首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Mesenchymal stem cells (MSCs) are accepted as a promising tool for therapeutic purposes. However, low proliferation and early senescence are still main obstacles of MSCs expansion for using as cell-based therapy. Thus, clinical scale of cell expansion is needed to obtain a large number of cells serving for further applications. In this study, we investigated the value of embryonic stem cells conditioned medium (ESCM) for in vitro expansion of Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) as compared to typical culture medium for MSCs, Dulbecco’s modified Eagle’s medium with 1.0 g/l glucose (DMEM-LG) supplemented with 10 % FBS, under hypoxic condition. The expanded cells from ESCM (ESCM-MSCs) and DMEM-LG (DMEM-MSCs) were characterized for both phenotype and biological activities including proliferation rate, population doubling time, cell cycle distribution and MSCs characteristics. ESCM and DMEM-LG could enhance WJ-MSCs proliferation as 204.66 ± 10.39 and 113.77 ± 7.89 fold increase at day 12, respectively. ESCM-MSCs could express pluripotency genes including Oct-4, Oct-3/4, Nanog, Klf-4, C-Myc and Sox-2 both in early and late passages whereas the downregulations of Oct-4 and Nanog were detected in late passage cells of DMEM-MSCs. The 2 cell populations also showed common MSCs characteristics including normal cell cycle, fibroblastic morphology, cell surface markers expressions (CD29+, CD44+, CD90+, CD34, CD45) and differentiation capacities into adipogenic, chondrogenic and osteogenic lineages. Moreover, our results revealed that ESCM exhibited as a rich source of several factors which are required for supportive WJ-MSCs proliferation. In conclusion, ESCM under hypoxic condition could accelerate WJ-MSCs expansion while maintaining their pluripotency properties. Our knowledge provide short term and cost-saving in WJ-MSCs expansion which has benefit to overcome insufficient cell numbers for clinical applications by reusing the discarded cell culture supernates from human ES culture system. Moreover, these findings can also apply for stem cell banking, regenerative medicine and pharmacological applications.  相似文献   

5.

Background

Mesenchymal stem cells (MSCs) have been considered as ideal cells for the treatment of a variety of diseases. However, aging and spontaneous differentiation of MSCs during culture expansion dampen their effectiveness. Previous studies suggest that ex vivo aging of MSCs is largely caused by epigenetic changes particularly a decline of histone H3 acetylation levels in promoter regions of pluripotent genes due to inappropriate growth environment.

Methodology/Principal Findings

In this study, we examined whether histone deacetylase inhibitor trichostatin A (TSA) could suppress the histone H3 deacetylation thus maintaining the primitive property of MSCs. We found that in regular adherent culture, human MSCs became flatter and larger upon successive passaging, while the expression of pluripotent genes such as Oct4, Sox2, Nanog, Rex-1, CD133 and TERT decreased markedly. Administration of low concentrations of TSA in culture significantly suppressed the morphological changes in MSCs otherwise occurred during culture expansion, increased their proliferation while retaining their cell contact growth inhibition property and multipotent differentiation ability. Moreover, TSA stabilized the expression of the above pluripotent genes and histone H3 acetylation levels in K9 and K14 in promoter regions of Oct4, Sox2 and TERT.

Conclusions/Significance

Our results suggest that TSA may serve as an effective culture additive to maintain the primitive feature of MSCs during culture expansion.  相似文献   

6.
The nuclear zinc finger protein ZFPIP/Zfp462 is an important factor involved in cell division during the early embryonic development of vertebrates. In pluripotent P19 cells, ZFPIP/Zfp462 takes part in cell proliferation, likely via its role in maintaining chromatin structure. To further define the function of ZFPIP/Zfp462 in the mechanisms of pluripotency and cell differentiation, we constructed a stable P19 cell line in which ZFPIP/Zfp462 knockdown is inducible.We report that ZFPIP/Zfp462 was vital for mitosis and self-renewal in pluripotent P19 cells. Its depletion induced substantial decreases in the expression of the pluripotency genes Nanog, Oct4 and Sox2 and was associated with the transient expression of specific neuronal differentiation markers. We also demonstrated that ZFPIP/Zfp462 expression appears to be unnecessary after neuronal differentiation is induced in P19 cells.Taken together, our results strongly suggest that ZFPIP/Zfp462 is a key chromatin factor involved in maintaining P19 pluripotency and in the early mechanisms of neural differentiation but that it is dispensable in differentiated P19 cells.  相似文献   

