of a ion pair network stabilizing particularly the beta-sheet and the loop connecting the fourth and fifth strands, together with increased density packing, loop shortening and a higher alpha-helical propensity.  相似文献   

11.
Protein aggregation. Studies of larger aggregates of C-phycocyanin   总被引:10,自引:4,他引:6       下载免费PDF全文
Aggregates of phycocyanin sedimenting at 17s, 22s and 27s are demonstrated to constitute more than 40% of crude blue-green-algal extracts, pH6.0 and I0.1, and are retained in highly purified preparations. Sedimentation-velocity studies of the large aggregates as a function of pH are reported. Sucrose-density-gradient experiments performed as a function of time of sedimentation indicate that: (1) with increasing time of sedimentation, the largest aggregates are dissipated at the leading protein boundary and the several phycocyanin species present are not completely resolved; (2) phycocyanin fractions with the largest aggregates exhibit the highest E(620)/E(280) ratio and the largest relative fluorescence efficiency. Gel-filtration experiments with Sephadex G-200 do not resolve the species completely, and reapplication of phycocyanin gel-filtration fractions to the column results in an elution pattern similar to the original, except that there is an enhancement of the allophycocyanin fraction and the amount of denatured protein. Increasing the sedimentation times in a sucrose density gradient also enhances the allophycocyanin fraction. Fluorescence results demonstrate that there are possibly three excitation maxima, one corresponding to the monomer (approx. 600mmu), one for higher aggregates (625-630mmu) and one for the allophycocyanin fraction (approx. 650mmu). Only a single fluorescence-emission band is detected, which is fairly symmetrical and which has a red shift with higher aggregation and with the appearance of allophycocyanin. The appearance of allophycocyanin may be correlated with the irreversible disaggregation of the largest phycocyanin species. It is suggested that the largest protein aggregates are in the size range of the biliprotein aggregates reported in electron microscopy of algal cells.  相似文献   

12.
The amount of 11s aggregate in phycocyanin, normally stimulated by hydrophobic forces, is dramatically increased by the presence of deuterium oxide. Proteins in which hydrophobic forces are not proposed as a mechanism for aggregation are unaffected by deuterium oxide. These observations are consistent with the lower critical micelle concentration reported for ionic detergents in deuterium oxide. Phycocyanin samples containing a majority of material sedimenting faster than 11s were also investigated in the presence of deuterium oxide with the following findings: the most rapidly sedimenting species in water buffer is 24s; in deuterium oxide more than 10% of the protein sediments at 67s and substantial amounts of other species with sedimentation coefficients larger than 24s are present. These large quantities of species sedimenting faster than 24s are found in deuterium oxide buffers from pD5.5 to 7.0. Sucrose-density-gradient studies in deuterium oxide at pD6.0 confirm the presence of large amounts of more rapidly sedimenting species. Spectrophotometric studies on fractions from the sucrose-density-gradient experiments indicate with the presence of higher aggregates a red shift of the visible-absorption maximum and an enhancement of the E(620)/E(280) ratio. Fluorescence-emission studies show a greater relative fluorescence efficiency for these higher aggregates and are consistent with the suggested enhancement of higher aggregates in deuterium oxide. The existence of phycocyanin aggregates of such a large size is suggested to be of importance in vivo, with phycocyanin playing a role as a structural protein.  相似文献   

