首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. A new method for the isolation of the oliogomycin-sensitive ATPase from beef-heart mitochondria is described. 2. A Triton-soluble ATPase complex was isolated as a by-product of the standard procedure, or as the main product when the submitochondrial particles were pretreated with 1% Triton. The ATPase activity of this complex is sensitive neither to oligomycin nor to dicyclohexylcarbodiimide. 3. The ATPase activity of the oligomycin-sensitive ATPase complex is nearly completely dependent on added phospholipids. The highest activation was found with asolectin. 4. The oligomycin-sensitive complex can be integrated into phospholipid vesicles resulting in an ATP- and Mg2+-dependent energization of the vesicles as monitored with the fluorescent dye 9-amino-6-chloro-2-methoxyacridine. 5. Aurovertin-binding studies based on fluorescence measurement reveal the presence of 1.5 mumol aurovertin-binding sites per g protein for the oligomycin-sensitive complex and about 2.2 mumol for the oligomycin-insensitive complex. 6. The preparation of the oligomycin-sensitive complex contains at least 6--7 polypeptides in addition to those derived from F1. One of these polypeptides, with an apparent molecular weight of 31 000, is virtually absent from the oligomycin-insensitive complex. 7. Some of these polypeptides have been identified and isolated.  相似文献   

2.
A. Bruni  E. Bigon 《BBA》1974,357(3):333-343
1. On submitochondrial particles from bovine heart, diphosphatidylglycerol produced a selective solubilization of ATPase. The solubilized enzyme was purified further by ammonium sulfate fractionation and shown to have the same reconstitutive activity as coupling factor F1 (Pullman, M.E., Penefsky, H. S., Datta, A. and Racker, E. (1960) J. Biol. Chem. 235, 3322–3329).

2. Diphosphatidylglycerol-treated submitochondrial particles retained large amounts of the phospholipid and showed a decreased ATPase activity. Once the excess of phospholipid was removed, soluble ATPase could be again reincorporated in an oligomycin-sensitive complex.

3. On Mg-ATP particles the solubilization of ATPase induced by diphosphatidylglycerol was preceded by a stimulation of oligomycin-sensitive ATPase which indicated a dissociation of F1 from the ATPase inhibitor (Pullman, M. E. and Monroy, G. C. (1963) J. Biol. Chem. 238, 3762–3769). Magnesium was required to obtain the oligomycin-sensitive stimulation whereas in the absence of magnesium the solubilization of ATPase was prevalent.

4. It is concluded that the decreased association of F1 with the ATPase inhibitor produced by diphosphatidylglycerol, causes a labilization of ATPase-membrane interaction. Under particular conditions, e.g. a high amount of phospholipid and a low concentration of magnesium, this is followed by the detachment of ATPase.  相似文献   


3.
A reconstitution procedure has been developed for the incorporation of the mitochondrial F0.F1-ATPase into the bilayer of egg phosphatidylcholine vesicles. The nonionic detergent, octylglucoside, egg phosphatidylcholine, and the lipid-deficient, oligomycin-sensitive F0.F1-ATPase (Serrano, R., Kanner, B., and Racker, E. (1976) J. Biol. Chem. 251, 2453-2461) were combined in a 4770:320:1 detergent/phospholipid/protein molar ratio and then centrifuged on a discontinuous sucrose gradient to isolate the F0.F1-phosphatidylcholine complex. The specific activity of the reconstituted F0.F1-ATPase was as high as 14.5 mumol/min/mg protein, whereas with no added lipid the activity ranged between 1.4 and 2.2 mumol/min/mg protein. This reconstituted preparation exhibited greater than 90% oligomycin sensitivity which demonstrated the intactness of the multisubunit enzyme complex. The phosphatidylcholine/protein molar ratio of the reconstituted F0.F1 was 250:1 with less than 0.4% of the added octylglucoside remaining. Titrations with both phosphatidylcholine and octylglucoside demonstrated that the specific activity and oligomycin sensitivity were highly dependent on the concentrations of both phospholipid and detergent in the original reconstitution mixture. Analysis of the reconstituted ATPase by electron microscopy demonstrated that the catalytic portion of the enzyme complex projected from the phospholipid bilayer with an orientation similar to that observed with submitochondrial particles. The F0.F1-phosphatidylcholine complex was able to trap inulin, which suggests a vesicular structure impermeable to macromolecules. The electrophoretic mobility of the complex was identical to that for liposomes of egg phosphatidylcholine alone. The reconstitution conditions utilized give rise to an enzyme-phospholipid complex with very low ionic charge that demonstrates high oligomycin-sensitive ATPase activity.  相似文献   

