首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Organisms can protect themselves against parasite‐induced fitness costs through resistance or tolerance. Resistance includes mechanisms that prevent infection or limit parasite growth while tolerance alleviates the fitness costs from parasitism without limiting infection. Although tolerance and resistance affect host–parasite coevolution in fundamentally different ways, tolerance has often been ignored in animal–parasite systems. Where it has been studied, tolerance has been assumed to be a genetic mechanism, unaffected by the host environment. Here we studied the effects of host ecology on tolerance and resistance to infection by rearing monarch butterflies on 12 different species of milkweed food plants and infecting them with a naturally occurring protozoan parasite. Our results show that monarch butterflies experience different levels of tolerance to parasitism depending on the species of milkweed that they feed on, with some species providing over twofold greater tolerance than other milkweed species. Resistance was also affected by milkweed species, but there was no relationship between milkweed‐conferred resistance and tolerance. Chemical analysis suggests that infected monarchs obtain highest fitness when reared on milkweeds with an intermediate concentration, diversity, and polarity of toxic secondary plant chemicals known as cardenolides. Our results demonstrate that environmental factors—such as interacting species in ecological food webs—are important drivers of disease tolerance.  相似文献   

2.
Within-species genetic variation is a potent factor influencing between-species interactions and community-level structure. Species of the hemi-parasitic plant genus Rhinanthus act as ecosystem engineers, significantly altering above- and below-ground community structure in grasslands. Here, we show the importance of genotypic variation within a single host species (barley-Hordeum vulgare), and population-level variation among two species of parasite (Rhinanthus minor and Rhinanthus angustifolius) on the outcome of parasite infection for both partners. We measured host fitness (number of seeds) and calculated parasite virulence as the difference in seed set between infected and uninfected hosts (the inverse of host tolerance). Virulence was determined by genetic variation within the host species and among the parasite species, but R. angustifolius was consistently more virulent than R. minor. The most tolerant host had the lowest inherent fitness and did not gain a fitness advantage over other infected hosts. We measured parasite size as a proxy for transmission ability (ability to infect further hosts) and host resistance. Parasite size depended on the specific combination of host genotype, parasite species and parasite population, and no species was consistently larger. We demonstrate that the outcome of infection by Rhinanthus depends not only on the host species, but also on the underlying genetics of both host and parasite. Thus, genetic variations within host and parasite are probably essential components of the ecosystem-altering effects of Rhinanthus.  相似文献   

3.
1. As parasites can dramatically reduce the fitness of their hosts, there should be strong selection for hosts to evolve and maintain defence mechanisms against their parasites. One way in which hosts may protect themselves against parasitism is through altered behaviours, but such defences have been much less studied than other forms of parasite resistance. 2. We studied whether monarch butterflies (Danaus plexippus L.) use altered behaviours to protect themselves and their offspring against the protozoan parasite Ophryocystis elektroscirrha (McLaughlin & Myers (1970), Journal of Protozoology, 17, p. 300). In particular, we studied whether (i) monarch larvae can avoid contact with infectious parasite spores; (ii) infected larvae preferentially consume therapeutic food plants when given a choice or increase the intake of such plants in the absence of choice; and (iii) infected female butterflies preferentially lay their eggs on medicinal plants that make their offspring less sick. 3. We found that monarch larvae were unable to avoid infectious parasite spores. Larvae were also not able to preferentially feed on therapeutic food plants or increase the ingestion of such plants. However, infected female butterflies preferentially laid their eggs on food plants that reduce parasite growth in their offspring. 4. Our results suggest that animals may use altered behaviours as a protection against parasites and that such behaviours may be limited to a single stage in the host-parasite life cycle. Our results also suggest that animals may use altered behaviours to protect their offspring instead of themselves. Thus, our study indicates that an inclusive fitness approach should be adopted to study behavioural defences against parasites.  相似文献   