13.
We compared heat shock proteins (HSPs) and cold shock proteins (CSPs) produced by different species of Rhizobium having different growth temperature ranges. Several HSPs and CSPs were induced when cells of three arctic (psychrotrophic) and three temperate (mesophilic) strains of rhizobia were shifted from their optimal growth temperatures (arctic, 25 degrees C; temperate, 30 degrees C) to shock temperatures outside their growth temperature ranges. At heat shock temperatures, three major HSPs of high molecular weight (106,900, 83,100, and 59,500) were present in all strains for all shock treatments (29, 32, 36.4, 38.4, 40.7, 41.4, and 46.4 degrees C), with the exception of temperate strains exposed to 46.4 degrees C, in which no protein synthesis was detected. Cell survival of arctic and temperate strains decreased markedly with the increase of shock temperature and was only 1% at 46.4 degrees C. Under cold shock conditions, five proteins (52.0, 38.0, 23.4, 22.7, and 11.1 kDa) were always present for all treatments (-2, -5, and -10 degrees C) in arctic strains. Among temperate strains, five CSPs (56.1, 37.1, 34.4, 17.3, and 11.1 kDa) were present at temperatures down to 0 degrees C. The 34.4- and the 11.1-kDa components were present in all temperate strains at -5 degrees C and in one strain at -10 degrees C. Survival of all strains decreased with cold shock temperatures but was always higher than 50%. These results show that rhizobia can synthesize proteins at temperatures not permissive for growth. In all shock treatments, no correspondence between the number of HSPs or CSPs produced and rhizobial survival was found.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We compared heat shock proteins (HSPs) and cold shock proteins (CSPs) produced by different species of Rhizobium having different growth temperature ranges. Several HSPs and CSPs were induced when cells of three arctic (psychrotrophic) and three temperate (mesophilic) strains of rhizobia were shifted from their optimal growth temperatures (arctic, 25 degrees C; temperate, 30 degrees C) to shock temperatures outside their growth temperature ranges. At heat shock temperatures, three major HSPs of high molecular weight (106,900, 83,100, and 59,500) were present in all strains for all shock treatments (29, 32, 36.4, 38.4, 40.7, 41.4, and 46.4 degrees C), with the exception of temperate strains exposed to 46.4 degrees C, in which no protein synthesis was detected. Cell survival of arctic and temperate strains decreased markedly with the increase of shock temperature and was only 1% at 46.4 degrees C. Under cold shock conditions, five proteins (52.0, 38.0, 23.4, 22.7, and 11.1 kDa) were always present for all treatments (-2, -5, and -10 degrees C) in arctic strains. Among temperate strains, five CSPs (56.1, 37.1, 34.4, 17.3, and 11.1 kDa) were present at temperatures down to 0 degrees C. The 34.4- and the 11.1-kDa components were present in all temperate strains at -5 degrees C and in one strain at -10 degrees C. Survival of all strains decreased with cold shock temperatures but was always higher than 50%. These results show that rhizobia can synthesize proteins at temperatures not permissive for growth. In all shock treatments, no correspondence between the number of HSPs or CSPs produced and rhizobial survival was found.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The optimal growth of mesophilic methanotrophic bacteria (collection strains of the genera Methylocystis, Methylomonas, Methylosinus, and Methylobacter) occurred within temperature ranges of 31-34 degrees C and 23-25 degrees C. None of the strains studied were able to grow at 1.5 or 4 degrees C. Representatives of six methanotrophic species (strains Mcs. echinoides 2, Mm. methanica 12, Mb. bovis 89, Mcs. pyriformis 14, Mb. chroococcum 90, and Mb. vinelandii 87) could grow at 10 degrees C (with a low specific growth rate). The results obtained suggest that some mesophilic methane-oxidizing bacteria display psychrotolerant (psychrotrophic) but not psychrophilic properties. In general, the Rosso model, which describes bacterial growth rate as a function of temperature, fits well the experimental data, although, for most methanotrophs, with symmetrical approximations for optimal temperature.  相似文献   

16.
Phycobilisomes of the cyanobacteria Mastigocladus laminosus and Anabaena sp. PCC7120 differ from typical tricylindrical, hemidiscoidal phycobilisomes in three respects. Firstly, size comparisons of the core-membrane linker phycobiliproteins (LCM) in different cyanobacteria by SDS/PAGE reveal an apparent molecular mass of 120 kDa for the LCM of M. laminosus and Anabaena sp. PCC7120. This observation suggests that the polypeptides of these species have four linker-repeat domains. Secondly, phycobilisomes of M. laminosus are shown to contain at least three, but most probably four, different rod-core linker polypeptides (LRC). These LRC, which attach the peripheral rods to the core and thereby make phycocyanin/allophycocyanin contacts, have been identified and characterized by N-terminal amino acid sequence analysis. Additionally, electron microscopy of phycobilisomes isolated from M. laminosus and Anabaena sp. PCC7120 reveals similar structures which differ from those of Calothrix sp. PCC7601 with their typical six, peripheral rods. Based upon protein-analytical results and a reinterpretation of the data of [Isono, T. & Katoh, T. (1987) Arch. Biochem. Biophys. 256, 317-324], we discuss structural implications of recent findings on the established hemidiscoidal model for the phycobilisomes of M. laminosus and Anabaena sp. PCC7120. Up to eight peripheral rods are suggested to radiate from a modified core substructure which contains two additional peripheral allophycocyanin hexamer equivalents that serve as the core-proximal discs for two peripheral rods.  相似文献   