4.
ATPase II, a vanadate-sensitive and phosphatidylserine-dependent Mg(2+)-ATPase, is a member of a subfamily of P-type ATPase and is presumably responsible for aminophospholipid translocation activity in eukaryotic cells. The aminophospholipid translocation activity plays an important physiological role in the maintenance of membrane phospholipid asymmetry that is observed in the plasma membrane as well as the membranes of certain cellular organelles. While the preparations of ATPase II from different sources share common fundamental properties, such as substrate specificity, inhibitor spectrum, and phospholipid dependence, they are divergent in several characteristics. These include specific ATPase activity and phospholipid selectivity. We report here the identification of four isoforms of ATPase II in bovine brain. These isoforms are formed by a combination of two major variations in their primary sequences and show that the structural variation of these isoforms has functional significance in both ATPase activity and phosholipid selectivity. Furthermore, studies with the phosphoenzyme intermediate of ATPase II and its recombinant isoforms revealed that phosphatidylserine is essential for the dephosphorylation of the intermediate. Without phosphatidylserine, ATPase II would be accumulated as phosphoenzyme in the presence of ATP, resulting in the interruption of its catalytic cycle.  相似文献   

5.
The association of different phospholipids with a lipid-depleted oligomycin-sensitive ATPase from bovine cardiac mitochondria [Serrano, Kanner & Racker (1976) J. Biol. Chem. 251, 2453-2461] has been examined using three approaches. First, reconstitution of the ATPase with different synthetic diacyl phospholipids resulted in a 2-10-fold stimulation of ATPase specific activity depending upon the particular phospholipid employed. The phospholipid headgroup region displayed the following order of ATPase reactivation potential: dioleoylphosphatidylglycerol greater than dioleoylphosphatidic acid greater than dioleoylphosphatidylcholine. Furthermore, the ATPase showed higher levels of specific activity when reconstituted with dioleoyl phospholipid derivatives compared with dimyristoyl derivatives. Second, examination of the phospholipid remaining associated with the lipid-depleted ATPase upon purification showed that phosphatidylcholine, phosphatidylethanolamine, and diphosphatidylglycerol were present. No relative enrichment of any of these phospholipids (compared with their distribution in submitochondrial particles) was noted. Therefore, no preferential association between the ATPase and any one phospholipid could be found in the mitochondrial ATPase. Third, the sodium cholate-mediated phospholipid exchange procedure was employed for studying the phospholipid requirements of the ATPase. Replacement of about 50% of the mitochondrial phospholipid remaining with the lipid-depleted ATPase could be achieved utilizing either synthetic phosphatidic acid or phosphatidylcholine. Examination of the displaced mitochondrial phospholipid showed that phosphatidylcholine, phosphatidylethanolamine, and diphosphatidylglycerol were replaced with equal facility.  相似文献   

6.
Interaction of pig muscle lactate dehydrogenase (LDH) with acidic phospholipids is strongly dependent on pH and is most efficient at pH values <6.5. The interaction is ionic strength sensitive and is not observed when bilayer structures are disrupted by detergents. Bilayers made of phosphatidylcholine (PC) do not bind the enzyme. The LDH interaction with mixed composition bilayers phosphatidylserine/phosphatidylcholine (PS/PC) and cardiolipin/phosphatidylcholine (CL/PC) leads to dramatic changes in the specific activity of the enzyme above a threshold of acidic phospholipid concentration likely when a necessary surface charge density is achieved. The threshold is dependent on the kind of phospholipid. Cardiolipin (CL) is much more effective compared to phosphatidylserine, which is explained as an effect of availability of both phosphate groups in a CL molecule for interaction with the enzyme. A requirement of more than one binding point on the enzyme molecule for the modification of the specific activity is postulated and discussed. Changes in CD spectra induced by the presence of CL and PS vesicles evidence modification of the conformational state of the protein molecules. In vivo qualitative as well as quantitative phospholipid composition of membrane binding sites for LDH molecules would be crucial for the yield of the binding and its consequences for the enzyme activity in the conditions of lowered pH.  相似文献   