4.
Hosts combat their parasites using mechanisms of resistance and tolerance, which together determine parasite virulence. Environmental factors, including diet, mediate the impact of parasites on hosts, with diet providing nutritional and medicinal properties. Here, we present the first evidence that ongoing environmental change decreases host tolerance and increases parasite virulence through a loss of dietary medicinal quality. Monarch butterflies use dietary toxins (cardenolides) to reduce the deleterious impacts of a protozoan parasite. We fed monarch larvae foliage from four milkweed species grown under either elevated or ambient CO2, and measured changes in resistance, tolerance, and virulence. The most high‐cardenolide milkweed species lost its medicinal properties under elevated CO2; monarch tolerance to infection decreased, and parasite virulence increased. Declines in medicinal quality were associated with declines in foliar concentrations of lipophilic cardenolides. Our results emphasize that global environmental change may influence parasite–host interactions through changes in the medicinal properties of plants.  相似文献   

5.
Hosts have evolved two distinct defence strategies against parasites: resistance (which prevents infection or limit parasite growth) and tolerance (which alleviates the fitness consequences of infection). However, heritable variation in resistance and tolerance and the genetic correlation between these two traits have rarely been characterized in wild host populations. Here, we estimate these parameters for both traits in Leuciscus burdigalensis, a freshwater fish parasitized by Tracheliastes polycolpus. We used a genetic database to construct a full-sib pedigree in a wild L. burdigalensis population. We then used univariate animal models to estimate inclusive heritability (i.e. all forms of genetic and non-genetic inheritance) in resistance and tolerance. Finally, we assessed the genetic correlation between these two traits using a bivariate animal model. We found significant heritability for resistance (H = 17.6%; 95% CI: 7.2–32.2%) and tolerance (H = 18.8%; 95% CI: 4.4–36.1%), whereas we found no evidence for the existence of a genetic correlation between these traits. Furthermore, we confirm that resistance and tolerance are strongly affected by environmental effects. Our results demonstrate that (i) heritable variation exists for parasite resistance and tolerance in wild host populations, and (ii) these traits can evolve independently in populations.  相似文献   

6.
Hosts are armed with several lines of defence in the battle against parasites: they may prevent the establishment of infection, reduce parasite growth once infected or persevere through mechanisms that reduce the damage caused by infection, called tolerance. Studies on tolerance in animals have focused on mortality, and sterility tolerance has not been investigated experimentally. Here, we tested for genetic variation in the multiple steps of defence when the invertebrate Daphnia magna is infected with the sterilizing bacterial pathogen Pasteuria ramosa: anti-infection resistance, anti-growth resistance and the ability to tolerate sterilization once infected. When exposed to nine doses of a genetically diverse pathogen inoculum, six host genotypes varied in their average susceptibility to infection and in their parasite loads once infected. How host fecundity changed with increasing parasite loads did not vary between genotypes, indicating that there was no genetic variation for this measure of fecundity tolerance. However, genotypes differed in their level of fecundity compensation under infection, and we discuss how, by increasing host fitness without targeting parasite densities, fecundity compensation is consistent with the functional definition of tolerance. Such infection-induced life-history shifts are not traditionally considered to be part of the immune response, but may crucially reduce harm (in terms of fitness loss) caused by disease, and are a distinct source of selection on pathogens.  相似文献   

7.
Host organisms are believed to evolve defense mechanisms (i.e., resistance and/or tolerance) under selective pressures exerted by natural enemies. A prerequisite for the evolution of resistance and tolerance is the existence of genetic variation in these traits for natural selection to act. However, selection for resistance and/or tolerance may be constrained by negative genetic correlations with other traits that affect host fitness. We studied genetic variation in resistance and tolerance against parasitic infection and the potential fitness costs associated with these traits using a novel study system, namely the interaction between a flowering plant and a parasitic plant. In this system, parasitic infection has significant negative effects on host growth and reproduction and may thus act as a selective agent. We conducted a greenhouse experiment in which we grew host plants, Urtica dioica, that originated from a single natural population and represented 20 maternal families either uninfected or infected with the holoparasitic dodder, Cuscuta europaea. that originated from the same site. We calculated correlations among resistance, tolerance, and host performance to test for costs of resistance and tolerance. We measured resistance as parasite performance (quantitative resistance) and tolerance as the slopes of regressions relating the vegetative and reproductive biomass of host plants to damage level (measured as parasite biomass). We observed significant differences among host families in parasite resistance and in parasite tolerance in terms of reproductive biomass, a result that suggests genetic variation in these traits. Furthermore, we found differences in resistance and tolerance between female and male host plants. In addition, the correlations indicate costs of resistance in terms of host growth and reproduction and costs of tolerance in terms of host reproduction. Our results thus indicate that host tolerance and resistance can evolve as a response to infection by a parasitic plant and that costs of resistance and tolerance may be one factor maintaining genetic variation in these traits.  相似文献   