7.
8.
In this study, we investigated the effect of cell density on the proliferation activity of human mesenchymal stem cells (MSCs) derived from adipose tissue (AT‐MSCs) over time in culture. Passage #4 (P4) and #12 (P12) AT‐MSCs from two donors were plated at a density of 200 (culture condition 1, CC1) or 5000 (culture condition 2, CC2) cells cm?2. After 7 days of incubation, P4 and P12 AT‐MSCs cultured in CC1 were thin and spindle‐shaped, whereas those cultured in CC2 had extensive cell‐to‐cell contacts and an expanded cell volume. In addition, P4 and P12 AT‐MSCs in CC1 divided more than three times, while those in CC2 divided less than once on average. Flow cytometric analysis using 5(6)‐carboxyfluorescein diacetate N‐succinimidyl ester dye showed that the fluorescence intensity of AT‐MSCs was lower in CC1 than in CC2. Furthermore, expression of proliferation‐associated genes, such as CDC45L, CDC20A and KIF20A, in P4 AT‐MSCs was higher in CC1 than in CC2, and this difference was also observed in P12 AT‐MSCs. These data demonstrated that cell culture density affects the proliferation activity of MSCs, suggesting that it is feasible to design a strategy to prepare suitable MSCs using specific culture conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Mesenchymal stem cells (MSCs) derived from human bone marrow have capability to differentiate into cells of mesenchymal lineage. The cells have already been applied in various clinical situations because of their expansion and differentiation capabilities. The cells lose their capabilities after several passages, however. With the aim of conferring higher capability on human bone marrow MSCs, we introduced the Sox2 or Nanog gene into the cells. Sox2 and Nanog are not only essential for pluripotency and self-renewal of embryonic stem cells, but also expressed in somatic stem cells that have superior expansion and differentiation potentials. We found that Sox2-expressing MSCs showed consistent proliferation and osteogenic capability in culture media containing basic fibroblast growth factor (bFGF) compared to control cells. Significantly, in the presence of bFGF in culture media, most of the Sox2-expressing cells were small, whereas the control cells were elongated in shape. We also found that Nanog-expressing cells even in the absence of bFGF had much higher capabilities for expansion and osteogenesis than control cells. These results demonstrate not only an effective way to maintain proliferation and differentiation potentials of MSCs but also an important implication about the function of bFGF for self-renewal of stem cells including MSCs.  相似文献   

10.
11.
12.
The in vitro culture of porcine bone marrow-derived mesenchymal stem cells (MSCs) was used for the investigation of adult stem cell biology. Isolated porcine MSCs possessed the ability to proliferate extensively in an antioxidants-rich medium containing 5% fetal bovine serum (FBS). Greater than 40 serial MSC passages and 100 cell population doublings have been recorded for some MSC batches. Early and late passage MSCs were defined here as those cultures receiving less than 5 trypsin passages and more than 15 trypsin passages, respectively. Consistent with their robust ability to proliferate, both the early and late passage MSCs expressed the cell-cycle promoting enzyme p34cdc2 kinase. Late MSCs, however, exhibited certain features reminiscent of cellular aging such as actin accumulation, reduced substrate adherence, and increased activity of lysosomal acid beta-galactosidase. Early MSCs retained the multipotentiality capable of chondrogenic, osteogenic, and adipogenic differentiation upon induction in vitro. In contrast, late MSCs were only capable of adipogenic differentiation, which was greatly enhanced at the expense of the osteochondrogenic potential. Along with these changes in multipotentiality, late MSCs expressed decreased levels of the bone morphogenic protein (BMP-7) and reduced activity of alkaline phosphatase. Late MSCs also exhibited attenuated synthesis of the hematopoietic cytokines granulocyte colony-stimulating factor (G-CSF), leukemia inhibitory factor (LIF), and stem cell factor (SCF). The long-term porcine MSC culture, thus, provides a model system to study the molecular interplay between multiple MSC differentiation cascades in the context of cellular aging.  相似文献   