7.
The activity of the lipid-depleted, oligomycin-sensitive mitochondrial ATPase has been measured in the presence of liposomes prepared from mixtures of phosphatidylglycerol and phosphatidylglycerol lysine. Enzyme activity increased linearly with an increase in the negative charge of liposomes prepared from the phosphatidylglycerol-phosphatidylglycerol lysine mixtures. The electrophoretic mobility and activating capacity of liposomes of several other phospholipids were determined. A linear relationship between electrophoretic mobility of the liposomes and oligomycin-sensitive activity was again apparent. These observations demonstrate that the activity of the ATPase is directly proportional to the ionic charge on phospholipid activators if the acyl chain composition of the phosphoglycerides is relatively constant.  相似文献   

8.
J W Soper  P L Pedersen 《Biochemistry》1976,15(12):2682-2690
The hydrolytic activity of the ATPase bound to purified inner membrane vesicles of rat liver mitochondria can be increased threefold by washing extensively with a high ionic strength phosphate buffer. The specific ATPase activities of such phosphate-washed membranes are the highest reported to date for a mitochondrial membrane preparation (21-24 mumol of ATP hydrolyzed min-1 mg-1 in bicarbonate buffer at 37 degrees C). Deoxycholate (0.1 mg/mg of protein) extracts from these membranes a soluble, cold-stable ATPase complex which exhibits a specific activity under optimal assay conditions of 12 mumol of ATP hydrolyzed min-1 mg-1. This complex is not sedimented by centrifugation at 201000 g for 90 min, and readily passes through a 250-A Millipore filter. The ATPase activity of the soluble complex is inhibited 95% by 2.4 muM oligomycin. In addition, inhibitions of 60% or better are obtained in the presence of 1-8 muM dicyclohexylcarbodiimide, p-chloromercuribenzoate, venturicidin, and aurovertin. While a similar complex may be extracted with Triton X-100 this preparation is always lower in both specific activity and in inhibitor sensitivities than the complex extracted with deoxycholate. Detergents of the Tween and Brij series and other detergents of the Triton series are also much less effective than deoxycholate in solubilizing the oligomycin-sensitive. ATPase complex of rat liver. It is concluded that deoxycholate is superior to other detergents as an extractant of the oligomycin-sensitive ATPase complex of rat liver mitochondria, and that the complex extracted with deoxycholate possesses a closer similarity to the membrane-associated ATPase than does the complex extracted with Triton X-100. These studies document the first report of a detergent-solubilized, oligomycin-sensitive ATPase preparation from rat liver mitochondria.  相似文献   

9.
The activity of the lipid-depleted, oligomycin-sensitive mitochondrial ATPase has been measured in the presence of liposomes prepared from mixtures of phosphatidylglycerol and phosphatidylglycerol lysine. Enzyme activity increased linearly with an increase in the negative charge of liposomes prepared from the phosphatidylglycerol-phosphatidylglycerol lysine mixtures. The electrophoretic mobility and activating capacity of liposomes of several other phospholipids were determined. A linear relationship between electrophoretic mobility of the liposomes and oligomycin-sensitive activity was again apparent. These observations demonstrate that the activity of the ATPase is directly proportional to the ionic charge on phospholipid activators if the acyl chain composition of the phosphoglycerides is relatively constant.  相似文献   

10.
1. Cytochrome oxidase was incorporated into preformed liposomes containing phosphatidylserine. When confronted with a mixture of liposomes, some containing phosphatidylserine and some without it, the enzyme was incorporated only into the phosphatidylserine-containing liposomes. 2. The hydrophobic proteins of the oligomycin-sensitive ATPase incubated in the presence of a mixture of liposomes with and without cytochrome oxidase were preferentially incorporated into cytochrome oxidase-containing liposomes. This selectivity was abolished by either cytochrome c or ascorbate. 3. Cytochrome oxidase incubated in the presence of a mixture of liposomes with and without the hydrophobic proteins of the ATPase was preferentially incorporated into liposomes that did not contain the hydrophobic proteins. 4. Cytochrome oxidase and the oligomycin-sensitive ATPase were preferentially incorporated into pure liposomes over bacteriorhodopsin-containing vesicles. 5. Reduced coenzyme Q (QH2)-cytochrome c reductase was incorporated randomly when incubated in the presence of a mixture of pure liposomes and liposomes containing the hydrophobic proteins of the ATPase complex. 6. The significance of the incorporation procedure as a model for membrane biogenesis is discussed.  相似文献   