8.
Linking measures of immune function with infection, and ultimately, host and parasite fitness is a major goal in the field of ecological immunology. In this study, we tested for the presence and timing of a cellular immune response in the crustacean Daphnia magna following exposure to its sterilizing endoparasite Pasteuria ramosa. We found that D. magna possesses two cell types circulating in the haemolymph: a spherical one, which we call a granulocyte and an irregular-shaped amoeboid cell first described by Metchnikoff over 125 years ago. Daphnia magna mounts a strong cellular response (of the amoeboid cells) just a few hours after parasite exposure. We further tested for, and found, considerable genetic variation for the magnitude of this cellular response. These data fostered a heuristic model of resistance in this naturally coevolving host–parasite interaction. Specifically, the strongest cellular responses were found in the most susceptible hosts, indicating resistance is not always borne from a response that destroys invading parasites, but rather stems from mechanisms that prevent their initial entry. Thus, D. magna may have a two-stage defence—a genetically determined barrier to parasite establishment and a cellular response once establishment has begun.  相似文献   

9.
Host resistance to parasites can come in two main forms: hosts may either reduce the probability of parasite infection (anti-infection resistance) or reduce parasite growth after infection has occurred (anti-growth resistance). Both resistance mechanisms are often imperfect, meaning that they do not fully prevent or clear infections. Theoretical work has suggested that imperfect anti-growth resistance can select for higher parasite virulence by favouring faster-growing and more virulent parasites that overcome this resistance. In contrast, imperfect anti-infection resistance is thought not to select for increased parasite virulence, because it is assumed that it reduces the number of hosts that become infected, but not the fitness of parasites in successfully infected hosts. Here, we develop a theoretical model to show that anti-infection resistance can in fact select for higher virulence when such resistance reduces the effective parasite dose that enters a host. Our model is based on a monarch butterfly-parasite system in which larval food plants confer resistance to the monarch host. We carried out an experiment and showed that this environmental resistance is most likely a form of anti-infection resistance, through which toxic food plants reduce the effective dose of parasites that initiates an infection. We used these results to build a mathematical model to investigate the evolutionary consequences of food plant-induced resistance. Our model shows that when the effective infectious dose is reduced, parasites can compensate by evolving a higher per-parasite growth rate, and consequently a higher intrinsic virulence. Our results are relevant to many insect host-parasite systems, in which larval food plants often confer imperfect anti-infection resistance. Our results also suggest that - for parasites where the infectious dose affects the within-host dynamics - vaccines that reduce the effective infectious dose can select for increased parasite virulence.  相似文献   

10.
Insects are exposed to a variety of potential pathogens in their environment, many of which can severely impact fitness and health. Consequently, hosts have evolved resistance and tolerance strategies to suppress or cope with infections. Hosts utilizing resistance improve fitness by clearing or reducing pathogen loads, and hosts utilizing tolerance reduce harmful fitness effects per pathogen load. To understand variation in, and selective pressures on, resistance and tolerance, we asked to what degree they are shaped by host genetic background, whether plasticity in these responses depends upon dietary environment, and whether there are interactions between these two factors. Females from ten wild‐type Drosophila melanogaster genotypes were kept on high‐ or low‐protein (yeast) diets and infected with one of two opportunistic bacterial pathogens, Lactococcus lactis or Pseudomonas entomophila. We measured host resistance as the inverse of bacterial load in the early infection phase. The relationship (slope) between fly fecundity and individual‐level bacteria load provided our fecundity tolerance measure. Genotype and dietary yeast determined host fecundity and strongly affected survival after infection with pathogenic P. entomophila. There was considerable genetic variation in host resistance, a commonly found phenomenon resulting from for example varying resistance costs or frequency‐dependent selection. Despite this variation and the reproductive cost of higher P. entomophila loads, fecundity tolerance did not vary across genotypes. The absence of genetic variation in tolerance may suggest that at this early infection stage, fecundity tolerance is fixed or that any evolved tolerance mechanisms are not expressed under these infection conditions.  相似文献   