13.
14.
15.
MicroRNA‐29b (miR‐29b) is a member of the miR‐29 family, which targets DNA methyltransferases (DNMTs) and ten eleven translocation enzymes (TETs), thereby regulating DNA methylation. However, the role of miR‐29b in porcine early embryo development has not been reported. In this study, we examined the effects of miR‐29b in porcine in vitro fertilization (IVF) embryos to investigate the mechanism by which miR‐29b regulated DNA methylation. The interference of miR‐29b by its special miRNA inhibitor significantly up‐regulated Dnmt3a/b and Tet1 but downregulated Tet2/3; meanwhile it increased DNA methylation levels of the global genome and Nanog promoter region but decreased global DNA demethylation levels. The inhibition of miR‐29b also resulted in a decrease in the development rate and quality of blastocysts. In addition, the pluripotency genes Nanog and Sox2 were significantly downregulated, and the apoptosis genes Bax and Casp3 were upregulated, but anti‐apoptosis gene Bcl‐2 was downregulated in blastocysts. Our study indicated that miR‐29b could regulate DNA methylation mediated by miR29b‐ Dnmt3a/bTet1/2/3 signaling during porcine early embryo development.  相似文献   

16.
《Cytokine》2015,72(2):145-153
Since clinical application of MSCs requires long-term ex vivo culture inducing senescence in MSCs and reducing the therapeutic activity of transplanted MSCs, numerous efforts have been attempted to sustain the active state of MSCs. Substance P (SP) is a neuropeptide that functions to activate the cellular physiological responses of MSCs, including proliferation, migration, and secretion of specific cytokines. In this study, we explored the potential of SP to restore the weakened immune modulating activity of MSCs resulting from long-term culture by measuring T cell activity and interleukin-2 (IL-2) secretion of CD4+ Jurkat leukemic T cells and primary CD4+ T cells. As the number of cell passages increased, the immunosuppressive function of MSCs based on T cell activity decreased. This weakened activity of MSCs could be restored by SP treatment and nullified by co-treatment of an NK1 receptor blocker. Higher levels of transforming growth factor beta 1 (TGF-β1) secretion were noted in the medium of SP-treated late passage MSC cultures, but IL-10 levels did not change. SP-treated MSC-conditioned medium decreased T cell activity and IL-2/Interferon gamma (IFN-g) secretion in T cells even in the activation by lipopolysaccharide (LPS) or CD3/CD28 antibodies, both of which were successfully blocked by inhibiting the TGF beta signaling pathway. This stimulatory effect of SP on late passage MSCs was also confirmed in direct cell–cell contact co-culture of MSCs and CD4+ Jurkat T cells. Collectively, our study suggests that SP pretreatment to MSCs may recover the immunosuppressive function of late passage MSCs by potentiating their ability to secrete TGF-β1, which can enhance the therapeutic activity of ex vivo expanded MSCs in long-term culture.  相似文献   