11.
12.
The interaction between pure transhydrogenase and ATPase (Complex V) from beef heart mitochondria was investigated with transhydrogenase-ATPase vesicles in which the two proteins were co-reconstituted by dialysis or dilution procedures. In addition to phosphatidylcholine and phosphatidylethanolamine, reconstitution required phosphatidylserine and lysophosphatidylcholine. Transhydrogenase-ATPase vesicles catalyzed a 20-30-fold stimulation of the reduction of NADP+ or thio-NADP+ by NADH and a 70-fold shift of the apparent equilibrium expressed as the nicotinamide nucleotide ratio [NADPH][NAD+]/[NADP+][NADH]. In both of these respects, the transhydrogenase-ATPase vesicles were severalfold more efficient than beef heart submitochondrial particles. By measuring the ATP-driven transhydrogenase and the oligomycin-sensitive ATPase activities simultaneously and under the same conditions at low ATP concentrations, i.e. below 15 microM, the ATP-driven transhydrogenase/oligomycin-sensitive ATPase activity ratio was found to be about 3. This value is consistent with the stoichiometries of three protons translocated per ATP hydrolyzed and one proton translocated per NADPH formed and with a mechanism where the two enzymes interact through a delocalized proton-motive force.  相似文献   

13.
(Ca2+ + Mg2+)ATPase (EC 3.6.1.3) was solubilized from human erythrocyte membranes by detergent extraction with Triton N-101 (0.5 mg/mg membrane protein) and purified by calmodulin affinity chromatography. ATPase activity was assayed in mixtures of Triton N-101 and phospholipid, without reconstitution into bilayer vesicles. At low levels of phospholipid (5 micrograms/ml), the ATPase activity was highly sensitive to the detergent concentration, with maximal activity occurring at or near the critical micelle concentration of the detergent. With increased amounts of phospholipid (50 micrograms/ml), detergent concentrations greater than the critical micelle concentration were required for maximal activity. Detergent alone did not support ATPase activity. Sonicated phospholipid in the form of vesicles was equally ineffective. Activity seemed to be dependent on the presence of detergent/phospholipid mixed micelles. The acidic phospholipids, phosphatidylserine and phosphatidylinositol, as well as the commercial phospholipid preparation, Asolectin, gave activities five to eight times greater than the same amount of phosphatidylcholine. Mixtures of phosphatidylserine and phosphatidylcholine produced intermediate ATPase activities, with the maximal value dependent on the phosphatidylserine concentration. Addition of phosphatidylcholine to fixed concentrations of phosphatidylserine caused a rise in activity that was independent of the ratio of the two phospholipids or the total phospholipid concentration. Phosphatidylcholine may therefore be irreplaceable for some aspect of ATPase function. The number of phospholipid molecules present in mixed micelles at maximal ATPase activity was calculated to be near 50. This value implied that the hydrophobic surface of the ATPase molecule must be completely coated by a single layer of phospholipid molecules for maximum activity to occur.  相似文献   

14.
1. Generation of a transmembrane electric potential difference by oligomycin-sensitive ATPase complex, incorporated into spherical or planar phospholipid membrane, has been demonstrated. To this end, penetrating anion probe and direct voltmeter measurement of electric potential across phospholipid membrane were used. It was found that ATP-induced electric response is sensitive to oligomycin and protonophorous uncouplers. 2. The effect of variations in the phospholipid component of proteoliposomes on the electric generation was studied. It was revealed that the usage of mitochondrial phospholipids and phosphatidylethanolamine allows the highest values of membrane potential to be obtained in the case of ATPase proteoliposomes. In the case of cytochrome oxidase and bacteriorhodopsin proteoliposomes, phosphatidylserine was also shown to be quite suitable. Phosphatidylcholine was absolutely ineffective in all cases. 3. In proteoliposomes, containing both ATPase and bacteriorhodopsin, ATP and light induced generation of the electric field of the same direction. 4. In ATPase + cytochrome oxidase proteoliposomes, ATP hydrolysis and ascorbate oxidation was found to support electric generation of the same direction if cytochrome c was inside vesicles. Oxidation via external cytochrome c resulted in formation of electric field of the direction, opposite to that induced by ATP hydrolysis. 5. The data obtained in experiments with proteoliposomes of different types are discussed. The conclusion is made that conversion of energy of different resources into electric form is a common feature of membraneous energy transducers, which is in agreement with the Mitchellian principle of cellular energetics.  相似文献   