11.
A critical task in evolutionary genetics is to explain the persistence of heritable variation in fitness-related traits such as immunity. Ecological factors can maintain genetic variation in immunity, but less is known about the role of other factors, such as antagonistic pleiotropy, on immunity. Sexually dimorphic immunity—with females often being more immune-competent—may maintain variation in immunity in dioecious populations. Most eco-immunological studies assess host resistance to parasites rather than the host''s ability to maintain fitness during infection (tolerance). Distinguishing between resistance and tolerance is important as they are thought to have markedly different evolutionary and epidemiological outcomes. Few studies have investigated tolerance in animals, and the extent of sexual dimorphism in tolerance is unknown. Using males and females from 50 Drosophila melanogaster genotypes, we investigated possible sources of genetic variation for immunity by assessing both resistance and tolerance to the common bacterial pathogen Pseudomonas aeruginosa. We found evidence of sexual dimorphism and sexual antagonism for resistance and tolerance, and a trade-off between the two traits. Our findings suggest that antagonistic pleiotropy may be a major contributor to variation in immunity, with implications for host–parasite coevolution.  相似文献   

12.
If parasites decrease the fitness of their hosts one could expect selection for host traits (e.g. resistance and tolerance) that decrease the negative effects of parasitic infection. To study selection caused by parasitism, we used a novel study system: we grew host plants (Urtica dioica) that originated from previously parasitized and unparasitized natural populations (four of each) with or without a holoparasitic plant (Cuscuta europaea). Infectivity of the parasite (i.e. qualitative resistance of the host) did not differ between the two host types. Parasites grown with hosts from parasitized populations had lower performance than parasites grown with hosts from unparasitized populations, indicating host resistance in terms of parasite’s performance (i.e. quantitative resistance). However, our results suggest that the tolerance of parasitic infection was lower in hosts from parasitized populations compared with hosts from unparasitized populations as indicated by the lower above‐ground vegetative biomass of the infected host plants from previously parasitized populations.  相似文献   

13.
Host competence, defined as the likelihood that a host will transmit infection, may be affected by an individual's resistance to infection and its ability to withstand damage caused by infection (tolerance). Host competence may therefore be one of the most important factors to impact host–parasite dynamics, yet the relationships among resistance, tolerance and competence are poorly understood. The objective of the present study was to determine whether individual host resistance (ability to resist or minimize infection) and/or tolerance (ability to withstand or minimize reduction in fitness due to infection) contributed to the competence (ability to spread infection) of hosts using guppies infected with the ectoparasite, Gyrodactylus turnbulli. This individual-fish level analysis used data collected from a previous metapopulation experiment that had tracked host–parasite dynamics at the metapopulation scale using individually marked guppies that were moved among experimental tanks within replicate metapopulations. Fish tolerance was measured as the residual from a fish's expected survival post-infection for a given parasite burden. Fish resistance was measured as the peak parasite load (– log-transformed). Host competence was measured as the incidence (number of new infections over two days after the arrival of a fish to a tank) weighted by the density of available uninfected fish in the tank. In contrast to the assumption of a trade-off between resistance and tolerance, individual fish tolerance and resistance were both negatively associated with competence. Connectivity (the number of fish with which an individual came into contact) was not associated with competence. Our results indicate that resistance and tolerance are both important to disease spread. These findings highlight the importance of understanding how individual defence against parasites may contribute to its competence as a host, and therefore impact metapopulation-level dynamics.  相似文献   