17.
This study was designed to investigate the effect of platelet‐derived growth factor (PDGF) on the proliferation of human umbilical cord mesenchymal stem cells (UC‐MSCs) and further explore the mechanism of PDGF in promoting the proliferation of UC‐MSCs. The human UC‐MSCs were treated with different concentrations of PDGF, and the effects were evaluated by counting the cell number, the cell viability, the expression of PDGF receptors analyzed by RT‐PCR, and the detection of the gene expression of cell proliferation, cell cycle and pluripotency, and Brdu assay by immunofluorescent staining and Quantitative real‐time (QRT‐PCR). The results showed that PDGF could promote the proliferation of UC‐MSCs in vitro in a dose‐dependent way, and 10 to 50 ng/ml PDGF had a significant proliferation effect on UC‐MSCs; the most obvious concentration was 50 ng/ml. Significant inhibition on the proliferation of UC‐MSCs was observed when the concentration of PDGF was higher than 100 ng/ml, and all cells died when the concentration reached 200 ng/ml PDGF. The PDGF‐treated cells had stronger proliferation and antiapoptotic capacity than the control group by Brdu staining. The expression of the proliferation‐related genes C‐MYC, PCNA and TERT and cell cycle–related genes cyclin A, cyclin 1 and CDK2 were up‐regulated in PDGF medium compared with control. However, pluripotent gene OCT4 was not significantly different between cells cultured in PDGF and cells analyzed by immunofluorescence and QRT‐PCR. The PDGF could promote the proliferation of human UC‐MSCs in vitro. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Lim HJ  Han J  Woo DH  Kim SE  Kim SK  Kang HG  Kim JH 《Molecules and cells》2011,31(2):123-132
The mammalian reproductive tract is known to contain 1.5–5.3% oxygen (O2), but human embryonic stem cells (hESCs) derived from preimplantation embryos are typically cultured under 21% O2 tension. The aim of this study was to investigate the effects of O2 tension on the long-term culture of hESCs and on cell-fate determination during early differentiation. hESCs and embryoid bodies (EBs) were grown under different O2 tensions (3, 12, and 21% O2). The expression of markers associated with pluripotency, embryonic germ layers, and hypoxia was analyzed using RTPCR, immunostaining, and Western blotting. Proliferation, apoptosis, and chromosomal aberrations were examined using BrdU incorporation, caspase-3 immunostaining, and karyotype analysis, respectively. Structural and morphological changes of EBs under different O2 tensions were comparatively examined using azan- and hematoxylineosin staining, and scanning and transmission electron microscopy. Mild hypoxia (12% O2) increased the number of cells expressing Oct4/Nanog and reduced BrdU incorporation and aneuploidy. The percentage of cells positive for active caspase-3, which was high during normoxia (21% O2), gradually decreased when hESCs were continuously cultured under mild hypoxia. EBs subjected to hypoxia (3% O2) exhibited well-differentiated microvilli on their surface, secreted high levels of collagen, and showed enhanced differentiation into primitive endoderm. These changes were associated with increased expression of Foxa2, Sox17, AFP, and GATA4 on the EB periphery. Our data suggest that mild hypoxia facilitates the slow mitotic division of hESCs in long-term culture and reduces the frequency of chromosomal abnormalities and apoptosis. In addition, hypoxia promotes the differentiation of EBs into extraembryonic endoderm.  相似文献   

19.
Marrow culture from mice has been reported to be overgrown by non-mesenchymal cells. In almost all protocols for isolation of murine mesenchymal stem cells (MSCs), high density culture systems have been employed. Since MSCs are colonogenic cells, the initiating cell seeding density may have significant impact on their cultures. This subject was explored in this study. For this purpose, the bone marrow cells from NMRI mice were plated at 2.5 × 106 cells/cm2 and upon confluency were reseeded as either low density (50 cells/cm2) or high density (8 × 104 cells/cm2) cultures. The cells were expanded through an additional subculture and the passage 2 cells as a product of two culture systems were statistically compared with respect to their surface antigen profiles and osteogenic culture mineralization. While low density culture grew with multiple colony formation, there were no distinct colonies in high density cultures. In contrast to high density cultures, passage 2 cells from low density system possessed typical homogenous fibroblastic morphology. Some cells from high density system but not the low density cultures expressed hematopoietic and endothelial cell markers including CD135, CD34, CD31, and Vcam surface antigens. Furthermore, osteogenic cultures from low density system displayed significantly more mineralization than those from high density system. Taken together, it seems that low density culture system resulted in more purified MSC culture than its counterpart as high density culture system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号