15.
1. Oligomycin and dicyclohexylcarbodiimide-sensitive ATPase was isolated from beef-heart mitochondria and treated with 3.5 M NaBr in order to remove F1. The residue, called F0, was found to consist of seven components. Five of these are stained by Coomassie blue after dodecylsulfate-polyacrylamide-gel electrophoresis. Two of them correspond to the oligomycin-sensitivity-conferring protein and coupling factor F6, with apparent molecular weights of 21,000 and 9,400, respectively. Three additional polypeptides of molecular weights 23,000, 10,500 and 8,600 were not identified with known proteins. Two components not stained with Coomassie blue were detected by autoradiography of the gels of F0 preincubated with [14C]dicyclohexylcarbodiimide. These two components probably represent monomeric and oligomeric forms of the dicyclohexylcarbodiimide-binding protein. 2. F0 induced an oligomycin and dicyclohexylcarbodiimide-sensitive enhancement of K+ + valinomycin-driven proton translocation across the membrane of artificial phospholipid vesicles. 3. The interaction of F0 with purified, soluble beef heart F1 was investigated. F0 was capable of binding F1 and conferring oligomycin and dicyclohexylcarbodiimide sensitivity and cold stability on its ATPase activity. Furthermore F0 was found to diminish the specific activity of F1-ATPase. A comparison of these effects at varying F0/F1 ratios shows that F0 binds F1 in both an oligomycin-sensitive and an oligomycin-insensitive manner, and that both types of binding involve a conferral of cold stability and a decrease in specific activity. High F0/F1 ratios favoured in oligomycin-sensitive type of binding, indicating that F1 binds preferentially to oligomycin-sensitivity-conferring sites. Treatment of ATPase complex with trypsin resulted in an F0 with a decreased proportion of oligomycin-sensitivity-conferring binding sites and a diminished ability to lower the specific activity an cold lability of F1. 4. Reconstitution of F0 treated with trypsin and F1, oligomycin-sensitivity-conferring protein and F6 showed that at a constant amount of F1 bound, both oligomycin-sensitivity-conferring protein and F6 increased the oligomycin sensitivity of ATPase activity. It was therefore concluded that both of these coupling factors are involved in the conferral of oligomycin sensitivity. 5. The effect of the order of addition of F1, oligomycin-sensitivity-conferring protein and F6 to F0 on the reconstitution of oligomycin-sensitive ATPase activity, and of F1 and oligomycin-sensitivity-conferring protein to submitochondrial particles on the reconstitution of respiratory control, was investigated. The highest values of oligomycin sensitivity and respiratory control were obtained when F1 was added as the first component, indicating that F1 plays a directing role in the organisation of the components.  相似文献   

16.
The lipid-free particulate preparations of the mitochondrial ATPase require phospholipid for activity and can be inhibited by oligomycin, as has been demonstrated previously. In this communication a steady state analysis of the activation of a particulate preparation of the ATPase by phospholipids and its subsequent inhibition by oligomycin has been carried out. The relative affinity of the ATPase for purified phospholipids has been determined by measuring the Km for activation (Ka) for several phospholipids. The Ka values varied from 30 to 100 mum. The Vmax in the presence of phosphatides varies from 0.29 to 1.11 mumol ATP hydrolyzed/min/mg of protein; no correlation is noted between the relative affinity of the enzyme for a phospholipid and the V max value. Higher V max values are noted with the more acidic phospholipids, however. Sodium dodecyl sulfate and monoolein also activate with Ka values of 25 and 800 mum, respectively. Diglycerides, however, do not activate. With all lipids the ATPase activity stimulated is oligomycin-sensitive. The Ki values for oligomycin range from 0.1 to 0.6 mum. Oligomycin is a competitive inhibitor with respect to all the phospholipids tested except phosphatidylethanolamine and phosphatidyglycerol. It is also competitive with respect to sodium dodecyl sulfate (k-i equals 0.94 mum). In reciprocal plots of activity versus ATP concentration, with and without oligomycin, an intercept consistent with either mixed or partial noncompetitive inhibition kinetics is noted. Comparable K-i values for oligomycin are obtained when calculated assuming either mixed or partial noncompetitive inhibition. The Km for ATP is the same in the unactivated and the lipid activated particulate ATPase; the value obtained is slightly lower than the Km for ATP in the solubilized, purified ATPase. Using a spectrophotometric assay the time required for activation with phospholipid and inhibition with oligomycin has also been determined. This investigation suggests the possibility that activation of the ATPase is due a position to interact with the water-soluble substrate. Consistent with the above suggestion is the supposition that the lipids do not necessarily confer inhibitor sensitivity to the ATPase, but rather allow an oligomycin-sensitive activity to be expressed.  相似文献   