14.
How infectious disease agents interact with their host changes during the course of infection and can alter the expression of disease-related traits. Yet by measuring parasite life-history traits at one or few moments during infection, studies have overlooked the impact of variable parasite growth trajectories on disease evolution. Here we show that infection-age-specific estimates of host and parasite fitness components can reveal new insight into the evolution of parasites. We do so by characterizing the within-host dynamics over an entire infection period for five genotypes of the castrating bacterial parasite Pasteuria ramosa infecting the crustacean Daphnia magna. Our results reveal that genetic variation for parasite-induced gigantism, host castration and parasite spore loads increases with the age of infection. Driving these patterns appears to be variation in how well the parasite maintains control of host reproduction late in the infection process. We discuss the evolutionary consequences of this finding with regard to natural selection acting on different ages of infection and the mechanism underlying the maintenance of castration efficiency. Our results highlight how elucidating within-host dynamics can shed light on the selective forces that shape infection strategies and the evolution of virulence.  相似文献   

15.
Population density and costs of parasite infection may condition the capacity of organisms to grow, survive and reproduce, i.e. their competitive ability. In host–parasite systems there are different competitive interactions: among uninfected hosts, among infected hosts, and between uninfected and infected hosts. Consequently, parasite infection results in a direct cost, due to parasitism itself, and in an indirect cost, due to modification of the competitive ability of the infected host. Theory predicts that host fitness reduction will be higher under the combined effects of costs of parasitism and competition than under each factor separately. However, experimental support for this prediction is scarce, and derives mostly from animal–parasite systems. We have analysed the interaction between parasite infection and plant density using the plant-parasite system of Arabidopsis thaliana and the generalist virus Cucumber mosaic virus (CMV). Plants of three wild genotypes grown at different densities were infected by CMV at various prevalences, and the effects of infection on plant growth and reproduction were quantified. Results demonstrate that the combined effects of host density and parasite infection may result either in a reduction or in an increase of the competitive ability of the host. The two genotypes investing a higher proportion of resources to reproduction showed tolerance to the direct cost of infection, while the genotype investing a higher proportion of resources to growth showed tolerance to the indirect cost of infection. Our findings show that the outcome of the interaction between host density and parasitism depends on the host genotype, which determines the plasticity of life-history traits and consequently, the host capacity to develop different tolerance mechanisms to the direct or indirect costs of parasitism. These results indicate the high relevance of host density and parasitism in determining the competitive ability of a plant, and stress the need to simultaneously consider both factors to understand the selective pressures that drive host–parasite co-evolution.  相似文献   

16.
Genetic variation among hosts for resistance to parasites is an important assumption underlying evolutionary theory of host and parasite evolution. Using the castrating bacterial parasite Pasteuria ramosa and its cladoceran host Daphnia magna, we examined both within- and between-population genetic variation for resistance. First, we tested hosts from four populations for genetic variation for resistance to three parasite isolates. Allozyme analysis revealed significant host population divergence and that genetic distance corresponds to geographic distance. Host and parasite fitness components showed strong genetic differences between parasite isolates for host population by parasite interactions and for clones within populations, whereas host population effects were significant for only a few traits. In a second experiment we tested explicitly for within-population differences in variation for resistance by challenging nine host clones from a single population with four different parasite spore doses. Strong clone and dose effects were evident. More susceptible clones also suffered higher costs once infected. The results indicate that within-population variation for resistance is high relative to between-population variation. We speculate that P. ramosa adapts to individual host clones rather than to its host population.  相似文献   

17.
THE UBIQUITOUS CHALLENGE FROM INFECTIOUS DISEASE HAS PROMPTED THE EVOLUTION OF DIVERSE HOST DEFENSES, WHICH CAN BE DIVIDED INTO TWO BROAD CLASSES: resistance (which limits pathogen growth and infection) and tolerance (which does not limit infection, but instead reduces or offsets its negative fitness consequences). Resistance and tolerance may provide equivalent short-term benefits, but have fundamentally different epidemiological consequences and thus exhibit different evolutionary behaviors. We consider the evolution of resistance and tolerance in a spatially structured population using a stochastic simulation model. We show that tolerance can invade a population of susceptible individuals (i.e., neither resistant nor tolerant) with higher cost than resistance, even though they each provide equivalent direct benefits to the host, because tolerant hosts impose higher disease burden upon vulnerable competitors. However, in spatially structured settings, tolerance can invade a population of resistant hosts only with lower cost than resistance due to spatial genetic structure and the higher local incidence of disease around invading tolerant individuals. The evolution of tolerance is therefore constrained by spatial genetic structure in a manner not previously revealed by nonspatially explicit models, suggesting mechanisms that could maintain variation or limit the occurrence of tolerance relative to resistance.  相似文献   