17.
We used preS2-S'-beta-galactosidase, a three-domain fusion protein that aggregates extensively at 43 degrees C in the cytoplasm of Escherichia coli, to search for multicopy suppressors of protein aggregation and inclusion body formation and took advantage of the known differential solubility of preS2-S'-beta-galactosidase at 37 and 43 degrees C to develop a selection procedure for the gene products that would prevent its aggregation in vivo at 43 degrees C. First, we demonstrate that the differential solubility of preS2-S'-beta-galactosidase results in a lactose-positive phenotype at 37 degrees C as opposed to a lactose-negative phenotype at 43 degrees C. We searched for multicopy suppressors of preS2-S'-beta-galactosidase aggregation by selecting pink lactose-positive colonies on a background of white lactose-negative colonies at 43 degrees C after transformation of bacteria with an E. coli gene bank. We discovered that protein isoaspartate methyltransferase (PIMT) is a multicopy suppressor of preS2-S'-beta-galactosidase aggregation at 43 degrees C. Overexpression of PIMT reduces the amount of preS2-S'-beta-galactosidase found in inclusion bodies at 43 degrees C and increases its amount in soluble fractions. It reduces the level of isoaspartate formation in preS2-S'-beta-galactosidase and increases its thermal stability in E. coli crude extracts without increasing the thermostability of a control protein, citrate synthase, in the same extracts. We could not detect any induction of the heat shock response resulting from PIMT overexpression, as judged from amounts of DnaK and GroEL, which were similar in the PIMT-overproducing and control strains. These results suggest that PIMT might be overburdened in some physiological conditions and that its overproduction may be beneficial in conditions in which protein aggregation occurs, for example, during biotechnological protein overproduction or in protein aggregation diseases.  相似文献   

18.
C-Phycocyanins from two thermophilic strains of Synechococcus lividus that grow within different temperature ranges have been shown to be unalike. The aggregation ability of these two C-phycocyanins in sedimentation-velocity experiments varied dramatically. Surprisingly, the aggregation properties of mesophilic C-phycocyanins were found to lie between those of the two thermophilic proteins. Under identical conditions at pH7.0, one thermophilic protein (Sy I) was composed of 17S and larger aggregates, whereas the other (Sy III) was an almost homogeneous 6S aggregate. Mesophilic C-phycocyanins have a mixture of 6S, 11S and less stable 17S aggregates under these conditions. Amino acid analysis, absorption spectra, immunochemistry and fluorescence polarization all indicated differences in the composition and properties of the thermophilic proteins, which suggest that they have different modes of adaptation to very high temperatures. Allophycocyanins from the two strains of S. lividus were also purified and studied, but unlike the C-phycocyanins no major differences were found between them. Allophycocyanin was homogeneous at pH6.0, with a sedimentation coefficient of 5.54S and mol.wt. 1.03x10(5), as determined by sedimentation-equilibrium measurements.  相似文献   

19.
Mutant lines of mouse L cells, TS A1S9, and TS C1, show temperature- sensitive (TS) DNA synthesis and cell division when shifted from 34 degrees to 38.5 degrees C. With TS A1S9 the decline in DNA synthesis begins after 6-8 h at 38.5 degrees C and is most marked at about 24 h. Most cells in S, G2, or M at temperature upshift complete one mitosis and accumulate in the subsequent interphase at G1 or early S as a result of expression of a primary defect, failure of elongation of newly made small DNA fragments. Heat inactivation of TS C1 cells is more rapid; they fail to complete the interphase in progress at temperature upshift and accumulate at late S or G2. Inhibition of both cell types is reversible on return to 34 degrees C. Cell and nuclear growth continues during inhibition of replication. Expression of both TS mutations leads to a marked change in gross organization of chromatin as revealed by electron microscopy. Nuclei of wild-type cells at 34 degrees and 38.5 degrees C and mutant cells at 34 degrees C show a range of aggregation of condensed chromatin from small dispersed bodies to large discrete clumps, with the majority in an intermediate state. In TS cells at 38.5 degrees C, condensed chromatin bodies in the central nuclear region become disaggregated into small clumps dispersed through the nucleus. Morphometric estimation of volume of condensed chromatin indicates that this process is not due to complete decondensation of chromatin fibrils, but rather involves dispersal of large condensed chromatin bodies into finer aggregates and loosening of fibrils within the aggregates. The dispersed condition is reversed in nuclei which resume DNA synthesis when TS cells are downshifted from 38.5 degrees to 34 degrees C. The morphological observations are consistent with the hypothesis that condensed chromatin normally undergoes an ordered cycle of transient, localized disaggregation and reaggregation associated with replication. In temperature-inactivated mutants, normal progressive disaggregation presumably occurs, but subsequent lack of chromatin replication prevents reaggregation.  相似文献   

20.
C-Phycocyanin from an acido-thermophilic eukaryotic alga, Cyanidium caldarium, was characterized with respect to subunit structure, absorption spectrum and fluorescence properties and was found to be similar to C-phycocyanins from mesophilic sources. The pH-dependence of fluorescence polarization and the changes in sedimentation velocity as a function of pH, concentration and temperature indicate the presence of extremely large amounts of unusually stable 19S aggregates. It was not possible to disaggregate this phycocyanin completely to monomer under normal conditions. The amino acid composition is similar to that of phycocyanins from other thermophilic and halophilic sources. The isoelectric point of this C-phycocyanin was 5.11, an unusually high value. The properties of this C-phycocyanin suggest an increase in protein stability as its mode of adaptation to the environmental stress of high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号