17.
Ligand-binding studies with labelled triethyltin on yeast mitochondrial membranes showed the presence of high-affinity sites (KD = 0.6 micronM; 1.2 +/- 0.3 nmol/mg of protein) and low-affinity sites (KD less than 45 micronM; 70 +/- 20 nmol/mg of protein). The dissociation constant of the high-affinity site is in good agreement with the concentration of triethyltin required for inhibition of mitochondrial ATPase (adenosine triphosphatase) and oxidative phosphorylation. The high-affinity site is not competed for by oligomycin or venturicidin, indicating that triethyltin reacts at a different site from these inhibitors of oxidative phosphorylation. Fractionation of the mitochondrial membrane shows a specific association of the high-affinity sites with the ATP synthase complex. During purification of ATP synthase (oligomycin-sensitive ATPase) there is a 5-6-fold purification of oligomycin- and triethyltin-sensitive ATPase activity concomitant with a 7-9-fold increase in high-affinity triethyltin-binding sites. The purified yeast oligomycin-sensitive ATPase complex contains approximately six binding sites for triethyltin/mol of enzyme complex. It is concluded that specific triethyltin-binding sites are components of the ATP synthase complex, which accounts for the specific inhibition of ATPase and oxidative phosphorylation by triethyltin.  相似文献   

18.
Abstract: Phosphatidylserine was labeled by incubating rat brain homogenates with [3-14C]serine in the presence of Ca2+ (base-exchange conditions). Some labeled phosphati-dylethanolamine also forms, in spite of the inhibition of Ca2+ on phosphatidylserine decarboxylase. Phosphatidylserine labeling and decarboxylation also occur on incubating a mixture of purified mitochondria and microsomes, suggesting that no soluble factors are necessary for the synthesis and the decarboxylation of phosphatidylserine. Ca2+ favors the transfer of phosphatidylserine from microsomes (where it forms) to mitochondria (where it is decarboxylated). The specific radioactivity of the phosphatidylserine transferred to mitochondria is higher than that of microsomal phosphatidylserine. This finding supports the hypothesis that the lipid is compartmentalized in microsomes and that radioactive, newly synthesized phosphatidylserine is much better exported than the bulk of microsomal phospholipid.  相似文献   

19.
It was found that mitochondrial oligomycin-sensitive ATPase (OS-ATPase) possesses the esterase activity with respect to some carboxylic acid esters with phenols and arylalcane alcohols. The substrate specificity of the esterase found was studied. The effects of some inhibitors and activators of ATPase on the enzyme activity were demonstrated. It was found that ADP inhibits the enzyme from submitochondrial particles containing factor F1 and does not inhibit the enzyme from the particles devoid of this factor. The data obtained suggest that esterase is localized in the hydrophobic part of the oligomycin-sensitive ATPase complex and are indicative of the functional interrelationship between the esterase and ATPase activities.  相似文献   

20.
Drs2p, a yeast type IV P-type ATPase (P4-ATPase), or flippase, couples ATP hydrolysis to phosphatidylserine translocation and the establishment of membrane asymmetry. A previous study has shown that affinity-purified Drs2p, possessing an N-terminal tandem affinity purification tag (TAPN-Drs2), retains ATPase and translocase activity, but Drs2p purified using a C-terminal tag (Drs2-TAPC) was inactive. In this study, we show that the ATPase activity of N-terminally purified Drs2p associates primarily with a proteolyzed form of Drs2p lacking the C-terminal cytosolic tail. Truncation of most of the Drs2p C-terminal tail sequence activates its ATPase activity by ∼4-fold. These observations are consistent with the hypothesis that the C-terminal tail of Drs2p is auto-inhibitory to Drs2p activity. Phosphatidylinositol 4-phosphate (PI(4)P) has been shown to positively regulate Drs2p activity in isolated Golgi membranes through interaction with the C-terminal tail. In proteoliposomes reconstituted with purified, N-terminally TAP-tagged Drs2p, both ATPase and flippase activity were significantly higher in the presence of PI(4)P. In contrast, PI(4)P had no significant effect on the activity of a truncated form of Drs2p, which lacked the C-terminal tail. This work provides the first direct evidence, in a purified system, that a phospholipid flippase is subject to auto-inhibition by its C-terminal tail, which can be relieved by a phosphoinositide to stimulate flippase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号