18.
The evolution of host resistance to parasites, shaped by associated fitness costs, is crucial for epidemiology and maintenance of genetic diversity. Selection imposed by multiple parasites could be a particularly strong constraint, as hosts either accumulate costs of multiple specific resistances or evolve a more costly general resistance mechanism. We used experimental evolution to test how parasite heterogeneity influences the evolution of host resistance. We show that bacterial host populations evolved specific resistance to local bacteriophage parasites, regardless of whether they were in single or multiple-phage environments, and that hosts evolving with multiple phages were no more resistant to novel phages than those evolving with single phages. However, hosts from multiple-phage environments paid a higher cost, in terms of population growth in the absence of phage, for their evolved specific resistances than those from single-phage environments. Given that in nature host populations face selection pressures from multiple parasite strains and species, our results suggest that costs may be even more critical in shaping the evolution of resistance than previously thought. Furthermore, our results highlight that a better understanding of resistance costs under combined control strategies could lead to a more 'evolution-resistant' treatment of disease.  相似文献   

19.
Hosts counteract infections using two distinct defence strategies, resistance (reduction in pathogen fitness) and tolerance (limitation of infection damage). These strategies have been minimally investigated in multi-host systems, where they may vary across host species, entailing consequences both for hosts (virulence) and parasites (transmission). Comprehending the interplay among resistance, tolerance, virulence and parasite success is highly relevant for our understanding of the ecology and evolution of infectious and parasitic diseases. Our work investigated the interaction between an insect parasite and its most common bird host species, focusing on two relevant questions: (i) are defence strategies different between main and alternative hosts and, (ii) what are the consequences (virulence and parasite success) of different defence strategies? We conducted a matched field experiment and longitudinal studies at the host and the parasite levels under natural conditions, using a system comprising Philornis torquans flies and three bird hosts – the main host and two of the most frequently used alternative hosts. We found that main and alternative hosts have contrasting defence strategies, which gave rise in turn to contrasting virulence and parasite success. In the main bird host, minor loss of fitness, no detectable immune response, and high parasite success suggest a strategy of high tolerance and negligible resistance. Alternative hosts, on the contrary, resisted by mounting inflammatory responses, although with very different efficiency, which resulted in highly dissimilar parasite success and virulence. These results show clearly distinct defence strategies between main and alternative hosts in a natural multi-host system. They also highlight the importance of defence strategies in determining virulence and infection dynamics, and hint that defence efficiency is a crucial intervening element in these processes.  相似文献   

20.
Research in host-parasite evolutionary ecology has demonstrated that environmental variation plays a large role in mediating the outcome of parasite infection. For example, crowding or low food availability can reduce host condition and make them more vulnerable to parasite infection. This observation that poor-condition hosts often suffer more from parasite infection compared to healthy hosts has led to the assumption that parasite productivity is higher in poor-condition hosts. However, the ubiquity of this negative relationship between host condition and parasite fitness is unknown. Moreover, examining the effect of environmental variation on parasite fitness has been largely overlooked in the host-parasite literature. Here we investigate the relationship between parasite fitness and host condition by using a laboratory experiment with the cabbage looper Trichoplusia ni and its viral pathogen, AcMNPV, and by surveying published host-parasite literature. Our experiments demonstrated that virus productivity was positively correlated with host food availability and the literature survey revealed both positive and negative relationships between host condition and parasite fitness. Together these data demonstrate that contrary to previous assumptions, parasite fitness can be positively or negatively correlated with host fitness. We discuss the significance of these findings for host-parasite population biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号